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Relative importance of nonlinear electron-phonon
coupling and vertex corrections in the Holstein
model
Philip M. Dee1, Jennifer Coulter 2, Kevin G. Kleiner1 & Steven Johnston 1,3✉

Determining the range of validity of Migdal’s approximation for electron-phonon (e-ph)

coupled systems is a long-standing problem. Many attempts to answer this question employ

the Holstein Hamiltonian, where the electron density couples linearly to local lattice dis-

placements. When these displacements are large, however, nonlinear corrections to the

interaction must also be included, which can significantly alter the physical picture obtained

from this model. Using determinant quantum Monte Carlo and the self-consistent Migdal

approximation, we compared superconducting and charge-density-wave correlations in the

Holstein model with and without second-order nonlinear interactions. We find a disagree-

ment between the two cases, even for relatively small values of the e-ph coupling strength,

and, importantly, that this can occur in the same parameter regions where Migdal’s

approximation holds. Our results demonstrate that questions regarding the validity of Mig-

dal’s approximation go hand in hand with questions of the validity of a linear e-ph interaction.
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Our modern understanding of phonon-mediated super-
conductors is largely based on results from ab initio
approaches1 coupled with Migdal’s approximation2–4.

Migdal’s approximation2 neglects corrections to the
electron–phonon (e–ph) interaction vertex, which scale as
Oðλ _Ω

EF
Þ, where λ is a dimensionless measure of the e–ph coupling

strength, ℏΩ is the typical phonon energy, and EF is the Fermi
energy. Physically, this approximation neglects processes leading
to polaron formation, and determining precisely when these
processes become important and their impact on transport
properties is a long-standing problem5–12.

Many attempts to address this question have utilized non-
pertubative simulations of simplified effective models like the
Holstein13 or Fröhlich14 Hamiltonians, where the electron density
couples linearly with phonon fields. For example, owing to it’s
relative simplicity, the Holstein model and its extensions have been
studied extensively using quantum Monte Carlo (QMC)5,15–29, and
serves as a prototype for studying different polaronic regimes.
Recently, it was shown that even if _Ω

EF
< 1, one can find instances

where vertex corrections (i.e., polaron formation) become
important for λ ≈ 0.4–0.58,9.

It is generally understood that small (large) polarons form
when the polaron binding energy is larger (smaller) than the
hopping energy of the carriers30. However, small polarons are
often accompanied by sizable lattice distortions and a tendency
toward localization and charge order. This observation has
motivated some work to include higher-order nonlinear e–ph
coupling terms to study changes in polaron formation31 and on
charge-density-wave (CDW) and superconducting (SC) pairing
correlations32,33. These studies found that small positive (nega-
tive) nonlinear terms decrease (increase) the effective mass of the
carriers and contracts (enlarges) the local lattice distortions sur-
rounding the carriers31. Furthermore, mean-field treatments
aiming to recover a linear model via effective model parameters
fail to capture the quantitative nature of the true nonlinear
model31–33, indicating that nonlinearities cannot be renormalized
out of the problem. For example, one can tune the parameters of
an effective linear model to capture either the electronic or
phononic properties of the nonlinear model but not both
simultaneously33. This failure is important to note in the context
of polaron formation, where the electrons and phonons become
highly intertwined. To capture this physics accurately, an effective
model must describe both degrees of freedom on an equal foot-
ing, and an effective linear description of a nonlinear e–ph model
will not do this.

These results raise an important question about the priority
of investigations into the validity of the aforementioned
approximations. Are there scenarios where the breakdown of
the linear approximation supersedes the breakdown of Mig-
dal’s approximation? In this work, we show that this is indeed
the case. Specifically, by comparing QMC simulations of the
(non)linear Holstein model with results obtained with the
Migdal approximation’s, we show that nonlinear corrections
can be more important than vertex corrections, and that this
can occur even when Migdal’s approximation appears to be
valid. Our results have consequences for any conclusions
drawn about the validity of Migdal’s approximation from
model Hamiltonians and highlight a critical need to move
beyond such models for a complete understanding of strong
e–ph interactions.

Results
Model. We study an extension of the Holstein model that
includes nonlinear e–ph interaction terms and defined on a two-
dimensional (2D) square lattice. The Hamiltonian is

Ĥ ¼ Ĥel þ Ĥlat þ Ĥint, where

Ĥel ¼ �t
X
hi;ji;σ

ĉyi;σ ĉj;σ � μ
X
i

n̂i ð1Þ

and

Ĥlat ¼
X
i

P̂
2
i

2M
þMΩ2X̂

2
i
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 !
¼
X
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_Ω b̂
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describe the noninteracting electronic and phononic parts,
respectively, and

Ĥint ¼
X
i;k

αkn̂iX̂
k
i ¼

X
i;k

gkn̂i b̂
y
i þ b̂i

� �k
ð3Þ

describes the e–ph interaction to kth order in the atomic dis-
placement. Here, ĉyi;σ (̂ci;σ) create (annihilate) spin σ(=↑, ↓)

electrons on site i, n̂i ¼
P

σ ĉ
y
i;σ ĉi;σ is the number operator, μ is the

chemical potential, t is the nearest-neighbor hopping integral, and
〈i, j〉 restricts the summation to nearest-neighbors only. Each ion
has a massM with position and momentum operators denoted by
X̂i and P̂i, respectively. Quantizing the lattice vibrations leads to

Einstein phonons created (annihilated) by the operator b̂
y
i (b̂i)

with associated phonon frequency Ω. Lastly, αk and gk are the
e–ph interaction strengths in the two representations, which are

related by gk ¼ αk
_

2MΩ

� �k
2.

Following previous works on the nonlinear Holstein
model32,33, we truncate the series in Ĥint to second order and
introduce the ratio ξ = g2/g1 to quantify the relative size of the
two e–ph couplings. (The standard Holstein model is recovered
by setting g2 = 0.) This simplification is sufficient to assess the
relative importance of nonlinear interactions relative to Migdal’s
approximation. Additional orders up to k = 4 have been studied
in the single carrier limit31, where they produce the same
qualitative picture.

To facilitate comparison with previous work, we set
kB = ℏ = t = M = 1. The scale of atomic displacements is set
by the oscillation amplitude of the free harmonic oscillator A ¼ffiffiffiffiffiffiffiffiffiffiffi

1=2Ω
p

(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_=2MΩ

p
with the physical units restored). When

reporting expectation values of X and its fluctuations, we
explicitly divide by A in model units, thereby making the results
dimensionless. To get an idea for what these values mean in
reality, one can simply multiply the results by A in physical units.
Later, we will consider FeSe to estimate the strength of the
nonlinear interactions. In that case, the prefactor (in physical
units) is A ~ 0.036 Å, which is obtained after adopting a selenium
mass M = 1.31 × 10−25 kg and the experimental phonon energy
ℏΩ = 20.8 meV of the A1g mode (see Supplementary Note 1 for
more details). Alternatively, we obtain a comparable scale of
A ~ 0.051 Å for the transition metal oxides, where ℏΩ = 50 meV
and M = 2.66 × 10−26 kg are typical for the optical oxygen
phonons. Finally, we adopt the standard definition for the
dimensionless linear e–ph interaction strength λ ¼ 2g21=WΩ,
where W = 8t is the bandwidth.

In what follows, we compare results obtained using determi-
nant quantum Monte Carlo (DQMC)34 and the self-consistent
Migdal approximation (SCMA)16 (see “Methods” section and
Supplementary Note 2). To determine the relative importance of
nonlinear e–ph interactions against vertex corrections to Migdal’s
approximation, we juxtapose results obtained using these
methods for the linear and nonlinear models. For example,
comparing results obtained from DQMC and the SCMA for the
linear model reveals the importance of vertex corrections.
Analogously, comparing DQMC results for the linear and
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nonlinear models provides a measure for the importance of
nonlinear interactions while treating the two models exactly. This
methodology will allow us to isolate the source of any observed
discrepancies. Deviations between SCMA and DQMC for the
linear model must be due to vertex corrections, while disagree-
ment between DQMC results for the linear and nonlinear models
must arise from the additional quadratic interaction.

Comparison of susceptibilities at half-filling. We begin by
comparing the susceptibilities for charge-density-wave (CDW)
χCDW(π, π) and pairing χSC correlations for a few illustrative cases
(see “Methods” section). The first comparison takes place at half-
filling n � hn̂ii ¼ 1, where both CDW correlations and lattice
displacements are significant. For example, at λ = 0.2, Ω = 0.5t,
and T = 0.1t, we obtain ∣〈Xi,l〉∣/A ~ 1.97 and 2.53 for ξ = 0.05 and
ξ = 0, respectively. Taking A ≈ 0.036 Å for FeSe, these values
correspond to ~2.4 and 3.1% of the 2.95 Å Fe–Fe bond length.
Similarly, taking A ≈ 0.051 Å translates to 5.1 and 6.6% of the
typical 1.96 Å Cu–O bond-distance in a high-Tc superconducting
cuprate. These displacements are not negligible (as we will show)
when the nonlineararities are included, particularly given the
weak values of the coupling we consider here. Later, we also
discuss the size of the corresponding vibrational fluctuations.

Figure 1 presents results for the temperature dependence of
χCDW(π, π) and χSC using Ω = 0.5t, N = 8 × 8, and λ = 0.1 and
0.2. This parameter set corresponds to weak coupling and satisfies
the adiabatic criterion Ω

EF
< 1, where we expect the SCMA to hold.

Indeed, when λ = 0.1 (Fig. 1a, b), there is fair agreement between
the DQMC results obtained from both the linear (ξ = 0) and

nonlinear (ξ = 0.05) e–ph models (symbols with solid curve), as
well as the SCMA results for the linear model (dash-dot curve).
When λ = 0.2 (Fig. 1c, d), however, we find significant
disagreement between the results for ξ = 0 and ξ = 0.05 in
both susceptibilities, especially at lower temperatures. In Fig. 1d,
the DQMC and SCMA results mostly agree for the linear
Holstein model (ξ = 0), but a small nonlinear correction of
ξ = 0.05 yields a marked suppression the CDW correlations. The
rapid onset of CDW order in the ξ = 0 case (Fig. 1d) coincides
with a sharp downturn in χSC (Fig. 1c), a feature which is not
captured by the SCMA result.

The suppression of CDW correlations (Fig. 1d) in the presence
of nonlinear e–ph coupling demonstrates the importance of
higher-order interactions over vertex corrections in this case. As
we show later, the need for nonlinear e–ph coupling is greatest
near half-filling, where the CDW correlations are strongest. Of
course, the downturn of the pairing susceptibility obtained from
DQMC (ξ = 0) at lower temperatures (Fig. 1c) appears to indicate
that vertex corrections are also important for capturing the low
temperature behavior of χSC at λ ~ 0.2. This value of λ is smaller
than the breakdown values reported in Esterlis et al.9, however,
our models differ slightly. For one, they suppress the effects of
Fermi-surface nesting by situating the electron density away from
half-filling and also include hopping between next nearest-
neighbors. Second, they use an alternate definition for λ = α2N
(EF)/MΩ2, where N(EF) is the density of states evaluated at the
Fermi energy. Nevertheless, the results in Fig. 1c, d reveal that the
nonlinear corrections to the linear model are non-negligible at
high temperature, even before the breakdown of Migdal’s
approximation becomes apparent.

Fig. 1 Comparison of the superconducting (SC) and charge susceptibilities at half-filling. The singlet-pairing (χSC) and charge-density-wave (χCDW

(π, π)) susceptibilities vs. temperature for dimensionless e–ph couplings of λ = 0.1 (a, b) and 0.2 (c, d) at half-filling and Ω = 0.5t. Results for the model
with and without nonlinear corrections are shown using closed and open symbols, respectively. Error bars on the DQMC data points are one standard
deviation statistical errors estimated using jackknife resampling.
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Pairing susceptibilities for large phonon frequency. Now we
consider a counter comparison in the antiadiabatic regime with
intermediate coupling by setting λ = 0.4, Ω = 4t, N = 10 × 10,
and n = 0.55 (Fig. 2). Away from half-filling, the pairing corre-
lations grow more rapidly in part due to the larger Ω, but also
because of less competition with (incommensurate) CDW cor-
relations (Supplementary Note 3). Each of the curves in Fig. 2
shows that the system has strong pairing correlations, but they
would yield very different estimates for Tc. The SCMA sig-
nificantly overestimates χSC, which is not surprising because
Migdal’s approximation is ill justified in this case (i.e., λ Ω

EF
� 1).

Interestingly, the nonlinear corrections become important at low
temperature despite the presence of smaller lattice displacements
(e.g., ∣〈Xi,l〉∣/A ≈ 0.22).

Comparison over doping. Fig. 3 shows results for three combi-
nations of λ and Ω/t over a wide range of electronic filling and at
a fixed temperature T = 0.25t. The DQMC results for ξ = 0
(ξ = 0.05) are represented by open (closed) symbols in all three
panels, while the SCMA results are shown as dashed or dotted
lines in Fig. 3a, b. For reference, Fig. 3c shows the corresponding
the average lattice displacement, obtained by averaging over all
spacetime points hXi;li ¼ 1

N2L

P
i;lXi;l . We caution that 〈Xi,l〉

provides a rough measure of the typical lattice displacements, and
not a complete picture of the ionic subsystem. We will return to
this subtle issue later, when we discuss the displacement fluc-
tuations. Additional results away from half-filling are also pro-
vided in Supplementary Fig. 2.

Case (1), λ = 0.15, Ω = 0.5t: These parameters are nearly
identical to those used in Fig. 1. The deviations in χCDW(π, π) for
ξ = 0 and ξ = 0.05 (Fig. 3a) become apparent near n ≥ 0.6,
whereas the SCMA result starts to deviate from DQMC for n ≥
0.8. At this temperature, the results for χSC essentially agree
(Fig. 3b), but the nonlinear model yields a smaller average
displacement 〈Xi,l〉/A (Fig. 3c). These results further reinforce our
prior observation that Migdal’s approximation and the linear

model can break down in different parameter regimes (in this
case doping).

Case (2), λ = 0.3, Ω = 0.5t: Now we double λ while keeping the
Ω fixed. The increase in λ produces larger average displacements
(Fig. 3c) and more pronounced nonlinear corrections. It also
induces a stronger CDW (Fig. 3a) for the linear (ξ = 0) model.
The SCMA qualitatively captures the CDW correlations of the
linear model in panel (a), but underestimates their strength,
which can be attributed to solely to the vertex corrections,
consistent with the conclusions of Esterlis et al.9. Due to the large
CDW correlations, there is a suppression35,36 in χSC for ξ = 0,
which is mostly captured by the SCMA (Fig. 3b). The
introduction of the nonlinear interaction significantly reduces
the CDW correlations and their competition with SC, which
enhances χSC at larger values of n.

Case (3), λ = 0.15, Ω = 4.0t: Now we look at the large phonon
frequency results for DQMC (green and crimson triangles) and
SCMA (green dotted line). The larger Ω boosts pairing

Fig. 2 Temperature dependence of the superconducting susceptibility for
a large phonon frequency Ω = 4.0t. Results are shown for a filling of
n = 0.55 and a lattice size N = 10 × 10. Both the linear (ξ = 0, blue
squares) and nonlinear (ξ = 0.05, green triangles) Holstein model results
from determinant quantum Monte Carlo (DQMC) show a rapid growth of
pairing correlations with decreasing temperature, but approach different
asymptotes. The self-consistent Migdal approximation (SCMA) results
(red dashed line), shown here for reference, yield a large and inaccurate
estimate for the superconducting critical temperature due to the invalidity
of Migdal’s approximation. The lines connecting DQMC data are spline-
interpolated and used only to guide the eye. Error bars on the DQMC data
points are one standard deviation statistical errors estimated using
jackknife resampling.

Fig. 3 Doping dependence of the correlations at fixed temperature
T = 0.25t. a The charge-density wave (CDW) susceptibility χCDW(π, π),
b superconducting (SC) pair-field susceptibility χSC, and c the average value
of the phonon field 〈Xi,l〉/A are shown for a lattice size of N = 8 × 8.
Symbols connected by solid lines depict determinant quantum Monte
Carlo (DQMC) data where open (closed) symbols correspond to ξ = 0
(ξ = 0.05). Like symbol shapes between curves indicate the same pair of λ
and Ω. Dashed and dotted lines correspond to self-consistent Migdal
approximation (SCMA) calculations for ξ = 0. Error bars on the DQMC
data were estimated using jackknife resampling; however, all one-sigma
error bars are smaller than the symbol size and have been suppressed for
clarity. Lines connecting DQMC data are used only to guide the eye.
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correlations (Fig. 3b) across the entire doping range and all of the
χSC’s are in fair agreement. However, we know from Fig. 2 that
larger differences between each curve will emerge at lower
temperatures. In fact, the SCMA already overestimates χCDW

(π, π) near half-filling at this temperature, a feature we may
attribute to antiadiabaticity. The increased value of Ω means that
the lattice vibrations are characterized by stiffer spring constants.
We obtain smaller average lattice displacements at all n as a result
(Fig. 3c), which reduces the importance of the nonlinear
interaction and produces better agreement between ξ = 0 and
ξ = 0.05 DQMC results.

We should be careful in interpreting the results at lower filling
in each of the cases above. On the one hand, our examples suggest
that corrections to the e–ph interaction are most important for
describing the CDW phase transition near half-filling, which
appears at higher temperatures. On the other hand, corrections
could become important in the dilute carrier region at much
lower temperatures. Nonetheless, our results suggest that the
linear Holstein model is sensitive to nonlinear corrections over a
large parameter space and that regions of this space overlap with
regions where Migdal’s approximation is not valid. But perhaps
more importantly, there are regions where the linear approxima-
tion breaks down before Migdal’s approximation does.

Average lattice displacement and its fluctuations. In Fig. 3c, we
showed that the magnitude of the mean displacement 〈Xi,l〉/A had
an approximately linear dependence on the filling n. These dis-
placements become larger when the dimensionless e–ph coupling
λ is increased or when the phonon energy Ω is decreased (or,
equivalently, when the spring constants are softer). The behavior
of 〈Xi,l〉 as a function of doping can be loosely understood by
considering the atomic limit. In this case, the effect of the linear
e–ph interaction is to shift the equilibrium position of the lattice
to X0 � �n α1

MΩ2
37. Indeed, the results shown in Fig. 3c for the

linear model are well described by this function. Based on this
observation, one might then be tempted to try to eliminate the
nonlinear interactions by defining new lattice operators X̂

0 ¼
X̂ � X0 ¼ X̂ in hopes that the displacements of X̂

0
remain small.

Unfortunately, this procedure is not viable for several reasons.
The first reason is that global shift of the equilibrium position

will only be effective in the case of a uniform charge distribution.
This certainly will not be the case when the CDW correlations are
significant. For example, in the (π, π) CDW phase, half of the sites
are doubly occupied with an average displacement of ≈2X0 while
the remaining sites are unoccupied with an average displacement
of zero. In this instance, 〈Xi,l〉 = X0, consistent with our results in
Fig. 3c, but shifting the origin to X = X0 will not eliminate the
large lattice displacements at each site.

The second reason why redefining the origin will not work is
that such transformations do not affect the displacement
fluctuations, which are also significant for the linear Holstein
model. To show this, we examine the root-mean-square (rms)
displacement of Xi,l in our system with a linear e–ph coupling
strength λ, which is defined as

σXðλÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hX2

i;li � hXi;li2
q

; ð4Þ
and is formally identical to a standard deviation. The value of σX
in the limit n → 0 approaches the (thermal) rms displacement for
the free harmonic oscillator, which we denote as σX(0) and is
given by

σXð0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2Ω

2nBðΩÞ þ 1½ �
r

; ð5Þ

where nBðΩÞ ¼ ½eβΩ � 1��1
is the Bose occupation function.

Figure 4 shows results for [σX(λ) − σX(0)]/A, as a function of
filling for the same parameters used in Fig. 3. (For reference, for
Ω/t = 0.5 and 4.0, we obtain σX(0)/A = 1.146 and 0.354,
respectively.) Here, we see that the fluctuations of the linear
Holstein model are quite sensitive to the size of the dimensionless
linear e–ph interaction λ. Moreover, the magnitude of the
fluctuations generally grows monotonically with filling until
reaching a maximum at half-filling. There, the largest fluctuations
shown correspond to σX(λ = 0.3)/A ≈ 2.43, which is more than
double the size of captured by σX(0)/A. Again, taking FeSe or a
typical cuprate as references, these fluctuations correspond to
~3.0 and ~6.3% of the respective lattice constants. It is important
to note that σX(0)/A rises sharply for even smaller (and more
realistic) model values of Ω/t ≈ 0.02–0.1. Such values, however,
are typically inaccessible to DQMC due to prohibitively long
autocorrelation times.

The overall effect of the nonlinear coupling is to suppress the
rms displacements relative to the linear case, especially near half-
filling. Only when (ξ, λ, Ω/t) = (0, 0.15, 4.0) and (0.05, 0.15, 4.0)
do we find close agreement between the linear and nonlinear
models, and typical lattice displacements that are a small fraction
of the lattice spacing.

How big are nonlinear interactions in materials? Throughout
this work, we used ξ = 0.05, but how representative is this value
for a realistic system? To address this question, we considered the
case of bulk FeSe, a quasi-2D material where the position of the
Se atoms influences the on-site energies of the Fe 3d orbitals38,
somewhat akin to the 2D Holstein model. To determine the
strength of the linear and nonlinear e–ph coupling, we con-
structed a Wannier function basis from density functional theory
(DFT) calculations to determine the on-site energy of the Fe 3d
orbitals ϵdiag(zSe) as a function of the Se atom’s static displace-
ment zSe along the c-axis (Supplementary Fig. 1). We then applied
a polynomial fit of the form f ðzSeÞ ¼ a0 þ a1ðzSe � z0Þ þ
a2ðzSe � z0Þ2 to the site energy ϵdiag(zSe) for each orbital and
computed ξ ¼ A a2

a1
. Here, the oscillation amplitude

A ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_=2MΩ

p � 0:036 Å, adopting a selenium mass

Fig. 4 Doping dependence of the root-mean-square (rms) lattice
fluctuations. Comparison of rms fluctuations beyond the (noninteracting)
thermal oscillator value, denoted [σX(λ) − σX(0)]/A as a function of filling
for T = t/4 and N = 8 × 8. Here, σX(0) is the baseline contribution to the
rms fluctuations from the noninteracting thermal oscillator and σX(λ) is the
fluctuation in the full interacting problem. Again, we find similar behavior to
Fig. 3c only now we are looking at the growth of oscillations beyond zero-
point fluctuations (which can also be large).
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M = 1.31 × 10−25 kg, and the calculated phonon frequency
Ω = 2π ⋅ 5.02 THz of the A1g mode (see “Model” section).

The results are summarized in Table 1, where ξ ranges from
−0.1640 to 0.0148, with the strongest nonlinearity appearing for
the dxy orbital. We do not investigate ξ < 0 in our model
calculations because others have shown that it leads to increased
softening of the phonon dispersion and larger CDW correla-
tions33. Nevertheless, our results show ∣ξ∣ ≈ 0.05 is certainly not
out of the question for a real material.

Discussion
We have demonstrated that the linear approximation to the e–ph
interaction in the Holstein model breaks down in commonly
studied parameter regimes. Importantly, this breakdown regime
overlaps with ones where Migdal’s approximation captures the
DQMC result, even if only qualitatively. This observation indi-
cates that nonlinear corrections to the underlying linear lattice
model may be important even when vertex corrections are not.
We also studied the example of bulk FeSe from first principles
and found that nonlinear e–ph interactions in a real materials can
be quite significant and on par with, or even larger than our
model choice of ∣ξ∣ = 0.05.

It is natural to wonder which parameter regimes might be best
for ensuring lattice displacements remain small enough justify the
use of a linear interaction. We have found that tuning λ to smaller
values suppresses the lattice displacements and their fluctuations,
but also pushes the growth of correlations to lower temperatures,
making computations more expensive. (Some groups29 have
recently managed to access such temperatures in QMC, however.)
Alternatively, one could also shrink the displacements by
choosing antiadiabatic parameters (i.e., Ω > EF). But even for a
strongly antiadiabatic choice of (λ, Ω/t, n) = (0.4, 4.0, 0.55),
nonlinear corrections to the e–ph interaction produced con-
siderable differences in the resulting temperature dependence of
the superconducting susceptibility. Unfortunately, focusing on
smaller phonon energies, which are relevant for real materials,
will also produce larger lattice displacements and fluctuations that
are inconsistent with a linear interaction. While our results are
not comprehensive across the entire parameter space of the
Holstein model, we are forced to conclude that they do call large
portions of this space into question. For instance, our results
imply that combinations of λ≳ 10−1 and Ω≲ 4t yield sizable
displacements and displacement fluctuations, which would
necessitate additional nonlinear interactions and/or anharmonic
lattice potentials24. Our results indicate a clear and present need
for more work extending beyond the simplest effective models,
especially when one is trying to describe the physics of a real
system.

The Holstein model and Migdal’s approximation have long
served as cornerstones in the study of electron–phonon interac-
tions. Their relative simplicity has helped shape our intuition
about superconductivity, its competition with charge order, and
polaron formation, and studying the Holstein model can address

the essential physics of these processes. While it is clear that these
models are built on the assumption of small lattice displacements,
it is not always clear how large these displacements will be in
practice or whether additional nonlinear interactions will modify
the physics of the model. One must, therefore, be careful when
extrapolating results from effective models to real materials when
they are driven outside their range of validity. For example, we
have shown that the Holstein model can produce displacements
that begin to approach the Lindemann criteria for melting (par-
ticularly as Ω is reduced), but the model cannot describe such a
transition. Instead, it over predicts various tendencies towards
ordered phases in these cases. Similarly, it is unclear how one
should map critical λ values derived for the breakdown of Mig-
dal’s approximation onto real materials.

Methods
Determinant quantum Monte Carlo. DQMC is an auxiliary field, imaginary-time
technique that computes expectation values within the grand canonical ensemble.
It is inherently nonperturbative and includes all Feynman diagrams. While QMC
simulations of the (non)linear Holstein model face long autocorrelation times39,
they are free of a sign problem. We refer the reader to Supplementary Note 2 for
more details on our DQMC implementation and more generally to White et al.34,
Scalettar et al.15, and Johnston et al.37.

The self-consistent Migdal approximation. The self-consistent Migdal approx-
imation (SCMA) is a diagrammatic approach that neglects higher-order correc-
tions to the e–ph interaction vertex. Here, we use a recently developed SCMA code
that treats both the electron and phonon self-energies on an equal footing and
captures the competition between the CDW and SC instabilities40.

Susceptibilities. The effects of nonlinear e–ph coupling or the omission of vertex
corrections will manifest uniquely in different observables. Here, we focus on two-
particle correlation functions.

The CDW correlation at momentum q is measured by the charge susceptibility

χCDWðqÞ ¼ 1
N

Z β

0
dτ hρ̂qðτÞρ̂yqð0Þic; ð6Þ

where ρ̂qðτÞ �
P

i;σe
�iq�Ri n̂i;σðτÞ and hÂB̂ic ¼ hÂB̂i � hÂihB̂i denotes a

connected correlation function. Near half-filling, the Fermi surface is well nested
and the charge susceptibility has a single commensurate peak at qmax ¼ ðπ; πÞ.
Moving away from half-filling removes the nesting condition and eventually
redistributes the weight of the single peak in χCDW(q) into four incommensurate
peaks (Supplementary Fig. 3).

The e–ph coupling is also responsible for spin-singlet s-wave pairing, resulting
in superconducting correlations measured by the pair-field susceptibility

χSC ¼ 1
N

Z β

0
dτ hΔ̂ðτÞΔ̂yð0Þi; ð7Þ

where Δ̂ðτÞ ¼Pi ĉi;"ðτÞ̂ci;#ðτÞ.

Data availability
Data are available upon request.

Code availability
The SMCA code is available at https://github.com/johnstonResearchGroup/Migdal. The
DQMC code is available upon request.
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