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Time-reversal of an unknown quantum state
A. V. Lebedev1 & V. M. Vinokur 2,3✉

For decades, researchers have sought to understand how the irreversibility of the surrounding

world emerges from the seemingly time-symmetric, fundamental laws of physics. Quantum

mechanics conjectured a clue that final irreversibility is set by the measurement procedure

and that the time-reversal requires complex conjugation of the wave function, which is overly

complex to spontaneously appear in nature. Building on this Landau-Wigner conjecture, it

became possible to demonstrate that time-reversal is exponentially improbable in a virgin

nature and to design an algorithm artificially reversing a time arrow for a given quantum state

on the IBM quantum computer. However, the implemented arrow-of-time reversal embraced

only the known states initially disentangled from the thermodynamic reservoir. Here we

develop a procedure for reversing the temporal evolution of an arbitrary unknown quantum

state. This opens the route for general universal algorithms sending temporal evolution of an

arbitrary system backward in time.
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An origin of the arrow of time, the concept coined for
expressing one-way direction of time, is inextricably
associated with the Second Law of Thermodynamics1,

which declares that entropy growth stems from the system’s
energy dissipation to the environment2–6. Thermodynamic con-
siderations7–17, combined with the quantum mechanical
hypothesis that irreversibility of the evolution of the physical
system is related to measurement procedure18,19, and to the
necessity of the anti-unitary complex conjugation of the wave
function of the system for time reversal20, led to understanding
that the energy dissipation can be treated in terms of the system’s
entanglement with the environment1,21–24. The quantum
mechanical approach to the origin of the entropy growth problem
was crowned by finding that in a quantum system initially not
correlated with an environment, the local violation of the second
law can occur25. Extending then the solely quantum viewpoint on
the arrow of time and elaborating on the implications of the
Landau–Neumann–Wigner hypothesis18–20, enabled to quantify
the complexity of reversing the evolution of the known quantum
state and realize the reversal of the arrow of time on the IBM
quantum computer26.

In all these past studies, a thermodynamic reservoir at finite
temperatures has been appearing as a high-entropy stochastic
bath thermalizing a given quantum system and increasing thus its
thermal disorder, hence entropy. We find that most unexpectedly,
it is exactly the presence of the reservoir that makes it possible to
prepare the high-temperature thermal states of an auxiliary
quantum system governed by the same Hamiltonian Ĥ as the
Hamiltonian of a given system. This enables us to devise the
operator of the backward-time evolution Û ¼ expðiĤtÞ reversing
the temporal dynamics of the given quantum system. The
necessary requirement is that the dynamics of the both, auxiliary
and given, systems were governed by the same Hamiltonian Ĥ.
The time-reversal protocol comprises the cyclic sequential pro-
cess of quantum computation on the combined auxiliary and the
given systems and the thermalization process of the auxiliary
system. A universal time-reversal procedure of an unknown
quantum state defined through the density matrix ρ̂ðtÞ of a
quantum system S will be described as a reversal of the temporal
system evolution ρ̂ðtÞ ! ρ̂ð0Þ ¼ expðiĤt=_Þρ̂ðtÞ expð�iĤt=_Þ
returning it to system’s original state ρ̂ð0Þ. Importantly, we need
not know the quantum state of this system in order to implement
the arrow of time reversal. A dramatic qualitative advance of the
new protocol is that it eliminates the need of keeping an expo-
nentially huge record of classical information about the values of
the state amplitudes. Moreover, the crucial step compared with
the protocol of time reversal of the known quantum state26 is that
we now lift the requirement that initially the evolving quantum
system must be a pure uncorrelated state. Here, we develop a
procedure where the initial state can be a mixed state and,
therefore, include correlations due to system’s past interaction
with the environment.

Results
Universal procedure. The calculations are organized as follows.
First, we describe how the time reversal of an unknown state can
be implemented in a universal manner and estimate its compu-
tational complexity. Next, we outline a somewhat more resource-
demanding procedure, where, however, one can relax the need of
knowing the Hamiltonian Ĥ. Then we show that if in addition to
the quantum system S one is provided by an auxiliary system A,
so that dimS ¼ dimA, whose dynamics is governed by the same

Hamiltonian Ĥ, one can devise Û
yðtÞ without knowing an exact

form of Ĥ. Finally, we discuss how the partial knowledge on the

state ρ̂ðtÞ can reduce and optimize the complexity of the time-
reversal procedure.

The starting point of the reversal procedure is drawn from the
observation of S. Lloyd et al.27 that having an ancilla system in a
state σ̂ one can approximately construct a unitary operation
expð�iωσ̂δtÞ acting on a system S simulating its evolution under
Hamiltonian Ĥa ¼ _ωσ̂ during the infinitesimal time interval δt.
Here, ω refers to some arbitrary rate, which for a moment, we leave
unspecified. Having N identical copies of ancillas, one generates a
finite time evolution ρðtÞ ! ρðt þ τÞ ¼ e�iωτσ̂ ρ̂ðtÞeþiωτσ̂ over the
time interval τ=Nδt with the accuracy ∝ (ωτ)2/N (see “Methods”).
The first step of the time-reversal procedure is then constructing
the density matrix σ̂. Consider the density operator defined by the
given finite-dimensional Hamiltonian Ĥ having the maximal
eigenvalue ϵmax:

σ̂ ¼ 1
Z

1ϵmax � Ĥ
� �

; ð1Þ

where Z ¼ ϵmax dimS � Tr fĤg is the normalization factor. Then
the Lloyd (LMR) procedure maps the initial density matrix ρ̂ðtÞ to

ρ̂ðtÞ ! exp
iω
Z
Ĥτ

� �
ρ̂ðtÞ exp � iω

Z
Ĥτ

� �
: ð2Þ

One sees that application of the LMR procedure with the specific
density matrix σ realizes approximately the time-reversed evolution
of the system

ρ̂ðtÞ ! ρ̂ t � _ω

Z
τ

� �
þ δρ̂ðτÞ ð3Þ

to a backward delay τR= (ℏω/Z)τ. The accuracy δρ̂ðτÞ of such a
time-reversal procedure is given by (see “Methods”),

jjδρ̂ðτÞjj≤ ðωτÞ2
N

jjσ̂jj þ jjρ̂ðtÞjj þ 2jjρ̂ðtÞjj jjσ̂jj2� �
; ð4Þ

where jjÂjj is the operator norm: jjÂjj ¼ sup ψj i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ψh jÂ ψj i=hψjψi

q
.

From Eqs. (3) and (4), one draws two important conclusions.
First, the above time-reversal procedure for a backward delay τR
requires time τ to be completed. Therefore, while exercising the
reversal, the system still maintain the forward evolution governed
by its own Hamiltonian. Taking this into account, one has to
modify Eq. (3) to

ρ̂ðtÞ ! ρ̂ t � τ
_ω

Z
þ τ

� �
; ð5Þ

which immediately poses the constraint on the operation rate ω
of the LMR procedure: the actual time reversal occurs only for
ℏω > Z. If this constraint is not satisfied, the time-reversal
procedure only slows down the forward time evolution of
the system. For a quantum system S, the threshold rate Z/ℏ
is proportional to the Hilbert space dimension dimS: Z ¼
_~ω dimS with _~ω ¼ ϵmax � Tr fĤg= dimS� �

, which is typically
an exponentially large number. In particular, in order to make the
time reversal with the same rate as the forward time evolution,
one has to demand ω > 2Z/ℏ. This brings straightforwardly the
second conclusion: as far as ω is large, the infinitesimal time step
δt of the procedure has to be small so that ωδt≪ 1, therefore the
number N has to be large. Indeed, fixing the backward delay τR,
the operation rate ω= 2Z/ℏ, and setting the reversal accuracy ϵ:
jjδρ̂ðτ ¼ τRÞjj≤ ϵ one finds from Eq. (4):

Nϵ ¼
jjρ̂ðtÞjj

ϵ
dimS τR

~τ

� �2
; ð6Þ

where ~τ ¼ ~ω�1 is the typical timescale of the system dynamics,
and jjσ̂jj / ðdimSÞ�1 � jjρ̂ðtÞjj is assumed. Equation (6) implies
that the computational complexity of the time-reversal procedure
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for an unknown quantum state is proportional to the square of
the system’s Hilbert space dimension. In contrast, the time
reversal of a known pure quantum state ρ̂ðtÞ ¼ ψðtÞj i ψðtÞh j is
proportional to the dimension of the Hilbert space, which is
swept by the system in the course of its forward time evolution
ψð0Þj i ! ψðtÞj i26. As follows from Eq. (6), the time-reversal
computational cost of an unknown pure state is maximal as long
as jjρ̂jj ¼ 1 in this case. For a mixed high-entropy state ρ̂, the
reversal complexity is reduced: given a state ρ̂ with the entropy
Sρ ¼ ln ðdimSÞ � k ln ð2Þ, where only k � log 2ðdimSÞ bits of
information is known, the upper estimate for the reversal
complexity is given by (see “Methods”)

Nϵ ≤
k

ϵ log 2ðdimSÞ dimS τR
~τ

� �2
: ð7Þ

Having complete information about the Hamiltonian Ĥ allows
one to construct a corresponding quantum circuit realizing the
forward time evolution operator Û ¼ expð�iĤt=_Þ through a
specific fixed set G of universal quantum gates: Û ¼ Û1 � � � ÛN ,
Û i 2 G. As far as G is an universal set, for every Û i 2 G one can

construct the inverse gate Û
y
i . Therefore, the time-reversed

evolution operator Û
y
can be constructed in a purely algorithmic

way given the gate decomposition of Û . Thus, the above
procedure may appear extremely ineffective for a practical
time-reversal task. However, the situation turns completely
different if we relax the requirement of the exact knowledge of
Ĥ and assume that one, instead, is provided by the equivalent
copy of the system S governed by the same Hamiltonian Ĥ.

Auxiliary system. Let one be equipped with the thermodynamic
bath at the temperature T= β−1 in addition to the ancilla. One
can then thermalize the ancilla and prepare it in the equilibrium
state σβ ¼ Z�1

β expð�βĤÞ with Zβ ¼ Trfexpð�βĤÞg being a
statistical sum. For high-enough temperature β → 0, one has
βϵmax � 1 and, therefore, σβ � Z�1

β ð1� βĤÞ which gives the
desired state of the ancilla to implement the reverse evolution
through the LMR procedure. In this case,

ρ̂ðtÞ ! ρ̂ t � _ωβ

Zβ

τ þ τ

 !
þ δρ̂ðτÞ: ð8Þ

As can be seen from the above equation the actual time reversal
requires the operation rate of the LMR procedure to exceed the
threshold

ω>ωth ¼
T
_
Zβ �

T
_
dimS: ð9Þ

The approximation error δρ̂ splits now to two contributions,
δρ̂ ¼ δρ̂1 þ δρ̂2, where δρ̂1 is the approximation error resulting
from the LMR procedure, see Eq. (4) with σ̂ ! σ̂β, while the error
δρ̂2 describes the error due to the β expansion of the thermal state
σ̂β. Assuming ω= 2ωth, i.e. the backward evolution goes with the
same rate as the forward time evolution one finds

δρ̂2ðτÞ ¼ �i
τβ

_
Ĥ

2
; ρ̂ t � τð Þ

h i
: ð10Þ

Then for jjσ̂βjj � jjρ̂ðtÞjj one can estimate the net error as

jjδρ̂ðτÞjj≤ 4
Z2
β

N
τ

τβ

 !2

þ τ

τβ
ðβϵmaxÞ2

 !
jjρ̂ðt � τÞjj: ð11Þ

where τβ= ℏβ. The temperature dependence of two error con-
tributions in Eq. (11) oppositely depends on the inverse tem-
perature: the error due to thermal expansion (second term)

reduces as β → 0, while the error due to LMR dynamics (first
term) increases with decreasing β. For a given reverse time delay τ
and the number of LMR iterations N � Z2

β � ðdimSÞ2, one has
an optimal temperature

βϵmax ¼ 8
Z2
β

N
ϵmaxτ

_

 !1=3

; ð12Þ

and the corresponding net accuracy of the reversal procedure is
then given by

jjδρ̂ðτÞjj ¼ ϵ ¼ 3
Z2
β

N

 !1=3
ϵmaxτ

_

� �4=3
jjρ̂ðt � τÞjj: ð13Þ

Comparing with the case of the known Hamiltonian time-reversal
procedure, see Eq. (6), the reversal complexity here is again
proportional to the square of the system’s Hilbert space dimen-
sion, but, at the same time, has more adverse scaling with the
reversal duration and the net accuracy.

The above analysis does not need any prior information about
the state ρ̂ which would require very high temperature of the
auxilliary thermostat in order to cover all the possible energy
states of the system’s Hilbert space that finally results in a
tremendously high rate � _β dimS of the LMR procedure. If,
however, some information about the energy content of the state
ρ̂ is available, one can appreciably reduce the reversal cost.
Indeed, let the state ρ̂ have the average energy �E ¼ TrfρĤg with
an energy variance ðδEÞ2 ¼ Trfρ̂ððĤ � �EÞ2Þg. Then one can
present the density matrix as the result of the low-energy
contribution, ρ̂< ¼ P̂ρ̂P̂=TrfP̂ρ̂g and the high-energy remainder
ρ̂> ¼ ð1� P̂Þρ̂ð1� P̂Þ=Trfð1� P̂Þρ̂g, where P̂ ¼PE<Emax

Ej i Eh j
is a projection operator to the subspace with energies below some
cutoff energy Emax > �E: ρ̂ ¼ ð1� ϵEÞρ̂< þ ϵEρ̂> . The additional
error due to truncating the system’s Hilbert space to the low-
energy subspace is given by the constant ϵE, which is a probability
for the system to be found in the energy state E >Emax, and,
according to the Chebyshev inequality, is bound by

ϵE ≤
Emax � �E

δE

� ��2

: ð14Þ

Single-particle wave packet. Now, we consider an exemplary
time-reversal procedure for a spreading single-particle wave
packet with the quadratic spectrum. Let the packet at the time t=
0 be localized at the origin and have the Lorentzian shape with
the width ξ0:

Ψðx; 0Þ ¼
ffiffiffiffiffi
ξ0
2π

r
2ξ0

x2 þ ξ2
�
X
p

ffiffiffiffiffiffiffiffiffiffi
2πξ0

p
e�jpjξ0eipx: ð15Þ

A subsequent free evolution with quadratic Hamiltonian Ĥ ¼
_2p̂2=2m during the time interval τ > 0 broadens the particle’s
wave function into

Ψðx; τÞ � e�jxjmξ0=_τffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π_τ=m

p exp
imx2

2_τ

� �
; ð16Þ

having the typical size ξτ= ℏτ/mξ0 or, equivalently,
ξτ=ξ0 ¼ 4�Eτ=_, where �E ¼ _2=4mξ20 is the average energy carried
by the wave packet. The statistical sum Zβ within the volume ~ ξτ
is given by

Zβ � ξτ

Z
dEν1DðEÞe�βE � τ

_

ffiffiffi
�E
β

s
; ð17Þ
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where ν1DðEÞ ¼ ðm=2π2_2EÞ1=2 is one-dimensional density of
states. Assuming Emax � �E, the reversal complexity for the time-
reversal procedure with the accuracy ϵ is given by (see Eqs. (12)
and (13))

Nϵ �
1
ϵ4

�Eτ
_

� �7

¼ 1
ϵ4

ξτ
ξ0

� �7

: ð18Þ

The optimal inverse temperature of the thermostat is then given
by

β � 1
�E

ϵ

ξτ=ξ0
: ð19Þ

Comparing this with the reversal complexity of a known state of
the wave packet, N 0

ϵ � ϵ�1ðξτ=ξ0Þ, see ref. 26, one finds that the
reversal of an unknown wave-packet state is a more laborious
computational task.

Discussion
We have described the time-reversal procedure of an unknown
mixed quantum state. The procedure relies on the ability to
perform the LMR protocol and on the existence of an ancilla
system whose dynamics is governed by the same Hamiltonian as
the Hamiltonian of the reversed system, which is not required to
be known to us. The reversal procedure is comprised of N≫
1 sequential applications of the LMR procedure to the joint state
of the system and ancilla prepared in a thermal state. In contrast
to the known state-reversal procedure, the introduced algorithm
does not require to keep an information about all amplitudes of
the reversed state. Yet the reversal complexity given by N scales
typically as squared dimension of a Hilbert space spanned the
unknown state. Moreover, the operation rate of the LMR pro-
cedure has to be sufficiently high to overrun the forward time
evolution of the reversed system during the execution of the
reversal protocol.

The experimental realization of such a protocol is a feasible yet
challenging task. As a first step, it will require an upgrade of the
existing design of quantum chips. In particular, one needs a set of
interacting qubits (denoted byQA) capable to get thermalized on-
demand being connected with the high-temperature environ-
ment. For superconducting qubits28, this can be implemented by
coupling them with a transmission line, where the high-
temperature thermal radiation is fed in, once one needs to set
the qubits into a high-temperature state. Next, the second set of
qubits QB, dimQB ¼ dimQA is required, where one can store a
quantum state prepared in the set QA. Then the time-reversal
procedure goes as follows. First, one prepares some state ψA(0) of
the qubits QA, and lets it evolve according to an intrinsic
Hamiltonian of the qubits QA: ψAð0Þ ! ψAðτÞ ¼ e�iĤAτ=_ψAð0Þ.
Second, at the end of the evolution, one swaps the states between
QA and QB, ψA ↔ ψB. We assume that the set QB can keep its
quantum state untouched for a sufficient time. The procedure
then continues as described above: one subsequently thermalizes
the set QA and implements the joint LMR evolution
e�iωδtŜAB ρ̂A 	 ρ̂Be

iωδtŜAB . As a result, the qubits QB will undergo
the time-reversed dynamics under the same Hamiltonian ĤA.
This procedure is to be implemented on the emergent quantum
computers with the on-demand thermalizable qubits.

Methods
LMR procedure. The LMR procedure goes as follows: one considers a combined
system of the system in question and an ancilla ρ̂	 σ̂ and performs the joint
unitary evolution over an infinitesimal time instant δt under a Hamiltonian _ωŜ,

ρ̂	 σ̂ ! exp �iωδtŜ
� �

ρ̂	 σ̂½ 
 exp þiωδtŜ
� �

; ð20Þ
where Ŝ is a unitary SWAP operator29 acting on the system and ancilla:

Ŝ xj iS 	 yj ia
� � ¼ yj iS 	 xj ia . The operator Ŝ is itself Hermitian and, therefore,

the unitary operator expð�iωδtŜÞ can be implemented. Making use of its property

Ŝ
2 ¼ 1̂, one gets expð�iωδtŜÞ ¼ 1̂ cosðωδtÞ � iŜ sinðωδtÞ and, therefore, its
computational complexity is equivalent to the complexity of the unitary swap
operator acting on the direct product of Hilbert spaces with the dimensions
dimS. Next, we trace out the ancilla and get the quantum channel for the system’s
density matrix

ρ ! Φδt ½ρ̂
 ¼ cos2ðωδtÞρ̂þ sin2ðωδtÞσ̂
�i sinðωδtÞ cosðωδtÞ σ̂; ρ̂½ 
: ð21Þ

At the infinitesimal time instant ωδt → 0, one gets the channel,
Φδt ρ̂½ 
 ¼ ρ̂� iωδt σ̂; ρ̂½ 
 þ ðωδtÞ2 σ̂ � ρ̂ð Þ. In this expression, the term ρ̂� iωδt σ̂; ρ̂½ 

corresponds to the infinitesimal time evolution of the density matrix ρ̂ðtÞ under
the Hamiltonian Ĥσ ¼ _ωσ̂: ρ̂ðtÞ ! ρ̂ðt þ δtÞ ¼ e�iĤσ δt=_ρ̂ðtÞeiĤσ δt=_ � ρ̂ðtÞ�
iωδt σ̂; ρ̂½ 
 � 1

2 ðωδtÞ2 σ̂ σ̂; ρ̂½ 
½ 
. Therefore, up to the (ωδt)2 terms, Eq. (21) can be
transformed into the exponential form

Φδt ρ̂ðtÞ½ 
 � e�iωδtσ̂ ρ̂ðtÞeþiωδtσ̂ þ ωδtð Þ2 σ̂ þ 1
2
σ̂ σ̂; ρ̂ðtÞ½ 
½ 
 � ρ̂ðtÞ

� �
: ð22Þ

Repeating the above procedure N times one can generate the forward time
evolution expð�iωτσ̂Þ over a finite time interval τ=Nδt

ΦN
δt ½ρ̂ðtÞ
 � expð�iωτσ̂Þρ̂ expðþiωτσ̂Þ þ δρ̂ðτÞ; ð23Þ

where the approximate accuracy is given by

δρ̂ðτÞ ¼ ωτð Þ2
N

σ þ 1
2
σ̂ σ̂; ρ̂ðt þ τÞ½ 
½ 
 � ρ̂ðt þ τÞ

� �
; ð24Þ

with ρ̂ðt þ τÞ ¼ expð�iωτσ̂Þρ̂ðtÞ expðþiωτσ̂Þ being the final state of the system.

High-entropy-state-reversal complexity. Here, we derive the Eq. (7) for the
time-reversal complexity of the state ρ̂ with the entropy S ¼ ln dimðNÞ � k ln ð2Þ,
where N ¼ dimðSÞ is the Hilbert space dimension of the system. The norm jjρ̂jj is
given by its maximum eigenvalue jjρ̂jj ¼ p1 > pi , i = 2, …N of the density operator.
The von Neumann entropy can be decomposed into a sum

S ¼ Hðp1Þ þ ð1� p1Þ
XN
i¼2

~pi ln ð~piÞ; ð25Þ

where ~pi ¼ pi=ð1� p1Þ with
PN

i¼2 ~pi ¼ 1, HðxÞ ¼ �xln ðxÞ � ð1� xÞln ð1� xÞ≤
ln ð2Þ. Let us find a maximal possible p1 for a given S. One sees straightforwardly
that p1 is maximal if all ~pi , i= 2, …N are uniform and Eq. (25) is reduced to

ln ðNÞ � k ln ð2Þ ¼ Hðp1Þ þ ð1� p1Þln ðN � 1Þ: ð26Þ
For N≫ 1, one can assume p1≪ 1 and get the approximate solution p1 �
k=log 2ðNÞ that results in Eq. (7).

Data availability
Data sharing is not applicable to this article, as no data sets were generated or analyzed
during this study.
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