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Anti-Zeno quantum advantage in fast-driven
heat machines
Victor Mukherjee 1,2,3*, Abraham G. Kofman1,2* & Gershon Kurizki2

Developing quantum machines which can outperform their classical counterparts, thereby

achieving quantum supremacy or quantum advantage, is a major aim of the current research

on quantum thermodynamics and quantum technologies. Here, we show that a fast-

modulated cyclic quantum heat machine operating in the non-Markovian regime can lead to

significant heat current and power boosts induced by the anti-Zeno effect. Such boosts

signify a quantum advantage over almost all heat machines proposed thus far that operate

in the conventional Markovian regime, where the quantumness of the system-bath interac-

tion plays no role. The present effect owes its origin to the time-energy uncertainty relation in

quantum mechanics, which may result in enhanced system-bath energy exchange for

modulation periods shorter than the bath correlation-time.
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The non-equilibrium thermodynamic description of heat
machines consisting of quantum systems coupled to heat
baths is almost exclusively based on the Markovian

approximation1,2. This approximation allows for monotonic
convergence of the system-state to thermal equilibrium with its
environment (bath) and yields a universal bound on entropy
change (production) in the system3. Yet, the Markovian
approximation is not required for the derivation of the Carnot
bound on the efficiency of a cyclic two-bath heat engine (HE):
this bound follows from the second law of thermodynamics,
under the condition of zero entropy change over a cycle by the
working fluid (WF), in both classical and quantum scenarios. In
general, the question whether non-Markovianity is an asset
remains open, although several works have ventured into the
non-Markovian domain4–9. By contrast, it has been suggested
that quantum resources, such as a bath consisting of coherently
superposed atoms10, or a squeezed thermal bath11–13, may raise
the efficiency bound of the machine. The mechanisms that can
cause such a raise include either a conversion of atomic coherence
and entanglement in the bath into WF heatup10,14,15, or the
ability of a squeezed bath to exchange ergotropy11–13,16 (alias
non-passivity or work-capacity17–19) with the WF, which is
incompatible with a standard HE. However, neither of these
mechanisms is exclusively quantum; both may have classical
counterparts20. Likewise, quantum coherent or squeezed driving
of the system acting as a WF or a piston21 may boost the power
output of the machine depending on the ergotropy of the system-
state, but not on its non-classicality13.

Finding quantum advantages in machine performance rela-
tive to their classical counterparts has been one of the major
aims of research in the field of quantum technology in gen-
eral22–24, and particularly in thermodynamics of quantum
systems25. Overall, the foregoing research leads to the conclu-
sion that conventional thermodynamic description of cyclic
machines based on a (two-level, multilevel or harmonic oscil-
lator) quantum system in arbitrary two-bath settings may not
be the arena for a distinct quantum advantage in machine
performance20. An exception should be made for multiple
identical machines that exhibit collective, quantum-entangled
features26,27).

Here, we show that quantum advantage is in fact achievable
in a quantum heat machine (QHM), whether a heat engine or a
refrigerator, whose energy-level gap is modulated faster than
what is allowed by the Markov approximation. To this end, we
invoke methods of quantum system-control via frequent
coherent (e.g., phase-flipping or level-modulating) opera-
tions28,29, as well as their incoherent counterparts (e.g., pro-
jective measurements or noise-induced dephasing)30–34. Such
control has previously been shown, both theoretically30,31,35,36

and experimentally34,37, to yield non-Markovian dynamics that
conforms to one of two universal paradigms: (i) quantum Zeno
dynamics (QZD) whereby the bath effects on the system are
drastically suppressed or slowed down; (ii) anti-Zeno dynamics
(AZD) that implies the opposite, i.e., enhancement or speed-up
of the system-bath energy exchange30,31,38. It has been pre-
viously shown that QZD leads to the heating of both the system
and the bath at the expense of the system-bath correlation
energy39, whereas AZD may lead to alternating cooling or
heating of the system at the expense of the bath or vice-
versa30,31. In our present analysis of cyclic heat machines based
on quantum systems, we show that analogous effects can
drastically modify the power output, without affecting their
Carnot efficiency bound. AZD is shown to bring about a drastic
power boost, thereby manifesting genuine quantum advantage,
as it stems from the time-energy uncertainty relation of
quantum mechanics.

Results
Model. We consider a quantum system S that plays the role of a
working fluid (WF) in a quantum thermal machine, wherein it is
simultaneously coupled to cold and hot thermal baths. The sys-
tem is periodically driven or perturbed with time period τS ¼
2π=ΔS by the time-dependent Hamiltonian ĤSðtÞ:

ĤSðt þ τSÞ ¼ ĤSðtÞ: ð1Þ
In order to have frictionless dynamics at all times, we choose
ĤSðtÞ to be diagonal in the energy basis of S, such that.

ĤSðtÞ; ĤSðt0Þ
� � ¼ 0 8 t; t0: ð2Þ

The system interacts simultaneously with the independent cold
(c) and hot (h) baths via

ĤI ¼
X
j¼c;h

Ŝ� B̂j; ð3Þ

where the bath operators B̂c and B̂h commute: B̂c; B̂h

� � ¼ 0, and Ŝ
is a system operator. For example, for a two-level system, Ŝ ¼ σ̂x ,
while Ŝ ¼ X̂ for a harmonic oscillator, in standard notations. We
do not invoke the rotating wave approximation in the system-
bath interaction Hamiltonian Eq. (3). As in the minimal con-
tinuous quantum heat machine40, or its multilevel extensions42,
we require the two baths to have non-overlapping spectra, e.g.,
super-Ohmic spectra with distinct upper cutoff frequencies (see
Fig. 1). This requirement allows S to effectively couple inter-
mittently to one or the other bath during the modulation period
τS, without changing the interaction Hamiltonian to either bath.

From Markovian to non-Markovian dynamics. In what follows
we assume weak system-bath coupling, consistent with the Born (but
not necessarily the Markov) approximation. Our goal is to examine
the dynamics as we transit from Markovian to non-Markovian time-
scales, and the ensuing change of the QHM performance as the
period duration τS is decreased. To this end, we have adopted
the methodology previously derived in refs. 28,29,43,44, to account for
the periodicity of ĤSðtÞ, by resorting to a Floquet expansion of the
Liouville operator in the harmonics of ΔS ¼ 2π=τS

40,45,46. As
explained below, we focus on system-bath coupling durations τC ¼
nτS of the order of a few modulation periods, where n > 1 denotes
the number of periods. The time-scales of importance are the
modulation time period τS, the system-bath coupling duration τC,
the bath correlation-time τB and the thermalization time τth � γ�1

0 ,

Fig. 1 A two-level system thermal machine. Schematic set-up showing a
two-level system with periodically modulated level distance ωðtÞ as the
working fluid (WF) in a thermal machine wherein the WF is simultaneously
coupled to hot and cold baths with non-overlapping spectra. Possible
realizations include a driven-atom WF coupled to filtered heat baths in a
cavity or a driven impurity coupled to spectrally distinct phonon baths in a
solid structure40,41.
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where γ0 is the system-bath coupling strength. We consider n � 1
such that τC � τS; ωþ qΔSð Þ�1, where ω denotes the transition
frequencies of the system S, and q is an integer (see Methods
“Floquet Analysis of the non-Markovian Master Equation”). This
allows us to implement the secular approximation, thereby averaging
over the fast-rotating terms in the dynamics. In the limit of slow
modulation, i.e, τS � τB, we have τC � τB, which allows us to
perform the Born, Markov and secular approximations, and even-
tually arrive at a time-independent Markovian master equation for
τC � τS; ω

�1; τB (see Methods “Floquet Analysis of the non-
Markovian Master Equation”).

On the other hand, in the regime of fast modulation τS � τB,
the Markov approximation becomes inapplicable for coupling
durations τC ¼ nτS ≲ τB. This gives rise to the fast-modulation
form of the master equation (see Methods. “Floquet Analysis of
the non-Markovian Master Equation” and “Non-Markovian
dynamics of a driven two-level system in a dissipative bath”):

_ρSðtÞ ¼
X
j¼h;c

Lj ρSðtÞ
� � ¼ X

j;ω

~I jðω; tÞDj;ω ρSðtÞ
� �þ h:c:;

~I jðω; tÞ �
Z 1

�1
dνGjðνÞ

sin ν � ωð Þt½ �
ν � ω

�
± i

cos ν � ωð Þt½ � � 1
ν � ω

� ��
ð4Þ

For simplicity, unless otherwise stated, we consider _ ¼ kB ¼ 1.
Here, for any modulation period τS, the generalized Liouville
operators Lj of the two baths act additively on the reduced
density matrix ρSðtÞ of S, generated by the ω-spectral
components of the Lindblad dissipators Dj;ω (see below) for the
j ¼ c; h bath acting on ρSðtÞ. For a two-level system, or an
oscillator, D does not depend on ω1. For ρSðtÞ that is diagonal in
the energy basis, which we consider below, the dynamics is

dictated by the coefficients I jðω; tÞ � Re ~I jðω; tÞ
h i

in Eq. (4),
which express the convolution of the j-th bath spectral response
function GjðνÞ that has spectral width � ΓB � 1=τB, with the sinc
function, imposed by the time-energy uncertainty relation for
finite times (see Methods “Non-Markovian dynamics of a driven
two-level system in a dissipative bath”).

Our main contention is that overlap between the sinc function
and GjðνÞ at t � τC ≲ τB may lead to the anti-Zeno effect, i.e., to
remarkable enhancement in the convolution I jðω; tÞ, and,
correspondingly, in the heat currents and power. One can stay in
this regime of enhanced performance over many cycles, by running
the QHM in the following two-stroke non-Markovian cycles:

i. Stroke 1: we run the QHM by keeping the WF (system) and
the baths coupled over n modulation periods, from time
t ¼ 0 to t ¼ nτS ¼ τC ≲ τB (n � 1, τS � τB). The n
modulation periods of the WF are equivalent to n cycles
of continuous heat machines studied earlier, which have
been shown to exploit spectral separation of the hot and
cold baths for the extraction of work40,46, or refrigera-
tion19,47, in the Markovian regime (see Eq. (8)). By contrast,
in the non-Markovian domain a modulation period is not a
cycle, since the time-dependent heat currents and the WF
state are not necessarily reset to their initial values at the
beginning of each modulation period (see below).

ii. Stroke 2: In order to reset the WF state and the heat
currents to their initial (t ¼ 0) values in the non-Markovian
regime, we have to add another stroke: At t ¼ nτS ¼ τC, we
decouple the WF from the hot and cold baths. One needs to
keep the WF and the thermal baths uncoupled (non-
interacting) for a time-interval t ≳ τB, so as to eliminate all
the transient memory effects38.

After this decoupling period, we recouple the WF to the hot
and cold thermal baths and continue to drive the WF with the
periodically modulated Hamiltonian Eq. (1). Thus, the set-up is
initialized after time τC þ t, provided we choose n to be such that
ρSðτC þ tÞ ¼ ρSð0Þ, so as to close the steady-state cycle after n
modulation periods, with the WF returning to its state at start of
the cycle (see Fig. 2 and section “A minimal quantum thermal
machine beyond Markovianity”). The QHM may then run
indefinitely in the non-Markovian cyclic regime.

By contrast, in the limit of long WF-baths coupling duration
τC ¼ nτS � τB, the sinc functions take the form of delta-
functions, and therefore, as expected, the integral Eq. (4) reduces
to the standard form obtained in the Markovian regime, given by

I jðω; tÞ ¼ πGj ωð Þ > 0: ð5Þ

A minimal quantum thermal machine beyond Markovianity.
Here, we consider as the QHM a two-level system (TLS) WF with
states 0j i and 1j i, interacting with a hot and a cold thermal bath,
described by the Hamiltonian

ĤðtÞ ¼ ĤSðtÞ þ σ̂x � B̂c þ B̂h

� 	þ ĤB: ð6Þ

The Pauli matrices σ̂ j (j ¼ x; y; z) act on the TLS, the operator B̂c

(B̂h) acts on the cold (hot) bath, and ĤB denotes the bath
Hamiltonian. The resonance frequency ωðtÞ of the TLS is

Fig. 2 Time-evolution. Time-evolution of the 1j i-state probability p1ðtÞ of a
two-level system working fluid (WF). The WF is first connected to the hot
and cold baths, whose quasi-Lorentzian spectral functions are given by Eq.
(54), at a negative time �tinðtin � τthÞ, under the initial condition
p1ðt ¼ �tinÞ ¼ 0:6, and reaches the steady-state value p1;ss at tþ tin � τth.
The WF is decoupled from the hot and cold thermal baths at a time �t ≲�
τB < 0 after reaching the steady-state, and then recoupled again to the two
baths at time t ¼ 0, such that the WF is non-interacting with the hot and
cold thermal baths for the time-interval �t 	 t < 0, shown by the red
break-line. The quantum heat machine is operated in the anti-Zeno
dynamics (AZD) regime for t 
 0, wherein it is decoupled from and
recoupled to the thermal baths after every AZD cycle, for coupling time
duration τC ¼ nτS. The probability p1 remains unchanged at the steady-
state value, even after multiple AZD cycles. Inset: Same as the main plot,
zoomed in for three consecutive AZD cycles. The WF is non-interacting
with the thermal baths for time intervals t ≳ τB between two consecutive
AZD cycles, shown by the red break lines. Here (see Eqs. (7)–(11))
λ ¼ 0:2;ω0 ¼ 20;ΔS ¼ 10; n ¼ 10; βh ¼ 0:0005; βc ¼ 0:005, and we
consider quasi-Lorentzian bath spectral functions Eq. (54) with
γ0 ¼ 1; ΓB ¼ 0:2; δh ¼ δc ¼ 1; α ¼ 1.
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sinusoidally modulated by the periodic-control Hamiltonian

ĤSðtÞ ¼
1
2
ωðtÞσ̂z; σz 1j i ¼ 1j i; σz 0j i ¼ � 0j i

ωðtÞ ¼ ω0 þ λΔS sin ΔStð Þ;
ð7Þ

where the relative modulation amplitude is small: 0 < λ � 1. The
periodic modulation Eq. (7) gives rise to Floquet sidebands
(denoted by the index q ¼ 0; ± 1; ± 2; ¼ ) with frequencies ωq ¼
ω0 þ qΔSð Þ and weights Pq, which diminish rapidly with
increasing jqj for small λ (see Methods “Non-Markovian dynamics
of a driven two-level system in a dissipative bath”)29,40,44.

A crucial condition of our treatment is the choice of spectral
separation of the hot and cold baths, such that the positive
sidebands (q > 0) only couple to the hot bath and the negative
sidebands (with q < 0) sidebands only couple to the cold bath.
This requirement is satisfied, for example, by the following bath
spectral functions:

Gh ωð Þ ¼ 0 for 0 < ω 	 ω0

GcðωÞ ¼ 0 for ω 
 ω0;
ð8Þ

which ensures that for small λ, only the q ¼ 1 harmonic
exchanges energy with the hot bath at frequencies
±ω1 ¼ ± ω0 þ ΔSð Þ, while the q ¼ �1 harmonic does the same
with the cold bath at frequencies ±ω�1 ¼ ± ω0 � ΔSð Þ. We
neglect the contribution of the higher order sidebands (jqj> 1)
for 0 < λ � 1, for which Pq ! 019,29,40,44,46. Further, we impose
the Kubo-Martin-Schwinger (KMS) detailed-balance condition

Gjð�ωÞ ¼ GjðωÞ exp �ωβj


 �
; ð9Þ

where βj ¼ 1=Tj.
For simplicity, in what follows, GhðωÞ and GcðωÞ are assumed

to be mutually symmetric around ω0, i.e., they satisfy

Ghðω0 þ νÞ ¼ αGcðω0 � νÞ ð10Þ
where α is a real-positive number and 0 	 ν <ω0 (see Methods
“Steady states in the anti-Zeno dynamics (AZD) regime”).

The WF is first coupled to the thermal baths at an initial time
�tin (tin � τth > 0). Irrespective of the value of τS, at large times
t þ tin � τth, and under the condition of weak WF-baths
coupling, one can arrive at a time-independent non-equilibrium
steady-state ρS ! ρss in the energy-diagonal form (see Methods
“Steady states in the anti-Zeno dynamics (AZD) regime”):

ρss ¼ p1;ss 1j i 1h j þ p0;ss 0j i 0h j
p1;ss
p0;ss

¼: w ¼ αe�βh ω0þΔSð Þ þ e�βc ω0�ΔSð Þ

1þ α
:

ð11Þ

One can then decouple the WF and the baths, such that they are
non-interacting for a time-interval exceeding τB so as to eliminate
all memory effects, then recouple them again at t ¼ 0, keeping
ρS ¼ ρss, and run the QHM in a cycle (as described in the Section
“From Markovian to non-Markovian dynamics”).

In general, owing to the finite widths (� 1=τC) of Ih;cðωq; tÞ in
the frequency domain for short coupling times (τC ≲ τB), the WF
would be driven away from ρss, as follows from Eq. (4), causing
ρSðtÞ to evolve with time within the time-interval 0 < t 	 τC.
However, in order to generate a cyclic QHM operating in the
steady-state, we focus on cycles consisting of n modulation
periods that satisfy

τ�1
C � Tc;h; τ�1

C < ω0 � ΔS; ð12Þ
so that

e
�ω0 ±ΔSþ1=τC

Tc;h � e
�ω0 ±ΔS

Tc;h : ð13Þ

The above conditions Eq. (12) and (13), along with the KMS
condition Eq. (9), imply that

Ih �ðω0 þ ΔSÞ; tð Þ � e�
ω0þΔS
Th Ih ω0 þ ΔS; tð Þ

I c �ðω0 � ΔSÞ; tð Þ � e�
ω0�ΔS

Tc I c ω0 � ΔS; tð Þ:
ð14Þ

Equation (14), in turn, guarantees that Eq. (11) yields the steady-
state even at short times, and thus eliminates any time
dependence in ρS (see Fig. 2). For a QHM operating in the
steady-state,

_ρSðtÞ ¼ Lh þ Lcð Þ½ρss�
remains zero even during decoupling from, and recoupling with
the hot and cold baths. This ensures that the system remains in its
steady-state ρss throughout the cycle.

Equations (12)–(14) can be easily satisfied for experimentally
achievable parameters; e.g., ΔS � kHz, and n ¼ 10 would imply
Tc � _ΔS=2πnkB � 10�9 K. The number n ¼ 10 was chosen to
be around the minimal number n that allows for the validity of
the secular approximation q0 ¼ q in Eq. (23) and hence for a
simplification (Eq. (24)) in the master equation. This number
should be made as low as possible, since by decreasing n we
decrease the cycle duration τC and hence increase the power
boost, as explained above. Since this power boost is then
maximized without changing the efficiency, as noted above, the
performance is optimized for the chosen n.

From the First Law of thermodynamics, the QHM output
power _WðtÞ is given in terms of the hot and cold heat currents
JhðtÞ and JcðtÞ, respectively, by19

_WðtÞ ¼ �ðJhðtÞ þ JcðtÞÞ: ð15Þ
The possible operational regimes of the heat machine, i.e., its
being a heat engine or a refrigerator19,40, are determined by the
signs of the WF-baths coupling duration-averaged Jh, Jc and W.
One can calculate the steady-state efficiency η, average power

output _W and average heat currents J j (j ¼ h; c)

η ¼�
H
τC

_WðtÞdtH
τC
JhðtÞdt

;

_W ¼ 1
τC

I
τC

_WðtÞdt; J j ¼
1
τC

I
τC

JjðtÞdt
ð16Þ

as a function of the modulation speed ΔS, searching for the
extrema of the functions in Eq. (16).

The heat currents Jc and Jh, flowing out of the cold and hot
baths, respectively, are obtained consistently with the Second
Law19,40 in the form

JhðtÞ ¼
λ2

4
ðω0 þ ΔSÞIh ω0 þ ΔS; tð Þ e

�ðω0þΔSÞβh � w
wþ 1

;

JcðtÞ ¼
λ2

4
ðω0 � ΔSÞI c ω0 � ΔS; tð Þ e

�ðω0�ΔSÞβc � w
wþ 1

;

ð17Þ

where we have used P ± 1 ¼ λ2=4.
In order to study the steady-state QHM performances for

different modulation frequencies, we consider the example of
two non-overlapping spectral response functions of the two
baths displaced by δ with respect to ωq, i.e., GhðνÞ (GcðνÞ)
characterized by a quasi-Lorentzian peak of width ΓB, with the
peak at νh ¼ ω0 þ ΔS þ δ (νc ¼ ω0 � ΔS � δ) (see Methods
“Quasi-Lorentzian bath spectral functions”). Alternatively, we
also consider the example of two non-overlapping super-Ohmic
spectral response functions GhðνÞ and GcðνÞ of the two baths,
with their origins shifted from ν ¼ 0 by νh ¼ ω0 þ ΔS � δ and
νc ¼ ω0 � ΔS þ δ respectively, for 0 < δ � ΔS;ω0;ω0 � ΔS (see
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Methods “Super-Ohmic bath spectral functions”). The
dependence of νh;c on ΔS amounts to considering baths with
different spectral functions for different modulation frequen-
cies, and ensures that any enhancement in heat currents and
power under fast driving results from the broadening (rather
than the shift) of the sinc functions, which are centered
at ω0 ±ΔS.

We plot quasi-Lorentzian bath spectral functions and the
sinc functions in Fig. 3a, b, and the corresponding time
averaged heat currents and power (see Eq. (17)) for the heat
engine regime in Fig. 3c. We do the same for super-Ohmic bath
spectral functions in Fig. 4a–c. The corresponding heat currents
and powers for the refrigerator regimes are shown in Fig. 5a, b.
The Markovian approximation: sincðxÞ / δðxÞ in Eq. (4)
reproduces the correct heat currents and power only in the
limit of slow modulation (τC � τB). By contrast, the Markovian
approximation reproduces the exact efficiency for both slow
and fast-modulation rates (see Fig. 6a). Thus, although

Fig. 4 Quantum advantage with super-Ohmic spectral functions. Overlap
of super-Ohmic spectral functions GhðνÞ (red filled curve) and GcðνÞ (blue
filled curve) with cutoff frequency ν (see Eq. (55)), with the modulation
response functions sinc ν � ω0 � Δð Þt½ � (black solid curve) and
sinc ν � ω0 þ Δð Þt½ � (cyan solid curve) for a fast modulation, ΔS ¼ 12ν, and
b slow modulation ΔS ¼ 2ν at t ¼ 10τS. Fast (slow) modulation results in
broad (narrow) sinc functions, and thus enhanced (reduced) overlap with
the spectral functions. c Power _W (black lines) and heat currents Jh (red
lines) and Jc (blue lines) averaged over n ¼ 10 modulation periods (solid
lines) as compared to the counterparts under Markovian approximation for
long cycles, i.e., n ! 1 (dashed lines), versus the modulation frequency
ΔS. A significant quantum advantage is obtained for τC ≲ τB, when
broadening of the sinc functions yields an output power boost
(shown by dotted double-arrowed lines) of up to a factor greater than
7, in the heat engine regime. The green dotted line corresponds to zero
power and currents. Here s ¼ 2; ν ¼ 1; δ ¼ 0:1; ϵ ¼ 0:1; α ¼ 1;ω0 ¼
20; γ0 ¼ 1; βh ¼ 0:0005; βc ¼ 0:005.

Fig. 3 Quantum advantage with quasi-Lorentzian spectral functions. The
quasi-Lorentzian spectral functions of the hot bath GhðνÞ (red filled curve)
and the cold bath GcðνÞ (blue filled curve) (see Eq. (54)), and the sinc
functions sinc ν � ω0 � ΔSð Þt½ � (black solid curve) and sinc ν � ω0 þ ΔSð Þt½ �
(cyan solid curve) for a fast modulation ΔS ¼ 60ΓB and b slow modulation
ΔS ¼ 10ΓB, at t ¼ 10τS. Fast (slow) modulation results in broadening
(narrowing) of the sinc functions, thus leading to enhanced (reduced)
overlap with the spectral functions. c Power _W (black lines) and heat
currents Jh (red lines) and Jc (blue lines) averaged over n ¼ 10 modulation
periods (solid lines) and the same obtained under the Markovian
approximation for long cycles, i.e., large number of modulation periods
(n ! 1) (dashed lines), versus the modulation frequency ΔS. Anti-Zeno
dynamics for τC ≲ τB results in output power boost (shown by dotted
double-arrowed lines) by up to more than a factor of 2, signifying
quantum advantage in the heat-engine regime. The green dotted line
corresponds to zero power and currents. Here λ ¼ 0:2;ω0 ¼ 20; γ0 ¼ 1;
ΓB ¼ 0:2;N ¼ 1; δ ¼ 3; ϵ ¼ 0:01; α ¼ 1; βh ¼ 0:0005; βc ¼ 0:005.
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the efficiency grows as τS decreases, it is still limited by the
Carnot bound.

Anti-Zeno dynamics. The performance of the QHM depends
crucially on the relative width of the spectral function and the
sinc functions. A slow modulation (τS � τB) results in sinc
functions, which are non-zero only over a narrow frequency
range, wherein GjðνÞ can be assumed to be approximately con-
stant, which leads to time-independent I jðωqÞ and Markovian
dynamics. On the other hand, fast modulation (τC ≲ τB) is
associated with broad sinc functions, for which GjðνÞ is variable
over the frequency range � τ�1

C for which the sinc functions are
non-zero (see Figs. 3a, b and 4a, b). This regime is a consequence
of the time-energy uncertainty relation of quantum mechanics,
and is associated with the anti-Zeno effect30,31. This effect results
in dynamically enhanced system-bath energy exchange, which we
dub anti-Zeno dynamics (AZD). Remarkably, in a QHM,
appropriate choices of Ih;cðωq; tÞ may yield a power and heat
currents boost whenever the sinc functions have sufficient overlap
with Gh;cðνÞ (see Figs. 3c and 4c).

Importantly, we find that spectral functions peaked at
frequencies sufficiently detuned from ω0 ±ΔS (i.e., δ > ΓB) may
increase the overlap with the sinc functions appreciably under fast

modulation in the anti-Zeno regime, for τ�1
C ; δ ≳ ΓB, thus

resulting in substantial output power boost. This regime indicates
that finite spectral width of the sinc functions may endow a HE
with significant quantum advantage, arising from the time-energy
uncertainty relation, which is absent in the classical regime, be it
Markovian or non-Markovian. In the numerical examples shown
here, the quantum advantage in the HEs powered by baths with
quasi-Lorentzian (super-Ohmic) spectral functions can increase
the power by a factor larger than two (seven) (see Figs. 3c and 4c),
for the same efficiency (see Fig. 6a and Methods “Efficiency and
coefficient of performance”).

Quantum refrigeration. AZD can lead to quantum advantage in
the refrigerator regime as well, for modulation rates beyond the
quantum speed limit42,48 (see Supplementary Note 1), by
enhancing the heat current Jc, thus resulting in faster cooling of
the cold bath. As for HE, numerical analysis shows that quasi-
Lorentzian, as well as super-Ohmic bath spectral functions can
lead to significant quantum advantage in the AZD regime (see
Fig. 5). On the other hand, as for the efficiency in case of the HE,

Fig. 6 Efficiency and coefficient of performance. a Efficiency η for the heat
engine in the anti-Zeno dynamics regime (green solid line), and the same in
the long coupling time limit τC ! 1 (black dashed line), versus the
modulation frequency ΔS, for βh ¼ 0:0005 and βc ¼ 0:005. The efficiency
approaches the Carnot limit (blue dotted line) ηC ¼ 1� βh=βc at Δ ¼ Δqsl.
b Coefficient of performance for the refrigerator in the anti-Zeno dynamics
regime (green solid line), and the same in the long time t ! 1 limit (black
dashed line), for βh ¼ 0:001 and βc ¼ 0:002. Here λ ¼ 0:2;ω0 ¼ 20, and
we consider thermal machines coupled to thermal baths with quasi-
Lorentzian spectral functions with N ¼ 1; γ0 ¼ 1; δ ¼ 3; ϵ ¼ 0:01; α ¼
1; ΓB ¼ 0:2 (see Eq. (54)).

Fig. 5 Quantum-enhanced refrigeration. Power _W (black lines) and heat
currents Jh (red lines) and Jc (blue lines) averaged over n ¼ 10 modulation
periods (solid lines) as compared to the counterparts under Markovian
approximation for long cycles, i.e., n ! 1 (dashed lines), versus the
modulation frequency ΔS, for a quasi-Lorentzian spectral functions with
N ¼ 1; δ ¼ 3; ϵ ¼ 0:01; α ¼ 1; ΓB ¼ 0:2 (see Eq. (54)) and b super-Ohmic
spectral functions with s ¼ 2; ν ¼ 1; δ ¼ 0:1; ϵ ¼ 0:1; α ¼ 1 (see Eq. (55)).
The enhanced overlap resulting from fast modulation (large ΔS) enhances
the heat currents Jc to up to a factor larger than 2 for a and larger than 9
for b in the refrigerator regime (shown by dotted double-arrowed lines),
signifying quantum advantage. The green dotted line corresponds to
zero power and currents. Here λ ¼ 0:2;ω0 ¼ 20; γ0 ¼ 1; βh ¼ 0:001;
βc ¼ 0:002.
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the coefficient of performance

COP ¼ � Jc
_W

ð18Þ

is not significantly affected by the broadening of the sinc function,
and on average remains identical to that obtained under slow
modulation in the Markovian regime (see Fig. 6b and Methods
“Efficiency and coefficient of performance”).

Discussion
We have explored the hitherto uncharted domain of quantum
heat engines (QHEs) and refrigerator (QRs) based on quantum
working fluids (WFs) intermittently coupled and decoupled
from heat baths operating on non-Markovian time-scales. We
have shown that for driving (control) faster than the correlation
(memory) time of the bath, one may achieve dramatic output
power boost in the anti-Zeno dynamics (AZD) regime.

Let us revisit our findings, using as a benchmark the Marko-
vian regime under periodic driving: In the latter regime, detailed-
balance of transition rates between the WF levels, as well as the
periodic driving (modulation) rate, determine, according to the
First and Second Laws of thermodynamics, the heat currents
between the (hot and cold) baths, and thereby the power pro-
duced or consumed. In our present treatment, the Markovian
regime is recovered under slow modulation, such that the WF-
baths coupling duration τC exceeds the bath correlation-time τB.
Then, the Markovian approximation is adequate for studying the
operation of the QHE or the QR. By contrast, under fast mod-
ulations, such that τC ¼ nτS ≲ τB, the working fluid interacts
with the baths over a broad frequency range of the order of
� τ�1

C , according to the time-energy uncertainty relation in
quantum mechanics. The frequency-width over which system-
bath energy exchange takes place can lead to anti-Zeno dynamics
(AZD). The resultant quantum advantage is then especially
pronounced for bath spectral functions that are appreciably
shifted by δ > ΓB � τ�1

B , from the centers of the sinc functions
that govern the system-bath energy exchange rates.

We have explicitly restricted the results to mutually symmetric
bath spectral functions (e.g., the experimentally common Lor-
entzian or Gaussian spectra), in order to ensure time-independent
steady-states of the WF. Yet this requirement is not essential,
since the WF steady-state may be time-dependent as long as it is
periodic so as to allow for cyclic operation. The AZD28–35 can
arise for any bath spectra of finite width � 1=τB, as long as
nτS ≲ τB. One can therefore operate a thermal machine provided
stroke 1 of the cycle is in the AZD regime and achieve a quantum
advantage without additional restrictions on the bath spectral
functions (see Methods “Thermal machines with arbitrary
(asymmetric) spectral functions”).

The QHM discussed here is driven by external modulation. As
previously shown both theoretically28–32,35 and experimen-
tally34,37, periodic perturbations of the TLS state can increase its
relaxation rate in the non-Markovian anti-Zeno regime. The
reason for the power boost is that at the non-Markovian stage of
the evolution, which occurs on short time-scales, the sinc factors
in the convolutions with GðωÞ, as in Eq. (32), are sufficiently
broad so as to modify the convolutions and hence the relaxation
rates in Eq. (34) in comparison with the Markovian case, where
these sinc functions are spectrally narrow enough to be
approximated by delta-functions. Under the conditions chosen in
the paper, this modification leads to an increase in the TLS
relaxation rates and hence to a power boost. This boost is of
quantum nature, since the broadening of the sinc factors is due to
the quantum time-energy uncertainty relation that may lead to
the violation of energy conservation at short times. The quantum
mechanical time-energy uncertainty relation employed here

reflects the fact that the Scrödinger equation for a two-level
system coupled to a bath renders the energy transfer probability
from the two-level system to the bath and back oscillatory in time.
Such oscillation leads at short times (comparable to the required
cycle period) to sinc-like deviation from delta-function energy
conservation. Classical description of analogous processes, even
beyond the Markovian approximation, does not involve discrete
energy levels and hence no oscillations of the system-bath transfer
rate that deviates from energy conservation. Thus, the effects
discussed here are inherently quantum mechanical.

The non-Markovian effect in the present context is quantified
by the spectral widths of the sinc functions compared to the bath-
response GðωÞ spectral width 1=τB. If the cycle duration is kept
fixed, then the non-Markovian effect scales with the spectral
width of GðωÞ. Hence, super-Ohmic bath spectra with their
salient cutoff provide realistic examples of the non-Markovian
effects described here. Such bath spectra should be contrasted
with the flatter and broader Ohmic spectra. Yet, non-Markovian
dynamics does not necessarily imply a quantum advantage, as
discussed in Supplementary Note 2.

The predicted power boost relies on transient dynamics: the
heat fluxes change with time within t ¼ τC in the non-Markovian
AZD regime, even when the WF state hardly changes during that
time-interval. Yet it is essential that we incorporate this transient
dynamics within steady-state cycles by decoupling the WF from
the baths, allowing the bath-correlations to vanish within τB and
then recoupling the WF again to the baths when they have all
resumed their initial states. These cycles can be repeated without
restriction, thereby allowing us to operate the QHM with
quantum-enhanced performance even for long times, despite the
reliance on transient dynamics within the stroke 1 of each cycle.

The quantum advantage of AZD, at zero energetic cost (see
Supplementary Note 3), manifests itself in the form of higher
output power, for the same efficiency, in the QHE regime
(ΔS < Δqsl), as compared to that obtained under Markovian
dynamics in the limit of large τC, all other parameters remaining
the same. Alternatively, in the QR regime (ΔS > Δqsl), AZD may
lead to quantum advantage over Markovian dynamics in the form
of higher heat current Jc, or, equivalently, higher cooling rate of
the cold bath, for the same coefficient of performance. The latter
effect leads to the enticing possibility of quantum-enhanced
speed-up of the cooling rate of systems as we approach the
absolute zero, and raises questions regarding the validity of the
Third Law of Thermodynamics in the quantum non-Markovian
regime, if we expect the vanishing of the cooling rate at zero
temperature as a manifestation of the Third Law47,49,50.

The QHE power boost in the anti-Zeno regime results from a
corresponding increase in the rates of heat-exchange and entropy
production, arising from the TLS relaxation by both baths. This is
the reason that the efficiency, i.e., the ratio of the work output to
the heat input, is unchanged, i.e., is the same as in the standard
Markovian regime. Yet, all parameters being equal, the QHM rate
of operation (as measured by the power output) speeds up in
the anti-Zeno regime, which constitutes a practical quantum
advantage.

One can extend the analysis discussed here to Otto cycles42,51:
Fast periodic modulation during the non-unitary strokes of an
Otto cycle can speed-up the thermalization through AZD, thereby
allowing quantum-enhanced performance. Interestingly, fast
modulation in the Otto cycle can yield enhanced power or
refrigeration rate, even in the Markovian regime52.

Finally, in the regime of ultrafast modulation with τ�1
C � ΓB; δ,

quantum Zeno dynamics sets in, leading to vanishing heat cur-
rents and power, thus implying that such a regime is incompatible
with thermal machine operation (see Fig. 7, Supplementary
Note 2 and Supplementary Fig. 1). While Zeno dynamics has
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commonly been associated with measurements30,53–55, both the
Zeno and the anti-Zeno effects occur under various frequent
perturbations, such as phase flips and nonselective (unread)
measurements. Generally speaking, to observe the discussed
effects, it is sufficient to repeatedly perform cycles of coupling the
system (here-the WF) with another system (here-a bath), then
destroying or sharply changing the coherence between the two.
This sharp change can be effected in different ways, e.g., by a
measurement of the system (which can be read-out or not) or, as
in our case, by abruptly decoupling the WF and the baths, which
gives rise to Zeno or anti-Zeno dynamics28–33. In contrast to
previous studies, here the Zeno or anti-Zeno dynamics of the WF
arises by an external periodic field, and therefore not around the
frequency ω0 of the unperturbed system, as in previous cases, but
at multiple sideband frequencies ω0 þ qΔS.

The Markovian approximation suffices to find the correct
efficiency (for a QHE) or the coefficient of performance (for a
QR), even in the non-Markovian regimes, for mutually symmetric
bath spectral functions (see Eq. (10)). This guarantees that the
efficiency always remains below the Carnot bound, even under
fast modulations (see Fig. 6).

Our scenario is conceptually different from that in which work
is produced by a QHE on an external quantum system and
quantum effects arise from the interaction between the quantum
WF and the external quantum system56. Such quantum effects are
absent in our case, where work input in the QHE is provided by a
classical field.

Experimental scenarios where the predicted AZD quantum
advantage may be tested are diverse. Since non-Markovianity in
general, and AZD in particular, require non-flat bath spectral
functions, suitable candidates for the hot and cold baths are
microwave cavities and waveguides in which dielectric gratings
are embedded, with distinct cutoff and bandgap frequencies19,57

and the WF is a qubit whose level distance is modulated by fields.
The required qubit modulations are then compatible with MHz
periodic driving of superconducting transmon qubits58,59 or NV-
center qubits in diamonds60. One can effectively decouple the WF
from the thermal baths in stroke 2 by abruptly changing the
resonance frequency of the two-level WF from ω0 to ~ω, thus
rendering the WF strongly off-resonant with the thermal baths,
so that Gh ~ωð Þ � Gc ~ωð Þ ¼ 0), thereby precluding any energy flow
between the baths and the WF. We can recouple the WF with the
thermal baths by reverting this frequency back to ω0, and then
modulating it periodically, so as to generate either Markovian or
non-Markovian anti-Zeno dynamics, as discussed above34.

The AZD regime was experimentally observed in nuclear
magnetic resonance= set-ups34. Micro/nano-scale heat machines
have been experimentally realized, for a trapped calcium ion as
the WF61; nano-mechanical oscillators WF powered by squeezed
thermal bath12; atomic heat machines assisted by quantum
coherence62; or a nuclear spin 1=2 as the WF in a quantum Otto
cycle63.

The novel effects and performance trends of QHE and QR in
the non-Markovian time domain, particularly the anti-Zeno
induced power boost, open new, dynamically controlled pathways
in the quest for genuine quantum features in heat machines,
which has been a major motivation of quantum thermodynamics
in recent years10–13,21,25,41,64–68.

Methods
Floquet analysis of the non-Markovian master equation. Let us consider the
differential non-Markovian master equation for the system density operator ρSðtÞ
in the interaction picture29:

_ρSðtÞ ¼ �
Z t

0
dsTrB ŜðtÞ � B̂cðtÞ

� þ ŜðtÞ � B̂hðtÞ; ŜðsÞ � B̂cðsÞ
�

þ ŜðsÞ � B̂hðsÞ; ρSðtÞ � ρB
��
:

ð19Þ

Here ρB ¼ ρBc � ρBh , where ρBj is the density operator of bath j. In the derivation of

Eq. (19) we have assumed that Tr½B̂j; ρBj� ¼ 0. We consider commuting bath

operators B̂cðtÞ; B̂hðt0Þ
� � ¼ 0, such that the two baths act additively in Eq. (19).

Below we focus on only one of the baths and omit the labels c=h for simplicity. We
then have

Ŝ
yðtÞ ¼ ŜðtÞ

B̂
yðtÞ ¼ B̂ðtÞ

Tr B̂ðtÞB̂ðsÞρB
� � ¼ hB̂ðtÞB̂ðsÞi � Φðt � sÞ

ŜðtÞ ¼
X
q;ω

Sq;ωe
�iðωþqΔSÞt :

ð20Þ

where q are integers and ω are transition frequencies of the system S.
One can use Eq. (20) to write the first term on the r.h.s. of Eq. (19) as

T1 ¼�
X

ω;ω0 ;q;q0
ei½ðω

0�ωÞþðq0�qÞΔS �t Ŝ
y
q0 ;ω0 Ŝq;ωρSðtÞ

´
Z t

0
½Φðt � sÞeiðωþqΔSÞðt�sÞ�ds:

ð21Þ

In the limit of times of interest, i.e., times larger than the period of driving τS
and the effective periods of the system, t � τS; ðωþ qΔSÞ�1, the terms with the
fast oscillating factor before the integral in Eq. (21) become small and can be
neglected, i.e., the secular approximation becomes applicable, such that

ðq0 � qÞΔS ¼ ω� ω0; ð22Þ
which generally holds only for

ω0 ¼ ω; q0 ¼ q; ð23Þ
as long as q0 � qð ÞΔS is not close to ω0 � ωð Þ for any q; q0;ω;ω0 . Condition (23)
gives us

T1 � �
X
ω;q

Ŝ
y
q;ω Ŝq;ωρSðtÞ

Z t

0
½Φðt � sÞeiðωþqΔSÞðt�sÞ�ds

¼ �
X
ω;q

Ŝ
y
q;ω Ŝq;ωρSðtÞ

Z t

0
½ΦðμÞeiðωþqΔSÞμ�dμ

¼ �
X
ω;q

Ŝ
y
q;ω Ŝq;ωρSðtÞ

Z 1

�1
GðνÞ

Z t

0
e�i ν� ωþqΔSð Þ½ �μdμdν;

ð24Þ

where μ ¼ t � s, and

ΦðμÞ ¼
Z 1

�1
dνGðνÞe�iνμ: ð25Þ

In the limit of slow modulation, such that t ¼ nτS � τB, one can perform the
Markov approximation, thereby extending the upper limit of the integral in time in
Eq. (24) to t ! 1, which finally results in the time-independent Markovian form1

T1 � �π
X
ω;q
0

Ŝ
y
q;ωŜq;ωρSðtÞGðω; qÞ: ð26Þ

On the other hand, in the limit of t � nτS ≲ τB, the Markovian approximation
becomes invalid, and one gets

T1 ��
X
ω;q

Ŝ
y
q;ωŜq;ωρSðtÞ

Z 1

�1
dνGðνÞ

´
sin ν � ω0 þ qΔSð Þ½ �tð Þ

ν � ω0 þ qΔð Þ þ i
cos ν � ω0 þ qΔSð Þ½ �tð Þ � 1

ν � ω0 þ qΔSð Þ
� �� �

:

ð27Þ

Progressing similarly as above, one can arrive at similar expressions for other
terms in Eq. (19) as well.

Fig. 7 Dynamical regimes. Schematic display of the different regimes of
operation, as a function of the working fluid (system)–baths coupling
duration τC.
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Non-Markovian dynamics of a driven two-level system in a dissipative bath.
The non-Markovian master equation followed by the TLS WF subjected to the
Hamiltonian Eq. (6) is (see Eq. (19))

L ρsðtÞ
� � ¼ A# þ A#


 �
σþρsðtÞσ� � A#σ

�σþρsðtÞ � A#ρsðtÞσ�σþ
h i
þ A" þ A"


 �
σ�ρsðtÞσþ � A"σ

þσ�ρsðtÞ � A"ρsðtÞσþσ�
h i

þMσ�ρsðtÞσ� þMσþρsðtÞσþ;

ð28Þ

where we have removed the h; c indices for simplicity, and considered the dynamics
due to a single bath. Here

A# ¼
X
q;q02Z

ξðq0ÞξðqÞei q�q0ð ÞΔS t
Z 1

�1
GðνÞ

Z t

0
e�i ν� ω0þqΔSð Þ½ �τdνdτ;

A" ¼
X
q;q02Z

ξðq0ÞξðqÞe�i q�q0ð ÞΔS t
Z 1

�1
GðνÞ

Z t

0
e�i νþ ω0þqΔSð Þ½ �τdνdτ;

M ¼
X
q;q02Z

ξðqÞξðq0Þe�i½2ω0þðqþq0 ÞΔS �t
Z 1

�1
GðνÞ

´
Z t

0
ei½ν� ω0þqΔSð Þ�τdτ þ

Z t

0
e�i½νþ ω0þqΔSð Þ�τdτ

� �
dν;

σxðtÞ ¼
X
q2Z

ξðqÞe�i ω0þqΔSð Þtσ� þ ξðqÞei ω0þqΔSð Þtσþ

 �

;

ξðqÞ ¼ 1
τS

Z τS

0
ei
R t

0
λΔS sin ΔS t

0ð Þdt0 eiqΔS tdt

ð29Þ

A# , A" , and M are the complex conjugates of A# , A" , and M, respectively. The
terms corresponding to σ ± ρSðtÞσ ± in Eq. (28) vanish for diagonal steady-state
ρSðtÞ ! ρss (see Eq. (11)). Here, we focus on times longer than several modulation
periods, i.e., t ¼ nτS � τS, when the fast oscillatory terms corresponding to q ≠ q0
vanish as well, such that

A# �
X
q

Pq

Z 1

�1
GðνÞ

Z t

0
e�i ν� ω0þqΔSð Þ½ �τdνdτ;

A" �
X
q

Pq

Z 1

�1
GðνÞ

Z t

0
e�i νþ ω0þqΔSð Þ½ �τdνdτ;

Pq ¼ jξðqÞj2:

ð30Þ

We note thatZ t

0
e ± i ν ± ω0þqΔSð Þ½ �τdτ ¼ sin ν ± ω0 þ qΔSð Þ½ �tð Þ

ν ± ω0 þ qΔSð Þ � i
cos ν ± ω0 þ qΔSð Þ½ �tð Þ � 1

ν ± ω0 þ qΔSð Þ
� �

:

ð31Þ
The imaginary part in Eq. (31) acts on terms of the form
iIm½~I jð±ωq; tÞ�ðσ�σ ± ρSðtÞ � ρSðtÞσ�σ ± Þ, which vanish at large times when the
off-diagonal elements ρSðtÞ approach zero for any initial state. On the other hand,
the real part of Eq. (31) gives rise to terms of the form

I j ±ωq; t

 �

:¼ Re ~I j ±ωq; t

 �h i

¼
Z 1

�1
GjðνÞ

sin ν � ω0 þ qΔSð Þ½ �tð Þ
ν � ω0 þ qΔSð Þ dν;

ð32Þ

In the limit of slow modulation such that t � nτS � τB (n 2 Z; n � 1), the
function sin ν ± ω0 þ qΔSð Þ½ �tð Þ= ν ± ω0 þ qΔSð Þ½ � assumes a delta-function centered
at ν ¼ ± ω0 þ qΔSð Þ, thus leading to the familiar Markovian form of master
equation, with

I j ±ωq; t

 �

¼ πGj ± ω0 þ qΔSð Þ½ � 8 t: ð33Þ
On the other hand, in the anti-Zeno regime of fast modulation: t � nτS ≲ τB,
I jð±ωq; tÞ is not given by Eq. (33), and one needs to consider the full form Eq.
(32).

In particular, for a diagonal state ρSðtÞ ¼ p1ðtÞ 1j i 1h j þ p1ðtÞ 0j i 0h j, the
dynamics Eq. (28)–Eq. (32) leads us to the rate equations

_p1ðtÞ ¼ � _p0ðtÞ ¼ R0ðtÞp0ðtÞ � R1ðtÞp1ðtÞ

R0ðtÞ ¼
λ2

4
Ihð�ω0 � ΔS; tÞ þ I cð�ω0 þ ΔS; tÞ½ �

R1ðtÞ ¼
λ2

4
Ihðω0 þ ΔS; tÞ þ I cðω0 � ΔS; tÞ½ �

ð34Þ

In the Zeno regime of ultrafast modulation, obtained in the limit of
t � nτS � τB, the integral Iðωq; tÞ vanishes (see Supplementary Fig. 1), thus
leading to the Zeno effect of no dynamics.

Equations (19), (24), and (28) are of the type known as the differential master
equation (DME). An alternative approach is based on the (less convenient) integro-
differential master equation (IME). The two equations are mathematically different
and hence require different procedures for reducing them to the Markovian master

equation (MME). However, the IME and the DME have the same validity
conditions, i.e., generally similar accuracy. The IME and the DME follow from the
exact expansions in the totally ordered and partially ordered cumulants,
respectively, upon neglecting terms of order higher than 2 in the system-bath
coupling, which determines their accuracy1,35,69.

The rates (Eq. (34)) can be negative when the modulation (or measurement)
period is short enough to break the rotating wave approximation (RWA). Yet the
probabilities p0ðtÞ, p1ðtÞ are never negative, as detailed in refs. 31,35 and concisely
proven in the next section.

Non-Markovian master equation with non-negative probabilities. The non-
Markovian master equations (MEs) for an arbitrarily driven (controlled) two-level
system (TLS) presented in Eq. (34) have been derived and discussed in refs. 28–32

and experimentally verified in refs. 34,37. These MEs involve the time-dependent
relaxation rates R0ðtÞ and R1ðtÞ which can take negative values, since the quantities
I j , (32), are convolutions of a positive spectral response function GjðνÞ with a sinc
function, which takes positive or negative values. As a result, the solutions of the
MEs for the populations (probabilities) p0ðtÞ and p1ðtÞ of the TLS levels are not
guaranteed to be non-negative, i.e., to satisfy

0 	 pkðtÞ 	 1 ðk ¼ 0; 1Þ: ð35Þ
Below we show that the inequalities (Eq. (35)) hold, at least, up to second order in
the system-bath coupling strength. This means that for a weak coupling, violations
of (Eq.(35)) (if any) are negligibly small.

First, we note that at sufficiently long times, t � τB, the MEs become
Markovian and coincide with the Lindblad equation. In this case, the rates are
constant and positive, R0;R1 
 0, as follows from Eq. (33). The inequalities Eq.
(35) are now known to hold. Generally, the MEs are valid if the couplings of the
TLS with the baths are sufficiently weak, so that

R0τB � 1; R1τB � 1: ð36Þ
Consider now the short times, t ≲ τB, where the non-Markovian effects are

important. Since p0ðtÞ þ p1ðtÞ ¼ 1, we rewrite

p0ðtÞ ¼
1� wðtÞ

2
; p1ðtÞ ¼

1þ wðtÞ
2

; ð37Þ

where wðtÞ ¼ p1ðtÞ � p0ðtÞ is the TLS population inversion. In terms of wðtÞ,
inequalities Eq. (35) are equivalent to

�1 	 wðtÞ 	 1; ð38Þ
which we now prove.

The condition Eq. (36) implies that at times ≲ τB, the relaxation can be
approximated to first order in the relaxation rates. In this approximation, Eq. (34)
yields

wðtÞ ¼ wð0Þ½1� JþðtÞ� þ J�ðtÞ; ð39Þ
where

J ± ðtÞ ¼ J0ðtÞ± J1ðtÞ ð40Þ
and

JkðtÞ ¼
Z t

0
dτRkðτÞ ðk ¼ 0; 1Þ: ð41Þ

From (32) and (34), one can check that

J0ðtÞ; J1ðtÞ 
 0: ð42Þ
From (39) we obtain

jwðtÞj 	 jwð0Þj½1� JþðtÞ� þ jJ�ðtÞj
	 1� JþðtÞ þ JþðtÞ ¼ 1;

ð43Þ

yielding Eq. (38). The second inequality in Eq. (43) follows from the assumption
jwð0Þj 	 1 and the relation jJ�ðtÞj 	 JþðtÞ, resulting from Eqs. (40) and (42).

Steady states in the anti-Zeno dynamics regime. Now, we study the regimes
that allow us to operate the set-up with a time-independent steady-state ρss even
inside the AZD regime. We note that for t ! 1, Ijðωq; tÞ reduces to the time-
independent form πGjðωqÞ, thus leading us to the Eq. (11). On the other hand, for
t � nτS ≲ τB, Ijðωq; tÞ includes contributions from Gjðωq þ νÞ, where

jνj ≲ 1=t ¼ 1= nτSð Þ: ð44Þ
Further, we consider ω0, Tc;Th, and ΔS < ω0 large enough, such that
1=t � ω0 ±ΔS;Tc;Th. Therefore, in this limit the KMS condition gives us

Gj � ωq þ ν

 �
 �

� e� ωqþνð Þβj Gj ωq þ ν

 �

� e�ωqβj G ωq þ ν

 �

:
ð45Þ
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This immediately leads us to

I jð�ωq; tÞ � e�ωqβjI jðωq; tÞ; ð46Þ
and consequently (see Eq. (11))

w � e�ðω0þΔSÞβhIhðω0 þ ΔS; tÞ
Ihðω0 þ ΔS; tÞ þ I cðω0 � ΔS; tÞ

þ e�ðω0�ΔSÞβcI cðω0 � ΔS; tÞ
Ihðω0 þ ΔS; tÞ þ I cðω0 � ΔS; tÞ

;

ð47Þ
where we have considered the two sidebands q ¼ 1;�1 only.

The condition

Ih ω0 þ ΔS; tð Þ � αI c ω0 � ΔS; tð Þ; ð48Þ
which holds for mutually symmetric bath spectral functions up to a multiplicative
factor Ghðω0 þ xÞ � αGcðω0 � xÞ for any real x and positive α (see Supplementary
Fig. 2), leads to the time-independent steady-state ρss with (see Eq. (11))

w � αe� ω0þΔSð Þβh þ e� ω0�ΔSð Þβc

αþ 1
: ð49Þ

Efficiency and coefficient of performance. The efficiency in the heat engine
regime is given by

η ¼
H
τC

JhðtÞ þ JcðtÞ½ �dtH
τC
JhðtÞdt

¼
ω0 þ ΔSð Þζh

H
τC
Ihðω0 þ ΔS; tÞdt þ ω0 � ΔSð Þζ c

H
τC
I cðω0 � ΔS; tÞdt

ω0 þ ΔSð Þζh
H
τC
Ihðω0 þ ΔS; tÞdt

;

while the coefficient of performance in the refrigerator regime takes the form

COP ¼
H
τC
JcðtÞdtH

τC
JhðtÞ þ JcðtÞ½ �dtðtÞ

¼
ω0 � ΔSð Þζc

H
τC
I cðω0 � ΔS; tÞdt

ω0 þ ΔSð Þζh
H
τC
Ihðω0 þ ΔS; tÞdt þ ω0 � ΔSð Þζc

H
τC
I cðω0 � ΔS; tÞdt

;

where we have defined

ζh ¼ e�ðω0þΔSÞβh � w
wþ 1

;

ζc ¼
e�ðω0�ΔSÞβc � w

wþ 1
:

ð50Þ

One can get the results of the Markovian (τC ! 1) limit by replacing I jð�ωq; tÞ
by Gj ωq


 �
.

Let us consider the integral:

Ihðω0 þ ΔS; tÞ ¼
Z 1

�1
GhðνÞ

sin ν � ω0 þ ΔSð Þ½ �tð Þ
ν � ω0 þ ΔSð Þ dν

�
Z 1

�ΔS

Ghðω0 þ ΔS þ xÞ sin xtð Þ
x

dx;
ð51Þ

where we have defined the variable x ¼ ν � ω0 þ ΔSð Þ, and taken into account that
GhðνÞ ¼ 0 for 0 < ν 	 ω0 (see Eq. (8)), and sin xtð Þ=x is small for large jxj.

Similarly, we have

I cðω0 � ΔS; tÞ ¼
Z 1

�1
GcðνÞ

sin ν � ω0 � ΔSð Þ½ �tð Þ
ν � ω0 � ΔSð Þ dν

�
Z 1

�ΔS

Gcðω0 � ΔS � yÞ sin ytð Þ
y

dy;
ð52Þ

where y ¼ ω0 � ΔS � νð Þ, and we have taken into account that GcðνÞ ¼ 0 for
ν 
 ω0 (see Eq. (8)), and sin ytð Þ=y is small for large jyj.

Clearly, for bath spectral functions related by Eq. (10), we have
Ihð�ω0 � ΔS; tÞ � αI cð�ω0 þ ΔS; tÞ, which in turn results in the efficiency and
the coefficient of performance in the non-Markovian anti-Zeno dynamics regime
being approximately equal to those in the Markovian dynamics regime (see Fig. 6).

Quasi-Lorentzian bath spectral functions. We focus on baths characterized by
the spectral functions:

Ghðν 
 0Þ ¼ 1
N

XN
r¼1

cr
αγ0Γ

2
B;rΘðν � ω0 � ϵÞ

ðω0 þ ΔS þ δr � νÞ2 þ Γ2B;r

" #
;

Gcðν 
 0Þ ¼ 1
N

XN
r¼1

cr
γ0Γ

2
B;rΘðω0 � ϵ� νÞΘðν � ϵÞ

ðω0 � ΔS � δr � νÞ2 þ Γ2B;r

" #

Gh;cð�νÞ ¼ Gh;cðνÞe�νβh;c ;

ð53Þ

where we have considered the KMS condition, Θ is the step function, N 2
Z; N > 0 denotes the number of peaks and ΓB;r ¼ 1=τB;r > 0 is the width of the

r-th peak. δr are the (real) Lamb self energy shifts, such that Gh (Gc) is peaked at
ν ¼ ω0 þ Δþ δr (ν ¼ ω0 � Δ� δr).

As seen from Eq. (53), we consider bath spectral functions with different
resonance frequencies (¼ ω0 ±ΔS ± δr) for different modulation rates ΔS. As
mentioned in the main text, this ensures that the detuning between the r-th
resonance frequency of a bath spectral function, and the maximum of the
corresponding sinc function, is always δr , and is independent of the modulate rate
ΔS. For example, this can be implemented by choosing different baths for operating
thermal machines with different modulation frequencies. Consequently, any
enhancement in heat currents and power originate from the broadening of the sinc
functions, rather than from the shift of the maxima of the sinc functions. Here
cr 
 0 is the weight of the r-th term in the sums in Eq. (53). A non-zero (but small)
ϵ > 0 ensures that GcðνÞ and GhðνÞ vanish at ν ¼ 0, thus resulting in vanishing
thermal excitations and entropy at the absolute zero temperature, as is demanded
by the third law of thermodynamics47,50. Since Gcðν ¼ ω0Þ ¼ Gcðν ¼ ω0Þ ¼ 0, the
0-th sideband (q ¼ 0) does not contribute to the dynamics. Supplementary Fig. 3
shows the quantum advantage obtained for bath spectral functions of the form Eq.
(53) with N ¼ 2 (double-peaked functions).

For the single-peaked case (N ¼ 1), the above functions Eq. (53) reduce to
quasi-Lorentzian spectral functions of the form

Ghðν 
 0Þ ¼ αγ0Γ
2
BΘðν � ω0 � ϵÞ

ω0 þ ΔS þ δ � νð Þ2 þ Γ2B
;

Gcðν 
 0Þ ¼ γ0Γ
2
BΘðω0 � ϵ� νÞΘðν � ϵÞ
ω0 � ΔS � δ � νð Þ2 þ Γ2B

;

Gh;cð�νÞ ¼ Gh;ce
�νβh;c :

ð54Þ

The condition δ ¼ 0 results in the spectral functions and the sinc function
attaining maxima at the same frequencies, viz., at ν ¼ ω0 ±ΔS.

Super-Ohmic bath spectral functions. We also consider super-Ohmic bath
spectral functions of the form

Ghðν 
 0Þ ¼ Θ ν � νhð Þαγ0
ν � νhð Þs
νs�1 e � ν�νhð Þ=ν½ �

Gcðν 
 0Þ ¼ Θ νc � νð ÞΘ ν � ϵð Þγ0
νc � νð Þs
νs�1 e � νc�νð Þ=ν½ �

Gh;cð�νÞ ¼ Gh;cðνÞe�νβh;c ;

ð55Þ

with the origin shifted from ν ¼ 0 by

νh ¼ ω0 þ ΔS � δ

νc ¼ ω0 � ΔS þ δ
ð56Þ

Here s > 1, and

0 < δ � ΔS;ω0;ω0 � ΔS ð57Þ
ensures that Gh;cðνÞ is non-zero at the maxima of the sinc functions at ω0 ±ΔS. As
before, a small ϵ > 0 guarantees that Gcðν ¼ 0Þ ¼ 0, and we consider ΔS-depen-
dent νh and νc, to ensure that any enhancement in heat currents and power are due
to the broadening of the sinc functions for fast modulations, rather than due to the
shifting of the peaks of the sinc functions.

Thermal machines with arbitrary (asymmetric) spectral functions. We con-
sider

Ghðω0 þ νÞ ¼ αGcðω0 � νÞ þ ~χðνÞ; ð58Þ
where, as before, α > 0 and ~χðνÞ is an arbitrary real function of ν. We then have

Ihðω0 þ ΔSÞ ¼ αI cðω0 � ΔSÞ þ χðtÞ;

χðtÞ ¼
Z 1

�ΔS

~χðνÞ sin νtð Þ
ν

dν:
ð59Þ

and

_χðtÞ ¼
Z 1

�ΔS

~χðνÞ cos νtð Þdν: ð60Þ

In this case, we get a time-dependent steady-state with

wðtÞ � e� ω0þΔSð Þβh αI c ω0 � ΔS; tð Þ þ χðtÞ½ �
αþ 1ð ÞI c ω0 � ΔS; tð Þ þ χðtÞ

þ e� ω0�ΔSð ÞβcI c ω0 � ΔS; tð Þ
αþ 1ð ÞI c ω0 � ΔS; tð Þ þ χðtÞ ;

ð61Þ

Therefore, the rate of change of wðtÞ with time is given by

_wðtÞ ¼ χðtÞ _I c ω0 � ΔS; tð Þ � _χðtÞI c ω0 � ΔS; tð Þ� �
e� ω0þΔð Þβh � e� ω0�Δð Þβc
� 	 � αþ 1ð Þe� ω0þΔð Þβh
� �

αþ 1ð ÞI c ω0 � ΔS; tð Þ þ χðtÞ½ �2

One can still operate the set-up as a cyclic thermal machine for a time t 	 ~t, as long
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as χðtÞ and _χðtÞ are small enough so as to ensure

_wmax � ~t�1
; ð62Þ

where _wmax is the maximum value attained by j _wðtÞj in the time-interval 0 	 t 	 ~t.

Data availability
All relevant data are available to any reader upon reasonable request.

Code availability
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