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Dynamical decoupling of laser phase noise
in compound atomic clocks
Sören Dörscher 1✉, Ali Al-Masoudi1,4, Marcin Bober 2, Roman Schwarz1, Richard Hobson3, Uwe Sterr 1 &

Christian Lisdat 1✉

The frequency stability of many optical atomic clocks is limited by the coherence of their local

oscillator. Here, we present a measurement protocol that overcomes the laser coherence

limit. It relies on engineered dynamical decoupling of laser phase noise and near-synchronous

interrogation of two clocks. One clock coarsely tracks the laser phase using dynamical

decoupling; the other refines this estimate using a high-resolution phase measurement. While

the former needs to have a high signal-to-noise ratio, the latter clock may operate with any

number of particles. The protocol effectively enables minute-long Ramsey interrogation for

coherence times of few seconds as provided by the current best ultrastable laser systems. We

demonstrate implementation of the protocol in a realistic proof-of-principle experiment,

where we interrogate for 0.5 s at a laser coherence time of 77 ms. Here, a single lattice clock

is used to emulate synchronous interrogation of two separate clocks in the presence of

artificial laser frequency noise. We discuss the frequency instability of a single-ion clock that

would result from using the protocol for stabilisation, under these conditions and for minute-

long interrogation, and find expected instabilities of σy(τ) = 8 × 10−16(τ/s)−1/2 and

σy(τ) = 5 × 10−17(τ/s)−1/2, respectively.
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The progress of optical clocks has enabled a multitude of
applications that range from testing fundamental symme-
tries underlying relativity1,2 and searching for physics

beyond the standard model3–5, including dark matter6–10, to
measuring geopotential differences11,12 and the proposed use for
gravitational wave detection13. Since lower frequency instability
of a clock reduces the time required to perform measurements
with a given precision, it benefits applications in general and
those where time-dependent effects are measured, including
transient changes of fundamental constants10, in particular.
Therefore, the advancement of ultrastable lasers14,15 and other
techniques to reduce measurement instability16–20 continue to be
a focus of research.

The frequency stability of optical clocks is limited by quan-
tum projection noise21 (QPN) as well as aliased laser frequency
noise due to non-continuous observation, which is known as
the Dick effect22,23. The contribution of the latter depends
intricately on the noise spectrum of the laser and the para-
meters of clock operation. It can be minimised by using Ramsey
spectroscopy, which best recovers the unweighted mean laser
frequency during the interrogation time Ti, in combination
with little or no dead time. Ultimately, QPN limits the
instability of an atomic clock, given by the Allan deviation σy, to

the standard quantum limit

σyðτÞ ¼
1

2πν0

ffiffiffiffiffiffiffiffiffiffiffi
Tc

NT2
i τ

s
; ð1Þ

if N uncorrelated atoms or ions are interrogated, where ν0 is the
frequency of the clock transition, Tc the total cycle time, and τ
the averaging time24.

A clock’s frequency instability is thus minimised by using the
longest possible interrogation time. It is, in fact, the only way to
improve the frequency instability for single-ion clocks, which are
limited by their significant QPN (N = 1) through Eq. (1). The
situation is more complex in optical lattice clocks, which benefit
from their lower projection noise (N ≫ 1). Their frequency
instability can be improved by reducing projection noise, including
the use of spin squeezing25,26, and by the rejection of the Dick effect
using techniques such as synchronous17 or dead time-free
interrogation19,20. These are complementary to and can be com-
bined with maximising interrogation time to achieve the best pos-
sible frequency stability. However, the coherence of even the most
stable lasers15 limits interrogation times well short of the excited-
state lifetimes of the most promising clock species1,27–29 and of
ultranarrow transitions in several species of highly charged ions30,31.
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Fig. 1 Compound clock scheme using dynamically decoupling interrogation. a Schematic setup of a compound clock for operation beyond the laser
coherence limit. The two clocks share a common local oscillator (LO) that is pre-stabilised to an ultrastable cavity. The frequency stability of the LO is
transferred to interrogation lasers, e.g. by a frequency comb (FC). Using the spectroscopic sequences shown in b, clock 1 provides a coarse estimate (ϕ1) of
the laser phase deviation to clock 2, which then refines this measurement. Their combined measured phase deviation (ϕtot) feeds back into a frequency
shifter (Δν) to stabilise the LO frequency. Note that the measured phase and frequency deviations need to be scaled by the frequency ratio when
transferred to a clock or LO operating at a different frequency, which has been omitted here for the sake of simplicity. b Pulse sequences of clocks 1 and 2
as a function of time t (example). After an initial π/2 excitation pulse (red), the interrogation sequence of clock 1 interleaves free-evolution times of
duration Td or Td/2 (light grey) and ‘flip’ pulses (orange) of pulse area π − ϵ and phase φ = ±π/2 with respect to the initial pulse. It ends with a pulse of
area ϵ/2 (magenta) and state read-out (blue). Clock 2 uses a two-pulse Ramsey sequence. It receives laser phase information (ϕ1) from clock 1 in time to
adjust the phase of the second π/2 pulse such that the fringe centre is shifted to maximise the signal slope. The delay T i � T0

i must be kept short to avoid
excess phase noise (see “Methods” section). c–e Evolution of the atomic state in clock 1 on the Bloch sphere for constant laser detuning at times t1 through
t3, as marked in b (example). g and e indicate the ground and excited state of the clock transition, respectively. After accumulating phase during the first
dark time Td/2 (c, blue), a flip pulse nearly reverses this precession of the Bloch vector and maps it onto a small change of excitation probability (c, red).
The process is repeated twice with dark time Td (d and e, red). Finally, another free-evolution time Td/2 (e, light red) and the final laser pulse with area ϵ/2
(e, green) are applied.
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For Ramsey interrogation, the excitation probability pe depends
sinusoidally on the phase difference ϕ = 2πTiΔν that accumulates
between the laser light field and the atomic oscillator during
interrogation, where Δν is the corresponding average frequency
offset. Thus, phase deviations due to laser noise can only be
traced unambiguously within ϕj j≤ π=2. In analogy to ref. 15, we
define the coherence time Tco by requiring that the laser phase
stay in this invertible range in 99% of all cases. This corresponds
to a coherence time of about Tco = 5.5 s at a frequency of
194 THz for the best state-of-the-art lasers15, whereas excited-
state lifetimes of clock transitions can be much longer, e.g. from
20.6 s in the Al+ ion32 through several minutes in neutral
strontium33 to several years for the electric octupole transition in
the Yb+ ion34. Therefore, operating a clock beyond the laser
coherence limit is a highly interesting route to enhancing fre-
quency stability.

Dynamical decoupling methods35 can prevent decoherence
from a variety of noise sources, e.g. spin-echo methods suppress
inhomogeneous broadening36. However, perfect decoupling of
laser frequency noise is not useful for operation of a clock, which
relies on tracing the mean laser frequency with respect to the
atomic resonance.

Here, we present a coherent multi-pulse interrogation scheme
that partially decouples laser noise in a well-controlled fashion,
with similarities to spin-echo sequences, and a compound clock
system that applies this dynamical decoupling scheme in one
clock to improve the performance of another clock. We
demonstrate phase measurement by such a system well beyond
the laser coherence limit in a proof-of-principle experiment,
which uses artificially imprinted laser frequency noise and emu-
lates synchronous operation of the two clocks by consecutive
measurements in a single optical lattice clock. Finally, we analyse
the expected improvement in clock performance for single-ion
clocks with suitably narrow transitions. We find that frequency
instability improves with interrogation time according to Eq. (1),
which reduces the averaging time required to realise a given
measurement precision by more than an order of magnitude.

Results and discussion
Dynamical decoupling of laser noise. Figure 1 and Supple-
mentary Movie 1 illustrate a multi-pulse interrogation scheme,
which dynamically decouples the atomic superposition state from
laser phase noise to a controllable degree. A variable numberM of
‘flip’ pulses with pulse area π − ϵ divides the free-evolution time
into short periods of durations Td or Td/2. Each pulse maps the
phase accumulated during free-evolution onto atomic state
population. An example of the resulting line shape is shown in
Fig. 2. In comparison to Ramsey interrogation, it trades reduced
discriminator sensitivity for a much wider range over which the
mean laser frequency can be traced.

The compound clock consists of two clock packages that are
interrogated nearly synchronously (Fig. 1): one provides a coarse
estimate ϕ1 of the atom–laser phase deviation ϕ using the above
scheme (clock 1), the other refines this measurement using
Ramsey spectroscopy (clock 2), providing a correction ϕ2. Their
combined phase measurement ϕtot = ϕ1 + ϕ2 traces the laser
phase deviation ϕ for interrogation times Ti well beyond the laser
coherence time Tco and with the full precision of Ramsey
spectroscopy. The compound system thus achieves much better
frequency stability than a comparable stand-alone clock, which is
limited to Ti < Tco (Eq. (1)).

The interrogation sequence of clock 1 is tailored to the specific
laser noise spectrum of the local oscillator and to the
interrogation time. Using the number of flip pulses M and pulse
defect ϵ, decoupling is adjusted such that the central fringe of the

resulting line shape covers most of the laser’s phase excursions.
Longer interrogation times Ti also require a larger number of flip
pulses M, to keep the dark time Td ≈ Ti/M below the laser
coherence limit. On the other hand, the discriminator slope of
clock 1 must be steep enough to keep its absolute phase
measurement error ∣Δϕ1∣ below π/2 in most cases. Within this
invertible range, clock 2 is able to cancel Δϕ1 through its own
measurement. Otherwise, a residual error remains in the final
phase measurement (see “Methods” section), which may decrease
the frequency stability of the compound clock. Maximising the
interrogation time hence requires minimising the noise of clock 1.
Optical lattice clocks are ideal candidates for this role due to their
intrinsically low QPN. In contrast, clock 2 may well be a clock
with a low signal-to-noise ratio, e.g. a single-ion clock. Finally,
laser frequency noise contributes to the phase error in clock 1
through imperfections of the dynamical decoupling, which are
similar to the well-known Dick effect22,23 (see “Methods”
section). They are caused by the increased frequency sensitivity
during the flip pulses, as shown in Fig. 3a. Their effect can be
minimised by using as few flip pulses as possible and by
decreasing their duration. Therefore, the maximum interrogation
time Ti of the compound clock results mostly from a trade-off
between technical limitations, such as the number of atoms of
clock 1 or the available interrogation laser power.

Experiment. We perform a proof-of-principle experiment to
demonstrate the compound clock scheme, using a state-of-the-art
interrogation laser system15 and a strontium optical lattice
clock37 (see “Methods” section for further details). Its goal is to
characterise the quality of phase reconstruction for a series of
known phase deviations, which are generated by imprinting
artificial frequency noise onto the interrogation laser. Since this
process is reproducible and the undisturbed laser’s frequency is
highly stable, we use two consecutive interrogations of a single
lattice clock to emulate synchronous operation of clocks 1 and 2
(see “Methods” section). It is preferable to use a lattice clock with
low QPN as clock 2 for characterisation. The reduced coherence
time of the laser, which results from the artificial noise, also
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Fig. 2 Line shape of a dynamically decoupling spectroscopy sequence.
The spectroscopy signal of clock 1 is shown as a function of laser detuning
(for M = 6, ϵ = 0.08 π, Td = 40 ms, and a π-pulse duration Tπ = 1 ms). The
line shape expected from theory in the absence of frequency noise (solid
line) features a broad central fringe as well as a complex structure far off
resonance. Measurements using our strontium lattice clock without
artificial noise (circles) reproduce this line shape very well. Deviations can
be attributed to limited contrast (around 90%) and fluctuations of laser
intensity. The central fringe covers about 25 Hz, whereas the central fringe
of Ramsey spectroscopy covers only about 2 Hz at the same interrogation
time (Ti ≈ 0.25 s).
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minimises the effect of technical limitations such as nonlinear
frequency drift of the laser and atomic decoherence. We do not
implement feedback to the local oscillator (Fig. 1), to keep the
measurements independent. However, we later use the recorded
data to estimate the frequency instability of a compound
clock using a single-ion clock. A direct demonstration, e.g.

interrogating a lattice clock and a single-ion clock beyond the
coherence time of the undisturbed interrogation laser, is beyond
the scope of this article for technical and practical reasons.

The experiment is summarised in Fig. 3a–d. We use a noise
spectrum (Fig. 3c and “Methods”) with a coherence time
Tco = 77 ms for Ramsey interrogation and an interrogation time
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Fig. 3 Summary of the experimental setup for the compound clock demonstration. a Frequency sensitivity g(t) of regular Ramsey spectroscopy22,23 (red
line) and of the decoupled protocol (blue line). The increased sensitivity of the latter during each of theM = 16 flip pulses gives rise to imperfections of the
dynamical decoupling (see main text and “Methods”). b Line shape of Ramsey spectroscopy (red line) and the decoupled protocol (blue line), scaled to a
contrast of 0.75. The signals observed while scanning the laser across resonance in the absence of artificial frequency noise are shown for comparison (red
diamonds, blue circles). Note that the Ramsey scan (red diamonds) was recorded for a slightly different dark time (500 ms) than used in the experiment.
c Single-sided power spectral density (PSD) Sy(f) of the artificial laser noise imprinted onto the interrogation laser (blue line). The phase noise of our
interrogation laser system as reported in ref. 15 is shown schematically for comparison (green line). d Distributions of final phase deviations due to artificial
frequency noise (blue) and intrinsic laser noise (green) after the interrogation time.
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Fig. 4 Results of the compound clock demonstration. a Phase measurement errors Δϕ1 of clock 1 only (blue circles) and Δϕtot of the full compound clock
(red circles) in our proof-of-principle experiment, for K = 1093 unique samples of artificial laser frequency noise. ϕ0 is the phase excursion imprinted onto
the interrogation laser for each sample. The grey shaded area represents the range of phase errors by clock 1 that can be fully compensated by the
measurement of clock 2 (i.e. for which fringe assignment in clock 2 is correct, see main text and “Methods”). b Histogram of the phase measurement errors
of clock 1 (blue) and of the compound clock (red). The grey shaded area represents the same range of phase errors as in a. c Histogram of the imprinted
laser phase deviations for comparison.
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Ti ≈ 495 ms. At a root mean square (RMS) value of about
σϕ = 0.7 π, the laser phase deviation ϕ during Ti thus exceeds the
invertible range of Ramsey spectroscopy half of the time
(Pð Δϕj j > π=2Þ ¼ 0:5). In our experiment, it covers nearly the
entire interval � 5

2 π;
5
2 π

� �
, i.e. five Ramsey fringes.

Figure 4a–c shows the measured phase errors Δϕ1 of clock 1
and Δϕtot of the compound clock, i.e. including the measurement
by clock 2, as a function of the phase deviations ϕ0 imprinted
artificially onto the laser (ϕ ≈ ϕ0). The dynamical decoupling
scheme works well across the entire range of phase deviations and
with only a few gross phase reconstruction errors. Clock 1
determines the fringe observed by clock 2 correctly with
probability P(∣Δϕ1∣ ≤ π/2) = 95.3(7)%. As seen in the figure, the
phase errors of the compound clock are reduced further by the
measurement of clock 2; we find P(∣Δϕtot∣ ≤ π/2)= 99.0(3)% for
the full measurement. This proof-of-principle experiment thus
demonstrates that the compound clock can be interrogated well
beyond the laser coherence time (Ti/Tco ≈ 6.4).

In an additional measurement, we increase the power spectral
density of the artificial flicker frequency noise by a factor of 2.25,
which reduces the coherence time of the laser to Tco = 56 ms, but
leave the other parameters unchanged. We observe a slightly
reduced performance of the compound clock, P(∣Δϕtot∣ ≤ π/
2) = 93.1(8)%, in this case.

Phase measurement errors. The frequency instability of the
compound clock benefits from its increased interrogation time
and duty cycle, as the contributions from QPN, the Dick effect,
and other noise sources decrease. However, phase measurement
errors Δϕ1 by clock 1 exceeding ±π/2 cause incorrect fringe
assignment in clock 2 and prevent the compound clock from
measuring the phase correctly (see “Methods” section). These
errors hence give rise to an additional instability contribution,
which needs to be taken into account to assess the benefits of
using a compound clock. In our proof-of-principle experiment, a
RMS phase error σϕ1 by clock 1 of about 0.14 π is expected,
mainly from dynamical decoupling imperfections (see “Methods”
section). This would make incorrect fringe assignment highly
improbable. Experimentally, we observe a broader distribution of
errors in clock 1 (Fig. 4a, b), which we take into account when
estimating the instability of a compound clock in this situation.
The bulk of the measurement errors are described well by a
normal distribution with a standard deviation of about
σb = 0.24 π. Since we observe similar phase errors even without
artificial laser noise, we attribute the difference to technical
imperfections of the pulse sequence like power fluctuations.
Moreover, large phase errors occur more frequently
(Pð Δϕ1

�� �� > 3σbÞ ¼ 1:1ð3Þ ´ 10�2) than expected for that normal
distribution. Such outliers may be caused by particular features of
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Fig. 5 Correction of phase errors from clock 1. Phase errors from clock 1 are corrected using the measurement of clock 2. The resulting distribution of
residual phase errors in the compound clock is estimated from that observed in clock 1: a Excitation probability pe in clock 2 as a function of the phase error
Δϕ1 introduced by clock 1. b Probability distribution of phase errors Δϕ1 from clock 1, using the model discussed in the main text. c Probability distribution
of residual phase errors Δϕtot of the compound clock, i.e. after correction by clock 2. Colour-coding illustrates which intervals of phase errors in b and c
correspond to which fringe in a. Grey lines spanning all panels illustrate how phase errors from clock 1 are corrected by clock 2 and how the probability
distribution in c is derived from the respective distribution shown in b. Vertical arrows in c indicate Dirac delta functions. Their integrals correspond to
those of the respective shaded areas in b. As shown here, phase errors from clock 1 are corrected fully by clock 2 in nearly all cases. Additional noise
introduced by clock 2 is treated separately (see main text).
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a phase trajectory that cause a nonlinear response, e.g. precession
of the Bloch vector in clock 1 by ∣ϕ∣ ⪆ π/2 during a dark time (cf.
the results from the measurement with reduced coherence time).
Even a few outliers may substantially affect the compound clock’s
frequency instability because they can lead to large phase errors
∣Δϕtot∣ ⪆ π/2 (see “Methods” section). We account for the outliers
by adding a uniform pedestal to the normal distribution. The
pedestal is assigned a width of L = 2.5 π, such that it covers the
actual one with 68% confidence, and an integrated weight
η = 0.02, which reproduces the observed rate of outliers on
average. The combined distribution reproduces the observed
RMS phase error of clock 1 (σϕ1 ¼ 0:25 π) well. It maps to a
contribution of about 0.10π to the RMS phase error σϕtot of the
compound clock (see “Methods” section and Fig. 5). Finally, noise
from clock 2 itself causes additional phase errors. It broadens the
Dirac delta function at zero phase error shown in Fig. 5, which
contains the bulk of the measurements, to a finite width. We
estimate this width from the observed error distribution of the
compound clock (Fig. 4b) and find a value of 0.07π, which we
attribute mostly to residual frequency offsets of the undisturbed
interrogation laser from resonance. The sum of these two error
contributions reproduces the observed overall RMS phase error
σϕtot ¼ 0:12 π of the compound clock.

Frequency instability. Based on these observations, we estimate the
frequency instability of an actual compound clock that uses a single-
ion clock as clock 2 and a lattice clock as clock 1. For simplicity, we
assume that both clocks operate at the frequency of a strontium
lattice clock. Furthermore, we assume a frequency noise spectrum of
the interrogation laser and individual probing sequences of the clocks
that are equivalent to our proof-of-principle experiment and a dead
time Tdead = 0.25 s for preparation and read-out. The frequency
instability resulting from the observed imperfections of the dyna-
mical decoupling (σy,dd(τ) = 2 × 10−16(τ/s)−1/2) remains well below
the contributions from QPN (σy,QPN(τ) = 6 × 10−16(τ/s)−1/2) and
the Dick effect (σy,Dick(τ) = 5 × 10−16(τ/s)−1/2). The total frequency
instability achieved by the compound clock is about σy(τ) = 8 ×
10−16(τ/s)−1/2, for a laser with only 77 ms coherence time. The
compound clock thus takes about a factor of 14 less averaging time
to reach a given measurement precision than a comparable stand-
alone single-ion clock (σy(τ) = 31 × 10−16(τ/s)−1/2) operating with
an interrogation time close to that coherence limit (Ti = 71 ms) and
the same dead time.

Similar improvements of clock performance are expected for
clocks using state-of-the-art ultrastable lasers. The laser system
reported in ref. 15 has a thermal noise floor of about mod σy ¼
4 ´ 10�17 in its modified Allan deviation, which results in a
coherence time Tco ≈ 2.5 s for Ramsey interrogation at the
strontium clock’s frequency. If we allow for similar phase errors
due to imperfections of dynamical decoupling as expected in our
experiment the interrogation time of a compound clock using this
local oscillator can be extended to about one minute. Even if these
errors were exceeded to a similar extent as observed experimen-
tally, the resulting contribution to instability would remain well
below that from QPN for the case considered here. A single-ion
clock then reaches a QPN-limited instability of σy(τ) = 5 × 10−17

(τ/s)−1/2 as part of a compound clock. Averaging times reduce by
a factor of about 24 compared to stand-alone operation of the
clock. Achieving similar performance of the stand-alone clock
would require improving the frequency instability of the laser
system by this same factor, i.e. to mod σy < 2 ´ 10�18.

Conclusion
The compound clock scheme presented here can thus expedite
high-performance clock comparisons by more than an order of

magnitude. Such progress is essential for the practicality of
comparing future and even existing ion clocks. In the case of
today’s best ion clocks1,27 measurements at 1 × 10−18 uncertainty
would require less than an hour of averaging time in a compound
clock rather than a few weeks as required at their present
instability1,27. The problem has thus been in the focus of research
for some time: Correlated interrogation of two clocks16,38 rejects
laser phase fluctuations in direct comparisons. Moreover, the
frequency difference between two clocks can be exploited to
operate one or, in case of two lattice clocks, both beyond the laser
coherence limit18. The compound clock scheme allows operating
a clock beyond the laser coherence limit more generally. In
particular, it improves the absolute frequency stability of the clock
rather than only that of its frequency ratio to a specific, coherently
linked clock. Similar to the scheme presented in ref. 18, it requires
little additional hardware, since lattice clocks for coarse mea-
surement are already available in most laboratories that operate
high-performance optical clocks. While there are other techni-
ques that allow tracing the laser phase beyond the coherence
limit, e.g. weak measurements39–41, the dynamical decoupling
protocol has been designed to do so using only standard
experimental techniques.

Expediting high-performance comparisons of present and
future clocks at uncertainties of 1 × 10−18 and below is important
not only for the feasibility of evaluating and comparing these
clocks but also for the many applications that aim to resolve time-
dependent effects using optical clocks. Ion clocks are already used
for such applications frequently, e.g. tests of Lorentz symmetry1

and the search for ultralight scalar dark matter10. Precision
spectroscopy on highly charged ions is well suited for such
applications30, as well, and may benefit similarly, as several highly
charged ion species feature ultranarrow transitions with lifetimes
of several days and longer. In each case, reducing the clock’s
frequency instability results directly in an improved measurement
sensitivity and may enable the investigation of phenomena that
would remain inaccessible due to their required time resolution
and measurement sensitivity otherwise. Therefore, implementing
techniques that allow such improvements with existing technol-
ogy, such as the compound clock scheme and the other techni-
ques discussed above, is crucial for pushing both the development
of optical clocks and their applications.

Methods
Interrogation laser setup. The interrogation laser of our strontium lattice clock at
νSr ≈ 429 THz has been described in detail in ref. 14. Its frequency stability has since
been improved further42 by stability transfer from one of the ultrastable lasers
described in ref. 15 via a single branch of an optical frequency comb using the
transfer oscillator scheme43–45. That laser is stabilised to a cryogenic mono-
crystalline silicon resonator near ν = 194.4 THz. Its modified Allan deviation has a
flicker frequency noise floor of about mod σy ¼ 4 ´ 10�17 and a similar con-
tribution from white frequency noise at an averaging time τ = 1 s15.

Laser light from the interrogation laser is delivered to the atoms via an optical
fibre. We have modified the optical path length stabilisation (PLS) such that it is
compatible with multi-pulse interrogation (cf. ref. 46): If a single beam is used for
both spectroscopy and PLS two subsequent pulses may differ in phase by Δφ = π
because the phase-locked loop in the PLS is only sensitive to the round-trip phase.
Our observations have shown that these phase slips occur occasionally. Therefore,
we use two separate beams: a resonant probe beam for spectroscopy and an off-
resonant (Δν = −2 MHz) pilot beam, which remains switched on throughout the
entire spectroscopy sequence, for the PLS servo loop. Both beams are derived from
the same acousto-optic modulator in front of the fibre so that they nearly co-
propagate. The optical path length of the probe beam is then co-stabilised via the
pilot beam.

Artificial frequency noise. We imprint additional frequency noise directly onto
the probe beam, by changing its radio-frequency offset with respect to the pilot
beam at the acousto-optic modulator of the PLS. A direct digital synthesiser (DDS)
based on a field programmable gate array provides a radio-frequency signal with
the appropriate frequency noise for this purpose.
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A set of pre-generated samples of pseudo-random power-law frequency noise47 is
uploaded to the DDS prior to the experiment. Here, we use artificial frequency noise
spectra with Syðf Þ ¼

P0
i¼�1 hif

i , where white frequency noise h0 = 1.8 × 10−31 Hz−1

(i.e. σy = 3 × 10−16 at τ = 1 s) and flicker frequency noise h−1 = 1.2 × 10−30

(σy = 1.3 × 10−15) with respect to the transition frequency of the clock (Fig. 3c). Each
sample has a duration of about 1 s with a time resolution of about 60 μs.

During the experiment, the computer control system of the clock selects one of
these samples and triggers the DDS at the beginning of the probe sequence. The
DDS replays the selected noise sample from the beginning each time it is triggered.
The clock’s pulse pattern generator is used to generate the trigger signal, for precise
and reproducible timing with respect to the probe sequence.

Experimental setup. Our strontium optical lattice clock has been described in
previous publications42,48,49. For the experiments reported here, laser frequency
noise is dominated by the artificial contribution discussed in the previous section
and shown in Fig. 3c. We adjust the power of the spectroscopy beam such that it
results in a π-pulse duration Tπ = 1.0 ms, which keeps imperfections of the
dynamical decoupling due to the Dick effect low. A suitable spectroscopy sequence
for clock 1 with an interrogation time T 0

i � 495 ms is determined following the
procedure discussed in the main text. We use a spectroscopy sequence withM = 16
flip pulses such that Td = 30 ms < Tco and choose ϵ = 0.12π such that the central
fringe is broad enough to trace the expected phase deviations unambiguously.

For the experiments reported here, we operate the clock in a repeating cycle S1,

S2, ~S1, ~S2, M
ðiÞ
1 , MðiÞ

2 , ~M
ðiþ1Þ
1 , ~M

ðiþ1Þ
2 , where S1 (S2) are stabilisation interrogations

using the probe sequence of clock 1 (2) and the undisturbed clock laser and MðiÞ
1

(MðiÞ
2 ) are measurement interrogations using the sequence of clock 1 (2) and

artificial frequency noise from the i-th sample. The line shapes are inverted for
every second pair of interrogations, as indicated by tildes, by reversing the phase
shifts of the pulses. The stabilisation interrogations with the probe sequence of
clock 2 are used to lock the laser frequency to the atomic transition frequency and
compensate any residual frequency drift of the interrogation laser during the
experiment. Those using the probe sequence of clock 1 are not used. Each pair of
measurement interrogations is used to perform a phase measurement for one of the

frequency noise samples. Here, the phase ϕðiÞ1 measured by clock 1 (MðiÞ
1 or ~M

ðiÞ
1 ) is

reconstructed from the observed excitation probability, using a look-up table for
the specific probe sequence and correcting for the observed contrast. The

subsequent measurement interrogation (MðiÞ
2 or ~M

ðiÞ
2 ), which uses the same noise

sample but the probe sequence of clock 2, receives this measurement result and
uses it to adjust the phase of its second excitation pulse, as shown in Fig. 1. The
observed excitation probability is once again corrected for the observed contrast

and then converted to the observed phase ϕðiÞ2 . Here, we approximate the Ramsey
line shape by a sine function and assume that the result falls within the
invertible range.

As there is no feedback to the clock, these results are analysed in post-

processing for simplicity: The imprinted phase deviations ϕðiÞ0 are computed by
numerically integrating the frequency noise of respective samples over the

interrogation time and compared to the phase measurement results ϕðiÞ1 of clock 1

and ϕðiÞtot ¼ ϕðiÞ1 þ ϕðiÞ2 of the compound clock. Figure 4 shows the difference
between the measured and expected values.

Probe light shift. We observe a differential shift on the order of a hertz between
the line centres of the two probe sequences. We cancel it by applying an offset to
the clock laser frequency in all interrogations using the probe sequence of clock 1.
The occurrence of such a shift is not unexpected since the probe sequence of clock
1 with its many flip pulses is more sensitive to probe light shifts than the two-pulse
sequence used by clock 2. However, it does not impede operation of a compound
clock or its systematic uncertainty, which is governed by clock 2.

Phase errors due to near-synchronous interrogation. Reading out the atomic
state of clock 1 and forwarding the phase estimate to clock 2 (Fig. 1) introduces a
brief window during which only one of the clocks monitors the laser. Laser phase
noise that occurs during this time directly affects the determination of the correct
Ramsey fringe in clock 2. Hence, the delay T i � T i

0 must be kept short. For the
sake of simplicity, we use the same interrogation time in both clocks (T i ¼ T 0

i) for
the experiments presented here, which use sequential interrogation of a single clock
(see main text). In practice, the delay can easily be kept well below the coherence
time of typical interrogation lasers.

Phase errors due to dynamical decoupling imperfections. Phase measurement
errors in clock 1 caused by imperfections of the dynamical decoupling can be
calculated analogously to the Dick effect22, by analysis of the clock’s sensitivity to
laser frequency fluctuations.

The frequency sensitivity g(t) of a spectroscopy protocol determines the change
in excitation probability δpe caused by a time-dependent frequency error δν(t) of

the probe laser, which is given by22,23,50

δpe ¼
1
2

Z T i

0
2πδνðtÞgðtÞdt; ð2Þ

for interrogation time Ti in the linear response regime. If the sensitivity function of
clock 1 had the same shape as that of clock 2, which is nearly rectangular, there
would be no imperfections of the dynamical decoupling. In practice, this will never
be the case due to the different pulse sequences used in the two clocks (Fig. 1). The

frequency sensitivity g(t) of clock 1 can be split into a signal component �g ¼
T�1
i

R T i

0 gðtÞdt and a noise component gnðtÞ ¼ gðtÞ � �g such that

δpe ¼
1
2
�gϕþ π

Z T i

0
gnðtÞδνðtÞdt; ð3Þ

where ϕ is the laser phase deviation accumulated during the interrogation time.
Laser frequency noise with single-sided power spectral density Sy(f) thus gives rise
to noise of the measured excitation probability with variance51

σ2pe ¼ πν0ð Þ2
Z 1

0
ĝnðf Þ
�� ��2Syðf Þdf ; ð4Þ

where ĝnðf Þ is the complex Fourier transform of gn(t). This corresponds to a phase
measurement error with variance

σ2ϕ ¼ �g
2

� ��2

σ2pe :
ð5Þ

The frequency sensitivity of the protocol presented here is shown in Fig. 3a for
the parameters used in the proof-of-principle experiment. The noise component
gn(t) stems mainly from the greatly increased frequency sensitivity during flip
pulses. Therefore, the phase measurement is particularly sensitive to laser
frequency noise at Fourier frequencies that are harmonics of f � ðTπ þ TdÞ�1. The
relevant Fourier coefficients of the sensitivity function decrease with shortening Tπ

and roll off above a corner frequency f c � T�1
π , which restricts useful π-pulse

durations.
Phase errors due to these imperfections of the decoupling depend on the noise

type (Sy ∝ fα) that dominates at the relevant Fourier frequencies. For flicker or
white frequency noise (α = 0 or −1), they decrease towards shorter pulse duration
Tπ, whereas they increase for flicker or white phase noise (α = 1 or 2). White
frequency noise is the dominant noise process for our laser system15 at Tπ ≈ 1 ms.
The spectroscopy sequence used here gives rise to RMS phase measurement errors
σϕ,0 = 0.12 π from artificial laser noise and σϕ,i = 0.014 π from frequency noise of
the undisturbed laser.

In contrast with the procedure for estimating the frequency instability due to
the Dick effect22 in atomic clocks, the dead time and total cycle time are not
relevant for calculating the effect of the dynamical decoupling imperfections. This
is because the atomic excitation is being used in the dynamical decoupling scheme
to estimate the phase accumulated by the laser only during the interrogation pulse,
not the phase accumulated during the entire clock cycle.

Phase errors due to QPN. Like the dynamical decoupling imperfections, QPN
causes phase measurement noise in clock 1 that may lead to incorrect determi-
nation of the Ramsey fringe.

The measured excitation probability has a variance σ2pe ¼ �peð1� �peÞN�1 due to
QPN for N uncorrelated atoms, where �pe is the expectation value. The variance of
the resulting phase measurement noise is then given by Eq. (5). We interrogate
about 700 atoms per measurement for the experiments reported here. This
corresponds to contributions σpe ¼ 0:02 and σϕ1 ¼ 0:06π.

Effect of phase errors by clock 1 on the compound clock. The compound clock
compensates errors of clock 1 using the complementary narrow-fringe, high-
resolution measurement by clock 2. This scheme works well as long as the phase
errors Δϕ1 from clock 1 stay within ±π/2. If the phase error exceeds this threshold
clock 2 is assigned an incorrect fringe, which causes a non-zero residual phase error
Δϕtot of the compound clock. Note that, in contrast to a stand-alone system, such
events do not cause the clock to lock onto an incorrect fringe because it will be
detected by clock 1 and corrected in the next measurement. Nevertheless, they give
rise to additional noise in the compound clock and increase its frequency
instability. The probability density function of the compound clock’s residual
errors results from mapping the probability density function of phase errors by
clock 1 onto the corresponding phase errors of the compound clock, as shown in
Fig. 5. This can be treated as independent of additional noise introduced by clock 2
in good approximation. Finally, the contribution of the residual phase errors to the
clock’s frequency instability results from the RMS phase error, which is estimated
from the probability density function.

Data availability
The datasets generated and analysed during this study are available from the
corresponding authors upon reasonable request.
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Code availability
The source code that supports the findings of this study is available from the
corresponding authors upon reasonable request. The source code that has been used to
generate Fig. 1c–e, using the QuTiP library52, and Supplementary Movie 1 is provided as
Supplementary Software 1.
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