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Fingerprints of a second order critical line
in developing neural networks
Karlis Kanders1,2*, Hyungsub Lee3, Nari Hong3, Yoonkey Nam3 & Ruedi Stoop1*

Patterns of biological activity with properties similar to critical states of statistical mechanics

have received much attention, as they were mostly seen as indicators of computational

optimality. Commonly, a single regime around an isolated critical point is expected.

Our experimental data and our network simulations of developing neural cultures indicate the

possibility of transitions between different critical regimes. In the latter, the addition of further

fundamental neurophysiological principles to the standard neurodynamics branching model

generates steeper power laws that have been observed in various experiments. Our analysis

exhibits two populations of neurons, each composed of inhibitory and excitatory sites, that

have distinct dynamical and topological properties. This generates a line of second order

critical points, similar to what is known from the thermodynamics of two-component alloys.

An analysis of two major critical regimes found in the experiments suggests that different

critical regimes may express distinct computational roles.
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Collective dynamics of neurons1 underlie cognitive func-
tions and behavior of higher animals2. Salient expressions
of collective neural dynamics are continued spontaneous

activities that modulate neural responses to external stimuli,
where they often reflect expectations of future stimuli3. However,
also spontaneous spatiotemporal patterns of neural activity,
commonly termed “neural avalanches”, that have no character-
istic scale (i.e., the distributions of avalanche sizes and lifetimes
follow power laws), have been identified, e.g., in electro-
physiological in vitro recordings4,5, in vivo recordings6,7, elec-
troencephalogram recordings8, and in functional magnetic
resonance imaging9.

Power laws are generated if a system is at a critical point of
its system class. Critical states are typically associated with (con-
tinuous or second order—we use the terms here synonymously—)
phase transitions that separate phases of qualitatively distinct
dynamical behavior (e.g., ordered vs. disordered dynamics). Due
to the diverging correlation lengths at critical states, systems near
criticality show a high susceptibility to external stimuli. Seeing
this as a favorable property of complex natural systems, it has
been conjectured that neural systems operate preferentially in the
close vicinity of a critical point10–14. Why complex systems tend
to be poised close to a critical point at the doorstep to instability if
the system is slowly driven from outside, has been put forward by
the hypothesis of self-organized criticality15. Power laws from
critical systems are robust in the following sense: they are a
property of the system class considered, and independent of the
microscopic details of an individual system (i.e., they are “uni-
versal”). Systems from a neighborhood of the critical point
deviate from critical systems again by simple class-specific scaling
laws, expressing the distance of the system from the critical point.
Moreover, the macroscopic behavior can accurately and effi-
ciently be described by a very few relevant observables, which is
beneficial for the understanding, modeling and prediction of
systems16. Whereas the functional role of criticality has recently
been pinned down for the peripheral auditory system17, the role
of criticality in the brain is still actively debated18–20. Presently,
the general opinion states that at a critical state, the brain might
optimize functional properties relevant for information proces-
sing (such as information transmission, information capacity, and
response flexibility21,22).

Direct demonstrations that real world power laws are the
consequence of criticality are notoriously difficult (and rare), as
the ideal matching would require to achieve the thermodynamic
limit and observe a reliable divergence behavior at the critical
point. In the experimental context, this is generally not possible.
For the real world, the concept of criticality requires therefore
adaptation, where the stability properties of critical regimes prove
helpful to soften and generalize the “hard” criteria of criticality
from statistical mechanics. As a result, a number of non-ideal
biological real-world data and data from real-world models were
successfully mapped to models of statistical mechanics and
the corresponding universality classes could be identified. In
previous experimental studies4, the scaling exponents associated
with avalanche size and lifetime distributions, pðSÞ � S�τ and
pðTÞ � T�α, respectively, were mostly found to be τ � 1:5 and
α � 2:0. These values match the theoretically expected critical
exponents of the mean-field critical branching process23,24, sug-
gesting that biological networks may operate at a critical point
characterized by a marginal propagation of activity, separating
phases of quickly decaying and exploding runaway activity4. Later
studies, however, provided evidence for a considerable variation
of scaling exponents, e.g., across the interval ½1:5; 2:6� for most
prominent and easiest to measure exponent τ4,10,25,26. It has been
argued that some of these deviations could be artefacts introduced
by the experimental measurements (e.g., spatial undersampling of

neural activity13,27) or by the computational avalanche extraction
procedures4,13.

One natural focus in the study of criticality in neuronal networks
has been the development process of neuronal cultures, where in
an earlier study25 a critical regime with branching-type exponents
was observed in the 8th week of development. In this study, the
authors focused on the late development, while here we present
results on the early development, i.e., after the first week in vitro.
The distinct temporal foci affected several experimental para-
meters, such as the used culture neural densities (5000 cells mm−2

vs. our density of 800 cells mm−2) and necessitated constraints in
data acquisition. More recently, a study of dissociated hippocampal
neurons co-cultured with glia cells (from newborn P0 Sprague
Dawley rats) evidenced a second criticality regime with sub-
stantially larger exponents (τ � 2:2, α � 3:3)28, in addition to the
“expected” critical exponents. The observation of the second cri-
tical regime was, however, under condition of a specific pharma-
cological treatment (5M4Hfolate), which left open (in the work and
to the reader) the question of how much importance should be
attributed to this new regime.

Results
A model of network criticality with a line of critical regimes.
Maturation of in vitro neural networks is characterized by a
gradual increase of network size and of the strength of the
synaptic connections among the neurons. The effects of
dynamic facilitation and depression when included in the classical
branching model (see Methods section) are exhibited in Fig. 1.
Early network maturation is represented in our modeling by
an increase of the branching parameter (from σ � 0:35 to
σ � 0:9), accompanied by a mild facilitation decrease (from
Δϕ ¼ 0:002 to Δϕ ¼ 0:0015). The adjustment of facilitation is
motivated by the observed decrease of neuronal excitability
during maturation29,30. In Fig. 1a), the effect of this ‘balanced’
facilitation is compared to the behavior of the original branching
model (known to exhibit criticality at σ ¼ 1). Moving from
smaller to larger baseline branching parameters σ reduces
the generated power-law exponents τ. For fΔϕ; σg ! f0; 1g, the
value of τ settles to a value close to that of the classical branching
model τ � 1:5. In particular, the maturation paradigm (chosen
to closely correspond to our experimental data shown later)
shows avalanche size distribution transitions from (1) a sub-
critical phase (at σ � 0:35, with avalanches much smaller than
system size), to (2) an early critical regime (at σ � 0:61, with a
heavy-tailed distribution approximating a power law with
τ � 2:2). This regime then is followed (3) by a supercritical
phase (at σ � 0:71, with a hump at the end of the distribution),
giving (4) way to a “late” criticality regime (at σ � 0:81, with a
shallower power law of τ � 1:65), until a supercritical phase
exhibiting a pronounced hump is reached. Through facilitation,
the effective branching parameter σn (defined as the average sum
of the outgoing excitation probabilities of each node at time step n)
becomes a dynamic quantity exhibiting large fluctuations
(Fig. 1b). A temporally variable branching parameter, based on
continually altering neural activity embracing on top of back-
ground network activity the history of previous activity via short-
term synaptic plasticity31, provides a more realistic description of
biological neural networks32. The broad distributions of σn
(Fig. 1c) obtained in this way seem to play an essential role in the
generation of heavy-tailed avalanche size distributions. A change
of σ entails substantial changes in the network’s configuration
and topology (Fig. 1c–e). Strongly fluctuating network interac-
tions also suggest that data-estimated branching parameters
may not be too reliable for predicting a system’s distance to
criticality4,14.
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The general situation of how the the two main modeling
parameters (σ, Δϕ) shape the generated avalanche size distribu-
tions support the hypothesis of a critical line (Fig. 2a), on which
simulations exhibit optimal (in terms of the Kolmogorov-
Smirnov (KS) statistics) power-law avalanche distributions with
critical exponents τ decreasing upon the increase of σ (Fig. 2b).
Notably, the figure embraces all the locations of the data
presented in Fig. 1, including the suggested two critical regimes
that fall on the line. Along the dashed line of suggested second
order phase transitions, a good scaling behavior in system size is

observed, see, e.g., Fig. 2c). The two-humped distributions of the
effective local branching parameters �σ that within one network
emerge across the parameter field displayed in Fig. 2a), may
be at the origin of the line of critical regimes (see our
Discussion section). The obtained results imply that in a network
with facilitation, a transition from an early criticality regime
(with a steep power law exponent) to a later late critical regime
(with a milder power law exponent) can easily occur. For σ ! 1,
the two humps merge into one hump (cf. Fig. 1c) and the
difference to the original branching vanishes.

Fig. 1 Branching network model with facilitation exhibits signatures of different phase transitions. a Avalanche size distributions for the standard
branching network with static (gray) and dynamic branching network with facilitation (blue) distributions, for the same branching parameter
σ 2 f0:35; 0:61; 0:71; 0:81; 0:95g. Dashed, dashed-dotted red lines are guides marking power laws pðSÞ � S�τ for τ ¼ 2:2 and τ ¼ 1:65, respectively,
highlighted where they describe the distribution well. b Temporal evolution of the network's effective branching parameter σn (blue) for σ ¼ 0:61
(green line). c Distributions of σn indicating large fluctuations of the effective branching parameter. The red lines indicate presence of a second network
component. d, e Change of the network topology with σ expressed by distributions of pðijÞ, and of the degree k (where the in and out-degrees kin; kout are
plotted separately). Colored areas and dashed lines, respectively, mark the one standard deviation boundaries (N ¼ 64).

Fig. 2 Overview of the behavior of our dynamical facilitation branching network model (branching parameter σ and facilitation parameter Δϕ).
a Kolmogorov-Smirnov (KS) statistics of power law fits (smaller values: avalanche size distribution closer to a power law). Dashed line: Estimate of second
order critical transition line. Circles: parameter values used to demonstrate early and late critical transitions. b Power-law exponent τ on the estimated
second order critical line. Blue line: exponential curve through simulation data (perfect overlap, although obtained exponents slightly depend on the chosen
fitting range). τ decreases for increasing σ and approaches for σ ! 1 and Δϕ ! 0 the value 1.5. Dashed line: value of the classical critical branching model.
c Scaling of our model with neural network size. Inset: finite size scaling collapse.
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Experiments with two major regimes of criticality. In our
experiments, dissociated hippocampal rat neurons were plated on
a 59-channel micro-electrode array chip33 (MEA) and cultured
for several weeks (Fig. 3a, b). The density of plated cells influences
how quickly the culture develops large activity bursts34. We chose
an intermediate level of 800 cells mm−2, to be able to capture
subtle day-to-day changes in neural activity. Starting from 9 days
in vitro (DIV), a recording of 1 h of a culture’s spontaneous
electrical activity was made every day, because of the extreme
sensitivity of the cultures towards perturbations at this stage of
the development. Neural avalanches are extracted from the
(unsorted) spike recordings following the standard approach of
binning time in discrete bins of width Δt related to the average
firing rate of the network4,35 (see Methods section). An avalanche
is then defined as the maximal extension of nonempty adjacent
bins (i.e., each bin has at least one spike). Avalanche size S
is defined as the number of spikes within the avalanches, and
avalanche lifetime T is defined as the number of time bins in
avalanche spans.

In these recordings we gather evidence that in the second week
of in vitro development, a developing culture generally exhibits
two distinct avalanche criticality transitions, within the course of
1–4 days. The two regimes—we again refer to them as the “early”
and “late” criticality, due to their temporal occurrence—bear
strong similarities to the two critical regimes exhibited above in
our theoretical model and to what ref. 28 found experimentally.
Below we present the analysis of data from primarily two selected

cultures with conditioned media (“Cultures 1–2”, see our Supple-
mentary Notes for additional cultures). Among the preparations
without conditioned media, 3 out of 6 cultures showed very
similar characteristics, at a generally temporally delayed devel-
opment, with lower and less stable neural activity level
expressions, and at a low level of astrocytes. In the brain,
astrocytes together with other supporting (i.e., glial) cells are,
however, at least as numerous as neurons36, and they play a key
role in the formation and functioning of synapses37, suggesting
that conditioned media cultures are closer to healthy in vivo
tissue than unconditioned preparations. In the conditioned
preparation, earliest manifestations of neuronal avalanches take
place mostly in the second week of the development when the
neuronal connections are still growing and strengthening38 (and
therefore the cultures cannot yet have reached the self-organized
criticality regime characterizing “mature” ensembles25). We
observed that in this time window, the cultures pass through a
variety of network phases, occasionally lingering in the close
vicinity but not always evidencing a clear critical behavior.
These changes happen very quickly, so that the capture of
the characteristic illustrative time point was more difficult than in
ref. 25. Characteristic for the early period is also a bending of the
histogram part for short events, which vanishes towards late
criticality.

For the overall presentation of the observed general pathway
we focus on Culture 1, before other data sets will exemplify
important aspects of the prediction made by our model.
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Fig. 3 Culture 1, overview: Transition between two avalanche criticality regimes during 10 and 11 days in vitro (DIV). a Fifty-nine-channel micro-
electrode array (MEA) with plated hippocampal neurons. b Spike raster plots at 10 and 11 DIV (400 s out of 1 h recording). c Avalanche size S probability
distributions pðSÞ. d Avalanche lifetime T probability distributions pðTÞ. Red dashed lines: statistically significant power law fits pðSÞ � S�τ and pðTÞ � T�α.
Gray arrows: humps indicating supercriticality. n: number of avalanches during daily recording time; Δt: temporal bin size used.
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This culture exhibits an exemplary case of two distinct avalanche
criticality regimes occurring on two consecutive days of the
development, see Fig. 3a, b. The interesting development starts at
9 DIV, where a subcritical phase with avalanches of smaller than
system-size is exhibited (i.e., not all of the electrodes are
activated), see Fig. 3c. At 10 DIV “system-size” avalanches
appear (i.e., all electrodes are activated). Their appearance
coincides with the emergence of scale-free avalanche activity
characterized by a power-law exponent of the avalanche size
distribution of τ ¼ 2:18 ± 0:05 (obtained by the maximum
likelihood approach39,40 fitted over the range S 2 ½2; Smax�, with
a p-value of p ¼ 0:13; ± refers to the 95% confidence interval;
goodness-of-fit evaluation is based on the KS-statistic and the
p-value has been calculated using 10,000 surrogate data sets; see
Methods section). This critical regime is supposedly followed
by a supercritical phase. For Culture 1, we missed the direct
experimental data (but may infer this from the other two cultures
analyzed), until on 11 DIV, the avalanche size distribution
exhibits scale-freeness again, this time however, with a shallower
exponent of τ ¼ 1:65 ± 0:05 (S 2 ½4; Smax�, p ¼ 0:30). The new
network critical regime is characterized by a more synchronous
network firing (Fig. 3b). From 12 DIV onwards, the network
enters a supercritical phase, highlighted by a “hump” in the size
distribution near the value of the system-size (i.e., a bimodal
distribution emerges), characteristic for a saturation process41.
The avalanche lifetime distributions mirror this transition with
power law exponents α ¼ 2:76 ± 0:16 (T 2 ½3; 15�; p ¼ 0:12 at
10 DIV), and α ¼ 1:98 ± 0:06 (T 2 ½2; 25�; p ¼ 0:37 at 11 DIV),
see Fig. 3d. As can be expected from a distribution exhibiting a
steeper decay, the scale-free behavior for pðTÞ at 10 DIV is
somewhat less striking than at 11 DIV. Generally, experimental
lifetime power laws are often less satisfactory compared to their
avalanche size counterparts4,6,7. Seen in comparison to the cited
results, the quality of the pðTÞ power law at 11 DIV is, however,
quite exceptional. The observed pathway suggests that we deal

with two separate phase transitions18. Such an interpretation will
be corroborated by our analysis of Cultures 2 and 3 and our
overview given at the end of the section.

To pin down avalanche criticality as the origin of the observed
power law distributions (power law can be caused by several
mechanisms42), we use previously established tests13,43,44, cf.
Fig. 4. Critical phenomena suggest the presence of yet another
power law describing the dependence of the average avalanche
size on the lifetime43,45 with a third critical exponent γ as

hSiðTÞ � Tγ: ð1Þ
Critical phenomena further imply that the mean temporal

profiles of avalanches of different lifetimes should be similar
across all scales, so that, when appropriately rescaled43,45, collapse
onto a universal scaling function

Fðt=TÞ ¼ T1�γsðt=T;TÞ; ð2Þ
where sðt=T;TÞ is the mean number of spikes at rescaled time tt
in an avalanche with the total lifetime T (t ¼ 1; 2; ¼ ;T).
In practice, the assessment of whether the (usually noisy)
data exhibits a good enough shape collapse after rescaling
may, however, be largely subjective, so that sometimes only a
small subset of the data achieves a satisfying collapse44.
Therefore, we follow ref. 44 that proposes to find a value of γ
that minimizes the spread of the rescaled avalanche shapes,
which can be objectively quantified by the shape collapse
error ϵðγÞ, i.e., γmin ¼ argminγϵðγÞ (see Methods section). This
obtained value of γ is then tested as to whether Eq. (1) is
satisfied. From theory, by the obtained exponents the crackling
noise relationship43

γc ¼
α� 1
τ � 1

ð3Þ
should be satisfied. If all three estimates of the critical
exponent match, a suggested avalanche criticality is strongly

Fig. 4 Culture 1: avalanche criticality signatures, 10 days in vitro DIV (first row) and 11 DIV (second row). a, b Avalanche size S as a function of lifetime
T (gray circles) and average size hSiðTÞ (blue lines). Red dashed lines: behavior predicted from the critical exponent γ (light-blue shaded area indicates one
standard deviation from average), evaluated via γmin of the shape collapse error function ϵ in black, using hSiðTÞ � Tγ (blue dash-dotted line: γc estimated
from crackling noise relationship. Light-blue shaded areas indicate one standard deviation from average). c, d Collapse of lifetime-rescaled average
avalanche shapes, using γmin (black), and the average Fðt=TÞ (red); light-blue shaded areas indicate one standard deviation around average. e, f Avalanche
size and lifetime distributions based on time bins of width ~Δt ¼ mΔt .
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corroborated. Our data from Culture 1 shows this to be indeed
the case, with γ ¼ 1:43 ± 0:05 and γ ¼ 1:36 ± 0:05 at 10 and
11 DIV (Fig. 4a, b, respectively). At 10 DIV, we find that
the shape collapse error is minimal for γmin ¼ 1:43. The
theoretical estimate from the crackling noise relationship
yields γc ¼ 1:49 ± 0:15, and the relationship between average
avalanche size and lifetime yields an estimate of γ � 1:43.
The universal scaling function is parabolic and symmetric
(Fig. 4c), congruent with observations in other experimental
studies43,44,46. At 11 DIV, the agreement between γ � 1:36 and
γmin ¼ 1:35 is also excellent, whereas the estimate γc ¼
1:51 ± 0:15 slightly deviates from these values. Using 95%
confidence intervals, the three estimates can, however, still be
reconciled to be consistent. The rescaled avalanche is more
noise-prone in this case, and Fðt=TÞ is flatter and more
asymmetric (Fig. 4d). We suspect that temporal profiles of
avalanches associated with shallower critical exponents will
naturally be more variable (see our cluster analysis below for
support), and thus we expect them to converge more slowly
to the average shape, with respect to the number of
samples. While to pin down the degree of asymmetry of
the shape a larger number of samples would be required,
previous experimental studies in dissociated neural cultures
and other physical systems showing avalanches have also
evidenced strongly asymmetric shapes43,45. Lifetimes used
for the collapses in Fig. 4c, d) span a range of 275 ms and
120 ms, respectively, covering a remarkable range (compared to
30–40 ms of earlier investigations43,46).

Genuine scale-free behavior would imply that the choice of the
temporal bin size Δt does not impair the power law property of
avalanche size distributions13. The avalanche size and lifetime
distributions at 10 DIV are only mildly affected by choosing
different binings ~Δt ¼ mΔt (m 2 f0:5; 0:75; 1:0; 1:5; 2:0g), cf.
Fig. 4e. At 11 DIV, the effect of choosing different bin-sizes is
slightly stronger; a small hump emerges for significantly enlarged
bin sizes for both size and lifetime distributions (Fig. 4f).
This indicates that the recordings at 11 DIV are somewhat closer
to the supercritical phase. Similar supercritical responses towards
temporal binning have been found for avalanches in organotypic

cultures43 exhibiting critical exponents very close to those at 11
DIV. The paradigm of transitions between two or more regimes
of criticality seems to generally hold for our type of developing
cultures; Supplementary Figs. 1–3 of the the Supplementary
Notes 1 and 2 contain corresponding verifications for two more
cultures analyzed in detail. Culture 1 is our key example for the
occurrence of two critical regimes; for the occurrence of a
supercritical phase between the two we refer to Culture 2 (and
to Culture 3 of the Supplementary Note 2). Admittedly, the
captured evidence for early criticality for Culture 2 is weaker than
for Culture 1; the collection of evidence seems, however,
appropriate in the light of the cultures’ quick development and
our experimental constraints.

Figure 5a, b shows that at 10 DIV, Culture 2 can be interpreted
to be close to the early critical regime, with τ � 2:23 ± 0:13
(S 2 ½8; Smax�; p ¼ 0:12) and α ¼ 2:64 ± 0:28 (T 2 ½5; 15�; p ¼
0:81). Compared to Culture 1, exponent γ ¼ 1:28 ± 0:03 has
a somewhat lower value (Fig. 4), but is in excellent agreement
with the other two estimates γc ¼ 1:33 ± 0:27 and γmin ¼ 1:31
(Supplementary Note 1, Supplementary Fig. 1). Over the next
3 days of development, the size distribution develops a prominent
hump at large values of S, while the overall trend of the
distribution remains consistent with the steep power law
(avalanches at very short length scales carry often the effect of
local behavior that is stronger than the collective effects at this
scale45). Compared to textbook examples, the humps look
less impressive, but their size is in agreement with what we
expect from related studies41,47 (cf. our Supplementary Note 2
for further discussion on the robustness of the supercritical
humps). At 14 DIV, pðSÞ transforms to a scale-free distribution
consistent with late criticality, with exponent τ ¼ 1:53 ± 0:06
(S 2 ½6; 78�; p ¼ 0:12). The lifetime distribution is somewhat
truncated, exhibiting reduced exponents α ¼ 1:60 ± 0:07
(T 2 ½2; 10�; p ¼ 0:14) and γ ¼ 1:19 ± 0:05, the latter value,
however, still agreeing with γmin ¼ 1:13 and γc ¼ 1:13 ± 0:18.
At 15 DIV, the network is again in a supercritical phase. The
spiking activity at 10 and 14 DIV (Fig. 5a) bears strong
similarities to the patterns observed at early and late criticality,
respectively (cf. Fig. 3b), whereas the supercritical phase between

Fig. 5 Culture 2: a supercritical phase (11–13 days in vitro) separates an incompletely expressed early (10) from a late (14) days in vitro (DIV)
avalanche criticality regime. a Spike raster plots demonstrating changed neural activity patterns. b Avalanche size distributions: Dashed lines are guides to
the eye for statistically significant power law fits pðSÞ � S�τ . Gray arrows point to the so-called humps that indicate a supercritical phase. n: total number of
avalanches on each day; Δt: temporal bin size.
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the two criticalities exhibits an elevated degree of synchrony and
more prolonged periods of silence between activity bursts.
Culture 3 corroborates our findings by exhibiting an example of
two avalanche critical states being separated by a supercritical
phase (Supplementary Fig. 2).

Reference18 highlighted that an avalanche critical point should
be surrounded by a subcritical and supercritical phase. The
recordings of Culture 2 (and of Culture 3 of the Supplementary
Note 2) show that after the early critical point, a supercritical
phase is entered (cf. Supplementary Note 2, Supplementary
Fig. 2), to finally arrive at late criticality, followed by a
supercritical phase (in Culture 1 we failed to catch the quickly
occurring intermediate supercritical phase due to our experi-
mental constraints). In this way, binning-independent power
law distributions, universal scaling functions, and the verified
fundamental relation between critical exponents, strongly suggest
that roughly across two consecutive days, the neural cultures are
in close vicinity of two distinct critical network regimes. Owing to
their temporal succession, we will refer to the critical regimes
the “early” and “late” criticality regime, respectively. While
experimental evidence of avalanche critical regimes bracketed
by subcritical and supercritical regimes has been provided
earlier18,22, the observation of such transitions linking distinct
avalanche criticalities in a single preparation is, to the best of our
knowledge, new.

Discussion
From the neuroscience viewpoint, our findings raise the question
of whether the different regimes could be associated with distinct
functional properties. While networks at criticality have been
associated with enhanced computational power in the sense of a
richer activity pattern repertoire and a greater flexibility of

responses to stimuli21,22, it is not clear how such optimality
arguments could be generalized to a line or series of critical
regimes (see, however, refs. 17,20 for how criticality relates to
computation). To distinguish between potential functional
differences of early vs. late criticality, we performed a high-
dimensional cluster analysis of the structure of neural avalanches
in these regimes, using a vector representation that encodes the
relative involvement of each electrode in an avalanche (Fig. 6a).
Denoting by si the number of spikes registered during an
avalanche at electrode i, we define an “avalanche vector” as
A ¼ ½a1; a2; ¼ ; aN �, where N ¼ 59 is the number of electrodes,
and ai ¼ si=maxðfs1; s2; ¼ ; sNgÞ. In this way, A can be seen as a
spatial encoding of the avalanche on the MEA (Fig. 6b), where the
set of all avalanche vectors spans a 59-dimensional “feature
space”. To see how the avalanches are organized in this space, we
used an unsupervised Hebbian learning clustering (HLC) devel-
oped by us48–51. This approach finds clusters of arbitrary shapes,
without prior knowledge of the number of clusters or requiring a
data dimensionality reduction step that generally distorts and
biases the distances between data points52. Moreover, HLC has
the capacity to filter out noise, by leaving such data without
assignment to a cluster. Similar to other approaches, HLC uses an
iterative optimization procedure that may depend on the initial
condition, unless the clusters are clearly separated. To compen-
sate for this, we ran the algorithm several (here, 15) times and
accepted the highest number of clusters produced as the final
result, which provides an upper bound for avalanche diversity
estimates. To further quantify this estimate, we calculated a
“cluster entropy” Hc ¼ �P

icilogðciÞ based on the fraction ci of
all avalanches assigned to the i-th cluster. In this way, a small
cluster entropy indicates that large clusters dominate the data,
larger values indicate a more fair distribution. To ensure an
objective comparison, across the DIV, the number of avalanche

A1

A2

A3

10 DIV
Culture 1

11 DIV

Vector representation

0

0.5

1.0

A1 A2 A3

0 5

1

59

el
ec

tro
de

time [s]

Avalanche detectiona)
A1 A2 A3

Cluster 1 Cluster 2

Cluster 4

Cluster 3

Cluster 5 Cluster 6

b)

Fig. 6 Extraction of high-dimensional avalanche patterns. a Examples of detected spike avalanches with their vector representations, where the gray-
scale indicates intensity. A1, A2, and A3 the three example avalanches extracted from Culture 1. b Each cluster's average avalanche vector is visualized by
the sizes of the circles of the respective characteristic vector elements. For Culture 1, six clusters of avalanche patterns are found at early criticality. The
clusters found at early and late avalanche criticality (10 resp. 11 days in vitro (DIV)) are displayed using a 2D-visualization tool (t-SNE embedding). Empty
circles correspond to avalanches that were not assigned to a cluster. The inset at 11 DIV shows the embedding of all avalanches.
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samples used was kept the same for the estimate (except for 9
DIV that generally produced a much smaller number of ava-
lanches; see Methods section). Fig. 6b) provides 2d-visualizations
of the clustering results at early and late criticality. HLC finds
consistently the highest number of distinct clusters at 10 DIV,
when all cultures are at (or in a close vicinity to) early criticality
(cf. Supplementary Note 3, “Cluster Analysis”, Supplementary
Fig. 8). The subsequent supercritical phase exhibited a decrease in
the number of clusters. Late avalanche criticality finds again a
mild—but statistically significant—increased cluster number
(without, however, reaching the level of early criticality), see
Supplementary Note 3, Supplementary Fig. 9a). Our cluster
entropy values (cf. Supplementary Note 3, Supplementary Fig. 9b)
and low-dimensional visualizations corroborate the observation
that early criticality offers the highest diversity of distinct ava-
lanche patterns. To probe whether after early criticality, the
avalanche patterns converge towards a smaller subset of patterns
potentially due to a “learning” preference of a particular pattern,
or whether clusters simply expand and merge (towards larger
clusters of increased intra-cluster variability), we checked the
median Euclidean distance dmed between the avalanche vectors.
At late criticality, this value proved to be comparable or even
larger than that at early criticality, cf. Supplementary Note 3,
Supplementary Fig. 9c). At early criticality, the avalanche patterns
are organized according to more separated clusters, in contrast
to late criticality, where they appear to explore more variable
patterns, having some boundaries between previously distinct
clusters removed. Larger critical exponents seem, therefore,
to indicate a preference of more local network interactions (as
avalanches are less likely to involve the whole of the networks);
more strongly connected cultures at a later development stage
seem to join previously anatomically more separated subnet-
works, enabling in this way more diverse spatiotemporal patterns.
However, such interpretations need to be taken with care, as the
relationship between cluster structures and network development
is far from trivial. The results, however, point to different possible
functional benefits offered by the two avalanche criticalities. The
clearer clusters of early criticality appear to be more suited for a
simple “state-coding”, where an avalanche cluster could be seen
as a read-out codeword by an observer process. A similar coding
strategy has been identified in weakly coupled periodic systems in
terms of Arnold tongues53, supporting efficient, Huffman-like
input coding49,54. The larger space spanned by the avalanche
vectors at the late criticality, in contrast, is more advantageous for
functions requiring more variable network responses, similar to
earlier formulated optimality arguments regarding dynamic
range, stimulus representation and information capacity at
the avalanche criticality regime with τ � 1:521. This perspective
suggests that the critical regime with steeper exponents may
be associated with a stronger computational performance, in the
sense of computation as a reduction of complexity of predic-
tion55. A similar interpretation was recently provided for the
behavior of the peripheral auditory system where focusing on a
particular sound was shown to tune the hearing sensor away from
the initially unbiased critical regime with τ � 1:517. Comparative
studies of the functional benefits of the different critical points
promise to be an interesting topic of future research, not only
for the goal of basic understanding of nervous systems, but also
for augmented machine learning efficiency based on critical
dynamics56,57.

Early and late criticality bear an intriguing similarity to the two
different universality classes for cultured neuronal networks
found by Yaghoubi et al.28. In their study, the two universality
classes were found in two different types of neuronal cultures that
either had or didn’t have an acid metabolite 5M4Hfolate in the
culture medium. The presence of folate was conjectured to affect

the structural network connectivity and lead to the observed
change in critical exponents from τ ¼ 1:65 ± 0:1; α ¼ 2:15 ± 0:2
and γ ¼ 2 ± 0:4 in their “control” cultures, to τ ¼ 2:2 ± 0:2; α ¼
3:3 ± 0:4 and γ ¼ 2 ± 0:4 in the cultures with folic acid. Both sets
of exponents correspond rather well to the exponents we find at
the early and late criticality: The agreement is perfect for τ, and α
is also fairly consistent within the 95% confidence intervals.
The discrepancy in the values obtained for γ can be explained as
follows. In corresponding simulations, γ has been reported to be
particularly sensitive to the network structure43, and to approach
γ ¼ 2:0 for all-to-all connectivity. Since the recordings by
Yaghoubi et al. were made in the third and fourth weeks of
development at denser connectivity38 (compared to the 10–11
DIV period of our measurements), differences in the estimates of
γ may be expected. Finally, the large difference in Δt between the
early and late criticality is also consistent with the experiments of
ref. 28. For an extended discussion, including other related works,
we refer the reader to Supplementary Note 4 (“Discussion of the
critical line paradigm”).

In our modeling and experimental work we revealed that more
than one single critical regime can occur, and that thus neural
network criticality may be richer and more complex than is
generally anticipated. A cluster analysis of in vivo avalanche
patterns revealed that the different criticality states likely support
different roles of information processing and computation.
While regimes with smaller power-law exponents suggested in
ref. 21 seem to more support the information representation
aspect, regimes with the additionally detected critical regime with
a stronger exponent has a stronger connection to computation,
interpreted as the simplification, i.e., destruction of informa-
tion55. It is this link that associates different functional roles to
the two observed criticalities. In the context of what we call here
“late” criticality, the importance of dynamically changing net-
work interactions for avalanche criticality has been pointed
out58. Here, we have extended this insight by demonstrating that
facilitation may be at the basis of other experimentally observed
avalanche-critical regimes as well. Often, measurements that
deviate from the expectations of an established theory can be
explained away by not ideal experimental or computational
conditions. However, in some situations exactly the deviations
might provide the key for understanding the underlying sys-
tem41. Rather than as a correction of the concept, we see the
presented results in the perspective of offering a constructive
generalization of the fruitful application of the physics concept
of criticality, towards new observations in biological neural
networks and, probably to biology beyond. As neuroscience
experiences a technological revolution and better tools for
recording and manipulating neural activity in the brain are
becoming available, further experimental investigations will be
able to probe the existence, origin and functional properties of
distinct avalanche criticality states in vivo.

Methods
A dynamic branching model with facilitation and depression. In many works of
the past, the existence of a single critical point seems to have been favored,
implicitly or explicitly. However, fundamental examples of statistical physics
models demonstrate that critical regimes depend on the dimension of the under-
lying topology. Upon neuronal development, this topology—while in most cases
nontrivial to grasp—must be expected to change. If we can trust the analogy to
statistical physics, it is thus not impossible to see the emergence of various critical
regimes during the development of a neural culture. In our contribution we
scrutinize the question whether such an occurrence is likely to emerge, jointly from
the theoretical, modeling and experimental sides.

In particular during the early neural culture maturation process, the wiring
structure among the neurons undergoes big changes. Developing neuronal cultures
provide an opportunity to observe how synaptic connection density and strength
gradually increase over the first couple of weeks38. The interaction strength
between the neurons in the culture is naturally “tuned” from weaker to stronger,
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across consecutive days in vitro (DIV) early development (before synaptic pruning
and effects of inhibition become prominent25). DIV can be seen as a proxy for a
“control” or “tuning” parameter of the culture, which enables the observation and
analysis of different, naturally occurring network activity phases. In our
experimental data, we find two critical regimes.

While the evidence we provide will suffer from all the typical shortcomings of
this concept in biological applications, theoretical arguments and modeling
results strongly support our experimental observations. From a theoretical
model of networks based on a “rich get richer with a local constraint”
principle41, we already know that abstract biological systems can, in principle,
converge to criticality anywhere on a line of critical states. The simplest
manifestation of this model are compounds that tend to aggregate according to
the rich-get-richer paradigm (e.g., due to a global attraction scheme such as
gravitational, or electrical attraction), but where this growth is limited by local
constraints (such as a finite number of docking sites to the compound). The
paradigm generates, apart of the critical line, regimes characterized by humped
distributions where the local constraint is incompatible with the global principle
(for details see ref. 41). In loose physics terms, the humps can be interpreted as
fingerprints of a “friction” that becomes apparent at a particular scale. In these
systems—that are by construction non-critical—the humps in the distributions
may be apparent or barely visible, but where they are apparent, their form
strongly agrees with what we observe in our experimental data. Below, we will
use this model to interpret the structural changes seen in the development of our
experimental cultures during maturation. A recent model of elementary adaptive
network automata supports our view47. Our method to detect criticality does not
rely on the goodness of fit for power laws (that we of course consider as
important first indicators). To identify criticality (in model simulations as well as
in experiments) one needs to demonstrate that the system is spatially scale-free,
i.e., avalanches are required to follow a power law (1), that it is temporally scale-
free (2) (for this, different binnings should be used that also should exhibit a
power law relation) and that it is space-time scale-free (3) (for this, the existence
of a scaling function should be evidenced, using extracted spatial and temporal
information). Finally (4), the consistence of all these tests should be evidenced
by showing that the crackling noise relationship among the estimated power-law
exponents is satisfied with reasonable accurracy.

That the emergence of one single critical regime may not be a necessity is,
moreover, emphasized by the statistical thermodynamics of alloys: If contributing
compounds have sufficiently different characteristics, lines of critical regimes
emerge59. In biological neural networks and typical modeling approaches, different
components are present, too, at different levels. Normally, excitatory and inhibitory
components are too strongly interwoven to become relevant in this context.
However, if the well-known neuronal properties of neuronal facilitation and
depression are included into the classical avalanche branching model,
subpopulations (consisting each of excitatory and inhibitory neurons) emerge that
express very distinct dynamical and topological properties. We blame it on this that
in our simulations a line of critical regimes emerges that seems to be approached by
our experimental cultures in variety of locations during their development
(generating distinct critical exponents).

Our modeling approach is a refinement of an accepted theoretical model for
explaining criticality in neural networks (producing a single regime of criticality).
To arrive at an analog of the structural and behavioral changes that our
experimental neural network cultures undergo during maturation, we complete this
model with the inclusion of facilitation and depression, basic mechanisms at work
in neural networks. From this model we obtain evidence for the existence of a line
of critical regimes, which corroborates our observation of at least two main
avalanche criticality regimes in our experiments with maturing dissociated neural
cultures.

Computational models exhibiting avalanche criticality regimes in neural
networks have mostly focused on explaining self-organization aspects of the “late”
criticality regime characterized by τ ¼ 1:522,58,60,61. Only in few, mostly
numerical, studies an “early” criticality regime characterized by τ � 2:058 and
τ � 2:520,62,63 was found, essentially without explaining the origins of the
difference of these regimes (we use the terms “early” and “late” relative to their
occurrence in the experimental setting on the time axis of development). By
demonstrating a simple toy model that only uses basic biological activity
propagation assumptions that gives rise to avalanche size distributions consistent
with both, the early and the late, regimes of criticality, we fill this gap. We start
from the network model of ref. 22, describing a branching process23 that we map
on a directed network at a mesoscopic scale. In this setting, each experimental
electrode can be viewed as being represented by a network node. Such a node is
either active (i.e., spiking) or silent. Active nodes i excite stochastically other
network nodes j, where the propagation of activity is according to probabilities
pðijÞ . The sum of all outgoing excitation probabilities of each node is constrained to
a value σ, the so-called “branching parameter” that determines the expected
number of new active nodes (also known as “descendants”) produced by a single
active node (more details see below). For σ ¼ 1, this model yields power-law
distributed avalanche sizes with the scaling exponent τ � 1:522. For σ > 1, the
network is in a supercritical phase, whereas for σ < 1 the size distribution becomes
subcritical with the probability of larger avalanches decaying rapidly (Fig. 1a), in
gray). Critical states with power laws of exponent τ � 2:2 are not generated by
this model.

The branching network is a minimal model for some neural avalanche
dynamics measured on micro-electrode arrays (MEA). Following ref. 22, each
electrode i, i ¼ 1; 2; ¼ ; N , is represented by a “binary processing unit” bðiÞn that

either can be active (bðiÞn ¼ 1) or inactive (bðiÞn ¼ 0), where n denotes the simulation
time step. Each unit can be randomly connected to NC other units; we consider
NC ¼ N � 1, i.e., all-to-all connectivity22, which permits functional connections
between all MEA electrodes.

Connection from unit i to unit j is defined by an activation (excitation)
probability pðijÞ. This probability describes the likelihood of unit j becoming active
if unit i was active in the previous time step. The activation probabilities for each
connection are chosen randomly, but the sum of each units’ outgoing activation
probabilities is constrained to σðiÞ � PNC

j¼1p
ðijÞ ¼ σ. σ is network’s branching

parameter, i.e., the expected number of active descendants that an active unit
produces. More formally, the activation of unit j by unit i is determined by a binary
‘transmission’ variable

tðijÞn ¼ 1; bðiÞn ¼ 1 ^ r < pðijÞ;

0; bðiÞn ¼ 0 _ r � pðijÞ;

(
ð4Þ

where r is a random number drawn uniformly from the interval (0, 1). Units
update their state each time step; they become activated if any of their incoming
connections had a transmission of value 1 that did not fall into the refractory
period of length tR ¼ 2 simulation steps:

bðiÞnþ1 ¼ 1;
PNC

k¼1 t
ðkiÞ
n > 0 ^ bðiÞm ¼ 0;m 2 ðn� tR; n�;

0; otherwise:

(
ð5Þ

For exciting the units, several approaches can be followed22. We chose the one
that does not require any new free parameters, by exciting one randomly chosen
unit whenever an avalanche has finished (i.e., when bðiÞn ¼ 0, for all i). Because of
σ i ¼ σ, this setting is referred to it as the ‘static’ branching network model.

An addition of dynamic facilitation ϕðiÞn and depression δðiÞn brings the standard
model closer to our experimental data. Earlier experiments have shown that during
in vitro neuronal maturation, both of these opposing effects are observed: The
growth in the network connectivity, measured in terms of, e.g., synaptic density
and size, number of synapses per neuron and number of synaptic vesicles per
synapse38, as well as a concurrent decrease in neuronal excitability in terms of, e.g.,
a decreased resting membrane potential29,30. These effects have been reported for
different types of experimental neuronal culture preparations and they appear to be
general features of neuronal maturation. The development of connectivity and
excitability is brought about by both genetically predetermined and activity-
dependent mechanisms64,65, while the opposing developmental effects might
support activity level homeostasis66. We have attempted to compactly express the
connectivity and excitability properties using mainly the branching parameter σ
and facilitation Δϕ . As outlined above, biological experiments suggest that when
modeling neuronal development, σ should be gradually increased, whereas Δϕ

ought to be decreased.
Facilitation variable ϕðiÞn is incremented by Δϕ if a connection from unit k to unit

i fails to transmit, and otherwise suffers from an exponential decay; if unit i
becomes activated, ϕðiÞn is reset to 0:

ϕðiÞnþ1 ¼
0; bðiÞm ¼ 1;m 2 ðn� tR; n�;
ηϕϕ

ðiÞ
n þ Δϕ

PNC
k¼1ð1� tðkiÞÞbðkÞn otherwise:

(
ð6Þ

For the whole duration of the refractory period, ϕðiÞn ¼ 0. A depression δðiÞn is
added that increments after unit i has been active to counter-balance potentially
emergent runaway activity:

δðiÞnþ1 ¼ ηδδ
ðiÞ
n þ Δδ ; bðiÞn ¼ 1;

0; otherwise :

(
ð7Þ

Facilitation and depression turn the activation probabilities into dynamic
variables:

pðijÞn ¼ pðijÞ þ ϕðjÞn � δðiÞn ; ð8Þ
where pðijÞis the baseline excitation probability, constrained by the initially set σ.
The dynamic excitation probabilities replace the static probabilities of Eq. (4) as

tðijÞn ¼ 1; bðiÞn ¼ 1 ^ r < pðijÞn ;

0; bðiÞn ¼ 0 _ r � pðijÞn :

(
ð9Þ

From a complex systems perspective, the branching parameter σ can be seen as
a “global” network-level property that sets the limits of network connectivity,
whereas facilitation is a “local” individual network node property that modifies on
top of the connectivity “backbone” defined by the branching parameter the local
activity, which generates the in vitro observed activity properties.

We refer to this modified model as the “dynamic” branching network, since the

effective branching parameter of unit i, σðiÞn ¼ PNC
j¼1p

ðijÞ
n is no longer constrained to

a fixed σ, but we may determine the instantaneous branching parameter by taking

the average across all units, σn ¼ 1=N
PN

i σ
ðiÞ
n . The model parameters used to obtain
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the results shown in Fig. 1a–e are for the static network, Δϕ ¼ ηϕ ¼ Δδ ¼ ηδ ¼ 0.
For the dynamic model, we chose Δϕ ¼ 0:002 for σ 2 f0:35; 0:61; 0:71g, Δϕ ¼
0:0015 for σ 2 f0:81; 0:95g, and ηϕ ¼ 0:35; Δδ ¼ 0:15; ηδ ¼ 0:35 for all σ. For the
comparison we used a network size of N ¼ 64 and a refractory period of tR ¼ 2
iteration steps in both cases; for each σ, averages from ten simulations of 107 time
steps with randomly initiated pðijÞ are shown. Across the different simulations, we
observed a negligible variation among the avalanche size distributions only. For
σ < 1, avalanche size distributions with a steeper power-law can be expected, if
activation failure is compensated by mild excitation facilitation: If an activated unit i
does not succeed in exciting neighbor j the excitation probabilities pðkjÞ of unit j are
increased by an amount Δϕ .This facilitation is counter-balanced by an exponential
decay in time, that in the absence of continued facilitation sends the excitation
probabilities back to their baseline values σ (Fig. 1a, b). Such a behavior is suggested
by biology: Subthreshold synaptic input to neurons is known to increase—
transiently—neuronal excitability, either by reducing the distance between neuron’s
membrane potential and spiking threshold, or by short-term synaptic facilitation67.
When added to the original model, the effect is a more heavy-tail like decay of
avalanche distributions. To prevent a dominance by very large avalanches, resource
depletion31 that depresses the outgoing excitation probabilities of active units
should naturally be added. In our study, depletion affected the statistics of very large
avalanches only, so that facilitation emerged as the key mechanism for reproducing
the experimental observations.

Neuronal culture preparations. Hippocampi were micro-surgically separated
from E18 (embryonic day 18) Sprague-Dawley (SD) rat (Koatech, Republic of
Korea). Dissected tissues were dissociated with pipetting in Hank’s buffer salt
solution (HBSS) and centrifuged at 1000 rpm for 2 min. Supernatant was then
removed, and settled cell pellet was resuspended in plating medium (conditioned
medium, explained below, supplemented with 12.5 µM L-glutamate). After being
sieved through a cell strainer (BD Falcon, NJ, USA), cells were plated on a chip at
the density of 800 cells mm−2. For producing conditioned media, we first made
astrocyte cultures by incubating dissociated culture of E18 SD rat cortex on poly-D-
lysine coated glass in Neurobasal medium supplemented with 2 mM GlutaMAX,
10% horse serum, and 1% penicillin-streptomycin for 20 days. At 20 DIV, the
whole media was exchanged into the maintenance media (Neurobasal medium
supplemented with B27, 2 mM GlutaMax, and penicillin-streptomycin) after
washing the culture with maintenance media once. The conditioned media was
collected after 3 days from the media change.

Cultured neurons were kept in a humidified incubator maintained at 37 °C and
5% CO2. Half of the medium was changed twice a week with conditioned medium.
All experiments were performed in accordance with the guidance of the
Institutional Animal Care and Use Committee (IACUC) of the Korea Advanced
Institute of Science and Technology (KAIST), and all experimental protocols were
approved by IACUC of KAIST.

Neural activity recordings. For the recordings, a micro-electrode array (MEA)
from Multi Channel Systems (Reutlingen, Germany) with 59 microelectrodes (TiN,
30 µm in diameter, 200 µm spacing) and 1 reference electrode was used. To pro-
mote cell adhesion on chip surface, the MEA was coated with poly-D-lysine
(100 µg/mL) and sterilized with 70% ethanol. To prevent the evaporation of cell
culture medium, the MEA was capped with a FEP-membrane sealed Teflon ring.
The MEA was placed on the heating plate which is connected to TC01 (Multi
Channel Systems, Reutlingen, Germany) for keeping the temperature at 37 °C. A
custom-built amplifier with the gain of 1000 and the bandwidth 150 Hz–4.5 kHz
was connected to the MEA, and the amplified signal was digitized at 25 kHz with
USB-ME64 system (Multi Channel Systems). For spike detection, the threshold
level was set to six times the standard deviation of the background noise. Starting
from 9 DIV, every day electrical activity of 1 h was recorded. To extract spike
timestamp for the data analysis, NeuroExplorer (Nex Technologies, Madison,
USA) was used. First 10 min of the recordings were discarded from further ana-
lysis, to avoid artifacts due to possible non-stationarities. The recording was per-
formed after at least 12 h from the media exchange in order to avoid the
perturbation effect.

Data analysis details. In the following subsection, symbol τ denotes the cross-
correlation lag, in contrast to the rest of the paper, where it stands for the
avalanche-size critical exponent. Neuronal avalanche extraction followed the
conventional approach4,35 to bin time in discrete bins of width Δt and to define an
avalanche as the maximal extension of nonempty (i.e., having at least one spike)
adjacent bins. The value of Δt is commonly chosen equal to the average inter-event
interval, hIEIi, where IEI is the time difference between two consecutive events on
the array. Events in our case were spikes registered at any of the recording array’s
electrodes (in other approaches, events can also be peaks in the local field potential
(LFP) signal instead4; the use of LFP peaks for avalanche analysis, however, has
recently been discouraged19). In our data, we often observed heavy-tailed IEI
distributions leading to a divergence of hIEIi and thus also of Δt (cf. Fig. 7a–c). The
IEI at the tail of the distribution relate to periods of prolonged silence, usually after
bursts of elevated neural activity (Fig. 7a). In previous studies4,35, this issue has

been dealt with by discarding the long inter-event intervals, i.e., Δt is set equal to an
average hIEIi� obtained by using only IEI 2 ½0; IEImaxÞ. The cut-off IEImax is
defined as the value where the average pairwise cross-correlation between electrode
LFP signals becomes negligible4,35. We adapt this methodology for our case of
spike signals, by calculating the average spike train cross-correlation68CðτÞ across
all pairs of electrodes (where only in this section, symbol τ codes for the cross-
correlation lag), and setting IEImax equal to τ at which CðτÞ crosses the abscissa

(Fig. 7d). We define a spike train at electrode i as Si ¼ ftðiÞ1 ; tðiÞ2 ; ¼ ; tðiÞNi
g, where

tðiÞn is the time when spike n occurred, tðiÞn < tðiÞnþ1, and Ni is the total number of
spikes registered by electrode i. The cross-correlation function between two spike
trains Si and Sj is approximated by a histogram CijðτÞ; τ takes discrete values kδt,
where δt is the bin size of the histogram and k 2 Z. For computational efficiency,
we consider only τ 2 ½�103; 103� ms. For binning we use δt ¼ 25 ms, but the
particular choice of δt does not influence the results (Fig. 7e). CijðτÞ takes the value
of the total number of times that spikes in Si are separated in time from spikes in Sj
by an interval ðtðjÞx � tðiÞy Þ 2 ½τ � 0:5δt; τ þ 0:5δtÞ, where x 2 f1; 2; ¼ ;Njg and
y 2 f1; 2; ¼ ;Nig. CijðτÞ is further normalized by subtracting Nδt=ð2TÞ, where N
is the total number of spike pairs considered. The normalization term expresses the
expected value of CijðτÞ if the intervals between the spike pairs were to be uni-
formly distributed. Finally, we calculate the average across all normalized pairwise
cross-correlation functions, CðτÞ ¼ hCijðτÞii;j , and find the zero-crossing, τ0, of

CðτÞ by locating the first bin where CðτÞ< 0 (Fig. 7d). Setting IEImax ¼ τ0 leads to
exclusion of humps at the tail of IEI distributions (Fig. 7b), and prevents a
divergence of hIEIi� (Fig. 7c).

Avalanche size and lifetime distributions are estimated by maximum likelihood
(ML) fits, following the guidelines in refs. 39,40. The fits are discrete truncated
power law distributions

pðxÞ ¼ x�θPb
y¼ay

�θ
; ð10Þ

where x ¼ S; θ ¼ τ is used for avalanche sizes and x ¼ T; θ ¼ α for avalanche
lifetimes. The range of a fit ½a; b� is determined as the longest interval for which the
goodness-of-fit measure is still satisfactory (see below) and b is allowed to be no
larger than the largest observed value of x. In cases when the empirical distribution
exhibits a sudden and steep fall-off at the tail, b is limited by the location of the fall-
off (e.g., pðTÞ at 11 DIV in Fig. 3). For the evaluation of the goodness-of-fit, Monte
Carlo simulations of the fitting process are performed40. Ten thousand surrogate
datasets using the ML estimate of θ are first generated, with the same number of
samples as the original data used for fitting. The surrogates are then fit using ML,
and the KS-statistic is calculated for each fit. The p-value p is calculated as the
fraction of surrogate datasets with a higher KS statistic than the corresponding
experimental data fit. A rather stringent criterion of p > 0:10 is set to consider a fit
satisfactory.

To estimate the third critical exponent γ from the relation hSiðTÞ � Tγ , we use
the conventional least squares fitting over the maximal available range of T (unless
a clear deviation from a straight line behavior is observed). Confidence intervals for
the critical exponent estimates are found by using the “bootstrapping” method39,69:
ten thousand surrogate datasets are generated by sampling uniformly at random
with replacement from the original data, and the fitting procedure over the same
range ½a; b� is repeated for each surrogate dataset. Two standard deviations of the
resulting distribution of the parameter estimates yield the reported 95% confidence
intervals. Alternatively, the confidence interval of the ML estimate is obtained via
the Monte Carlo simulations described above, which we found to give fully
consistent results if compared with the bootstrapping method.

Using the methods described above, we tested the hypothesis that there could be
a critical transition at a particular day in development (i.e., at days between
subcritical and supercritical phases, when the avalanche distributions exhibit a
scale-free trend). Competing statistical distribution hypotheses to explain the
distribution shape were not considered. We feel that such a comparison would
reach beyond of what would be compatible with the sampling protocol that we had
to use.

For testing avalanche shape collapse, we used the methodology introduced in
ref. 44. This improvement of an earlier approach43 allowed us to use a much higher
number of avalanches and to define an objective shape collapse criterion. To
determine the quality of the avalanche shape collapse, the averaged and rescaled
avalanche profiles of different lifetimes T , Fðt=TÞ ¼ T1�γsðt=T;TÞ are first linearly
interpolated at ni ¼ 1000 points along the scaled duration. The variance across the
different Fðt=TÞ is calculated at each interpolated point, and the shape collapse
error ϵðγÞ is then defined as the mean variance divided by the squared span of the
avalanche shapes, where the span equals the maximum minus the minimum value
of all rescaled avalanche profiles44. In the presented analysis, avalanche shapes of
T > 4Δt with at least 20 samples were used, to avoid too noisy average temporal
profiles.

Hebbian learning clustering48–51 (HLC) recasts the data (in our application: the
avalanche vectors) as the nodes on a k-nearest neighbor graph (using Euclidean
distance). The distances between data points furnish the initial edge weights of the
graph. The nodes are represented by neurons that interact by spikes, mediated by
the edge weight as the synaptic strength being dynamically updated following the

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-019-0276-8

10 COMMUNICATIONS PHYSICS |            (2020) 3:13 | https://doi.org/10.1038/s42005-019-0276-8 | www.nature.com/commsphys

www.nature.com/commsphys


Hebbian learning paradigm of neuroscience. Clusters emerge as synchronous
groups of nodes with enhanced within-cluster edges and weakened—or altogether
pruned—between-cluster edges. HLC is fully based on local k-nearest neighbor
information and thus allows for an unbiased treatment of data (no prior
information, e.g., number of clusters or assumptions on their shape, is needed). We
use k ¼ 30, which has been shown to perform well on comparable synthetic
datasets52.

To ensure that the avalanche patterns represent the collective behavior of
the underlying neural network, we restricted ourselves to avalanches with S � 8,
for all cultures. At 9 DIV, for the cluster analysis, all avalanches were used (83,
189, and 70 avalanches for Cultures 1–3, respectively). Later, to ensure a fair
comparison between different days in development, the number of data points
used in the cluster analysis nA was kept the number observed at 10 DIV
(nA ¼ 371 for Culture 1, nA ¼ 712 for Culture 2 and nA ¼ 439 for Culture 3).
In the following DIV that produced an increased number of events, the
avalanches for the cluster analysis were subsampled (uniformly at random) from
the pool of all available avalanches and the average of ten subsamplings were
used for the final result. The subsampled datasets represent the full datasets
sufficiently well. For the quantitative analysis, only clusters with ten or more
avalanches were considered.

The organization of the avalanche vectors in the high-dimensional feature space
was visualized by 2D-projections of the clustering results, using the t-distributed
stochastic neighbor embedding70 (t-SNE) algorithm. The perplexity parameter was
set to 30; we show the best embedding (i.e., that with the smallest loss) out of ten
simulation runs. While t-SNE can be quite powerful in revealing structures within
the data, for complex cluster shapes it can also provide misleading results52. Hence
the embedding must be interpreted with care: In Fig. 6b, a few points that are
separated in the embedding by t-SNE, should be in the same group, according to
HLC that is more trustful. Our reported observations were, however, tested to not
be impaired by such effects.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The datasets as well as the methods used in the present study are available from the
corresponding authors on reasonable request.
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