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Acceptorless cross-dehydrogenative coupling for
C(sp3)-H heteroarylation mediated by a
heterogeneous GaN/ketone photocatalyst/
photosensitizer system
Hyotaik Kang 1,2✉, Lida Tan1,2, Jing-Tan Han1,2, Chia-Yu Huang1, Hui Su1, Aleksei Kavun1 & Chao-Jun Li 1

Alkanes are naturally abundant chemical building blocks that contain plentiful C(sp3)-H

bonds. While inert, the activation of C(sp3)-H via hydrogen atom abstraction (HAT) stages

an appealing approach to generate alkyl radicals. However, prevailing shortcomings include

the excessive use of oxidants and alkanes that impede scope. We herein show the use of

gallium nitride (GaN) as a non-toxic, recyclable, heterogeneous photocatalyst to enable alkyl

C(sp3)-H in conjunction with the catalytic use of simple photosensitizer, benzophenone, to

promote the desired alkyl radical generation. The dual photocatalytic cycle enables cross-

dehydrogenative Minisci alkylation under mild and chemical oxidant-free conditions.
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W ith many sectors of industries becoming more envir-
onmentally conscious and seeking more sustainable
alternatives, there has been a propensity for greener

chemistry1,2. In response, modern synthetic chemistry develop-
ments emphasize atom- and step-economies, core principles of
green chemistry3–6. Within this domain, cross-dehydrogenative
coupling (CDC) stands out as one of the most sustainable and
efficient routes for the formation of C-C bonds by direct C-H
functionalization and formal loss of H2

7–11. The use of inert
C(sp3)-H bond is a well-established challenge that remains
desirable due to its omnipresence in nature12,13. Generally, stoi-
chiometric oxidants such as peroxide or persulfate were involved
in CDC protocols for effective alkane activation, representing a
major shortcoming of harsh reaction conditions with elevated
temperatures14–16. Of late, radical-mediated methodologies in
photo- and electrochemistry have shown considerable promise in
C-H activation under milder reaction conditions17–24. Examples
include reports by Xu et al. and Ravelli et al. replacing oxidants
with electricity in the presence of different hydrogen atom
transfer (HAT) reagents in an elegant photoelectrochemical
fashion (Fig. 1a I and II)25,26. Works by Wu et al. introduce tetra-
n-butylammonium decatundstate and cobaloxime-mediated
hydrogen evolution cross-coupling and an efficient stop-flow
microtubing reactor-assisted system where the acid plays a dual
function of activating the heterocycle and promoting the HAT
process (Fig. 1a III)27,28. Our group has also made a recent

contribution with cobalt-catalyzed Minisci-alkylation driven by
H2 evolution (Fig. 1a IV)29. Considering the pursuit of greener
synthesis with atom- and step-efficiency, developing oxidant-free
CDC-type transformation without the use of specialized dehy-
drogenative Minisci-alkylation using Rh2O3/GaN as the key
turnover catalyst and a simple ketone, benzophenone, as the
C(sp3)-H activating catalyst under mild and sustainable photo-
chemical conditions (Fig. 1b).

Of widely utilized photosensitizers, ketones are established
hydrogen atom abstractors30,31. It is affordable, readily available,
and has shown many practical photochemical transformations.
Yet, its application is largely confined to excess loading and
diminished reactivity on a catalytic scale without the presence of a
sacrificial reagent32,33. Therefore, the regeneration of ketones
without stoichiometric loading of strong oxidants would be
beneficial. After thoughtful consideration, we envisioned a pho-
toexcited semiconductor that can generate electron-hole pairs as
surface redox sites to act as a sustainable alternative to chemical
oxidants34–36. Semiconductors have had a surge of contributions
as heterogeneous photocatalysts in organic transformations with
features like quantum dots37–39. GaN is of particular interest due
to its wide band gap (3.4 eV) and the position of the gap structure
that’s accessible in the UV-Vis spectrum40. When activated, the
valence band is positioned to regenerate the spent HAT agent;
meanwhile, the conduction band could be responsible for the
support of H2 evolution41–43. Our earlier works have shown that
GaN powder can efficiently be tuned to promote surface chem-
istry, while being recyclable and non-toxic43,44. Endowed with the
presented literature findings, we propose the catalyst combination
of GaN with a ketone in a CDC reaction. To our delight,
experimental results demonstrate a hydrogen evolution-driven
Minisci-alkylation via a dual photocatalytic strategy for an
effective HAT pathway under chemical oxidant-free conditions.
The heterogeneous catalyst, Rh2O3/GaN, could be recycled mul-
tiple times, and a simple aryl ketone served as an efficient HAT
agent in catalytic loading. The resulting protocol allowed for the
formation of C-C bonds in an atom-economical and sustainable
fashion, avoiding the use of a stoichiometric amount of strong
oxidants or expensive photocatalysts.

Results and discussion
Reaction optimization. In the preliminary studies, we subjected
the dual catalytic system of commercial GaN powder (c-GaN,
30 mol%) and benzophenone (15 mol%) to 2-phenylquinoline 1
(0.1 mmol) and cyclohexane 2 (0.8 mL) under a broad wavelength
spectrum xenon lamp with 2 equivalents of trifluoroacetic acid
(TFA) under an inert atmosphere in acetonitrile (CH3CN) to
witness the yield of the desired product 3 was unsatisfyingly low
(Table 1, Entry 2). More favorable reaction efficiency was
obtained with the addition of benzene (PhH) (albeit toxic) as a
cosolvent to increase solubility, as cyclohexane and CH3CN are
immiscible (Table 1, Entry 3). Gladly, the reaction yield was
significantly improved by changing the light source to a con-
trolled wavelength of 370 or 390 nm (Table 1, Entries 4 and 5).
Our recent report demonstrated that co-catalysts on the c-GaN
surface were a simple yet effective way to increase reactivity44.

Optimization with various metal sources showed that Rh
exhibited the highest reactivity in the reaction (Table 1, Entry 6).
Reduced loading of GaN led to slight improvement for the
optimized conditions of 1 wt% Rh2O3/GaN (15 mol%), benzo-
phenone (15 mol%), 2 equivalents of TFA in CH3CN, and PhH,
the product 3 was formed in 89% yield (Table 1, Entry 1).
Differing control experiments showed that GaN, benzophenone,
light, and an inert atmosphere are all indispensable for the
reaction to proceed (Table 1, Entries 7–10). Further optimization
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efforts are shown in Supplementary Table 1 and Supplementary
Fig. 3.

Heterogeneous catalyst characterizations. To better understand
the physical properties of the modified GaN catalyst, transmission
electron microscopy was conducted. The formation of
nanoclusters of rhodium co-catalyst on the GaN surface was
observed, suggesting that the photodeposition method with
methanol as a sacrificial reductant efficiently formed nano-
particles on the surface (Fig. 2a and Supplementary Fig. 13). The
pristine and spent catalyst was investigated with X-ray diffraction
analysis to show no obvious changes to the structure as well as the
modification of GaN with Rh2O3 did not alter the surface sites of
GaN (Fig. 2b and Supplementary Figs. 9, 10). X-ray photoelectron
spectroscopy showed the presence of the c-plane of GaN in the
Ga 3d region and the Rh 3d region revealed the presence of
Rh2O3 as the Rh species with no significant difference in the
pristine and spent catalysts (Fig. 2c and Supplementary Figs. 11,
12)45,46. The X-ray diffraction and X-ray photoelectron spectro-
scopy of the spent catalyst suggested a robust material; therefore,
with the model reaction, we evaluated the recyclability of the
heterogeneous catalyst (Fig. 2d and Supplementary Data 2). After
each reaction, the heterogeneous catalyst was separated from the
solution by centrifugation and subjected to the next reaction. To
our delight, the catalyst reactivity did not significantly decrease
after five iterations (Supplementary Fig. 5). The pristine and spent
catalyst was further investigated with transmission electron
microscopy and scanning electron microscopy with no changes
observed (Supplementary Figs. 15–18). Moreover, energy-
dispersive X-ray elemental mapping images displayed the uni-
form distribution of the Rh2O3 nanoclusters along the entire GaN
surface (Supplementary Fig. 14). It is noted that, the GaN mod-
ified with Rh2O3 was more accommodating for the protocol than
c-GaN. The increased reactivity is likely due to a significant
acceleration in the charge transfer, accomplishing a more efficient
catalyst. The improvement in the charge transfer by Rh2O3 will
suppress the electron-hole recombination and allow for greater
amounts of surface reactions to occur47.

Reaction scope. With the optimized conditions in hand, we eval-
uated a range of C(sp3)-H substrates with 2-phenylquinoline (1) as
the heterocycle substrate (Fig. 3). Assorted cyclic hydrocarbons gave
moderate to good yields with a trend of increased carbon count
leading to decreased yields (4-8). The larger cyclic alkanes, cyclo-
dodecane, and norbornane required extended reaction time and
increased solvent loading to aid solubility for sufficient yields (7 and
8). The influence of functional groups was examined, beginning
with alcohol moieties. Both methanol and its deuterated version are
compatible in the reaction to give the alkylated products (9 and 10).
Likewise, linear ethers, diethyl, and dimethoxy ethers resulted in the
desired products (11 and 12). However, the C-O bond was cleaved
in cyclic ethers likely due to ring strain to give the respective alcohol
products of ring opening, as observed in our previous work (13 and
14)29. Activation of benzylic C(sp3)-H was demonstrated with
4-methyl anisole, giving a moderate yield (15). Common amides,
DMF, DMA, and 2-pyrrolidinone are also viable C(sp3) radical
sources in this protocol (16-18). Notably, formamide was employed
as a C(sp2) radical source for heteroarene formamidation (19). The
application was extended to a gram-scale reaction between het-
eroarene 1a and alkane 2 g, although higher catalyst loading was
required (Supplementary Fig. 2).

The extent of the heteroarene partner was looked at with
cyclohexane (2a) as the model alkylating partner (Fig. 4).
Assortment of substituents was tolerated on the
2-phenylquinoline scaffold with satisfying yields in the presence
of halo, methyl, phenyl, acetyl, and cyano groups (20–27). C4-
substituted quinolines and isoquinoline are also feasible for
alkylation (28–31). With substituted pyridines, depending on the
steric bulk of the respective substituent, the mono- or di-alkylated
products were observed. Specifically, with nicotine, a mono-
alkylated product was obtained exclusively in moderate yield
(32–37). Additionally, pyrimidine, benzimidazole, benzothiazole,
pyrazine, quinoxaline, and quinazoline derivatives showcased the
broad applicability of the protocol towards various heterocyclic
systems with moderate to good yields (38–45). Next, purines,
heterocycles well-known as privileged scaffolds for their biological
activities and presence in natural products, were successfully
transformed into the desired products with a higher loading of

Table 1 Reaction optimizationsa.

 

Entry Variation from std. reaction conditions 3 yield (%)b

1 None 89c

2 c-GaN (30mol%), Xe lamp, no PhH 12
3 c-GaN (30mol%), Xe lamp 23
4 c-GaN (30mol%), Kessil 370 nm 35
5 c-GaN (30mol%) 43
6 1 wt% Rh2O3/GaN (30mol%) 85
7 Under the air atmosphere 24
8 No benzophenone 22
9 No GaN 12
10 In the dark, 35 °C n.d.

c-GaN commercial GaN powder.
aAll reactions were conducted at a 0.1 mmol scale of 1 under an inert atmosphere unless otherwise noted.
bYields obtained by 1H NMR with dibromomethane as internal standard.
cIsolated yield.
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Fig. 2 Characterization of the heterogeneous catalyst. a Typical transmission electron microscopy (TEM) of Rh2O3 nanoparticles on GaN and size
distribution. b X-ray diffraction (XRD) patterns of pristine Rh2O3/GaN (red), commercial GaN (black), and spent Rh2O3/GaN (gray). c X-ray photoelectron
spectroscopy (XPS) spectra of pristine (red) and spent (gray) Rh2O3/GaN in the Ga 3d and Rh 3d regions. d Recycling experiments of the heterogeneous
catalyst.
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TFA (46–50)48,49. The applicability of our method for late-stage
functionalization of pharmaceutically relevant molecules was
successfully investigated with Fasudil, a Rho-Kinase inhibitor for
cardiovascular disease treatment, and loratadine, an antihista-
mine medication (51 and 52)50,51. NMR data are presented in
Supplementary Data 3, and notable unsuccessful substrates are
shown in Supplementary Fig. 4.

Mechanistic investigations. A series of experiments were com-
pleted to understand the mechanism of this transformation
(Fig. 5). Radical quenching experiments demonstrated significant
suppression of the desired product formation: specifically, when
2,2,6,6-tetramethylpiperidine 1-oxyl was the radical quencher, the
radical adduct 53 was observed by gas chromatography-mass
spectrometry, suggesting a radical nature of the transformation
(Fig. 5a). The involvement of an alkyl radical was studied with the
radical trapper 54 as a substitute for the heterocycle, and the
cycloalkylated product 50 was isolated (Fig. 5b). As additional
evidence of an alkyl radical intermediate, an electron

paramagnetic resonance experiment was conducted (Fig. 5c and
Supplementary Data 1). Under light irradiation, the cyclohexane
radical was trapped by 5,5-dimehtyl-1-pyrroline-N-oxide, in
which the signal is in correlation with previous literature as well
as our simulation data (Supplementary Fig. 6)52. In an attempt to
find the rate-determining step, both parallel and competing
kinetic isotope effects were examined (Fig. 5d). Nonetheless, in
both experiments, the low kH/kD did not suggest the involvement
of the alkyl C-H cleavage in the rate-determining step, which is
shown in previous literature29,53. The H2 evolution was con-
firmed by gas chromatography-thermal conductivity detector
analysis (Fig. 5e). Lastly, fluorescence quenching of benzophe-
none was observed (Supplementary Figs. 7, 8). With the gathered
data in hand, we constructed a plausible mechanism (Fig. 6).
Upon light irradiation, the ketone achieves its excited state while
simultaneously, the GaN generates electron-hole pairs on the
valence and conduction bands, respectively. The excited ketone
undergoes HAT with the alkane (2) to generate the alkyl radical
(2-r) along with the intermediate E2. Afterward, E2 reverts to
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(15mol%), benzophenone (15 mol%), TFA (2 equiv), CH3CN (0.2 mL for liquid alkane or 0.8 mL for solid alkane source), and PhH (0.1 mL for liquid alkane
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benzophenone by reducing the electron hole on the valence band
of the semiconductor following deprotonation, closing the cata-
lytic ketone cycle. Additionally, it is possible that the electron hole
on the valence band can be reduced by 2 to generate the radial
2-r. The accumulated electrons on the semiconductor’s conduc-
tion band could reduce protons into H2 and complete the cycle of
the heterogeneous catalyst. The Rh2O3 nanoclusters are shown to
possibly aggregate the electron hole, effectively increasing the
charge transfer and suppressing the electron-hole recombination.

Methods
General experimental procedure for the cross-dehydrogenative coupling of
alkanes and heterocycles (Supplementary Methods). To a 10 mL Pyrex
microwave tube equipped with a Teflon-coated magnetic stirring bar were added
heteroarene (0.1 mmol), 1 wt% Rh2O3/GaN (1.3 mg, 0.015 mmol), and

benzophenone (2.7 mg, 0.015 mmol). For liquid alkanes, the tube was sealed,
evacuated, and backfilled with argon three times using freeze-pump-thaw before
the alkane (0.8 mL), CH3CN (0.2 mL), PhH (0.1 mL), and TFA (15 μL, 0.2 mmol)
were sequentially added in the glovebox, and then sealed with an aluminum cap
with a septum. For solid alkanes, 3.5 equivalents were added to the vial before being
sealed, evacuated, and backfilled with argon three times using freeze-pump-thaw
before the CH3CN (0.8 mL), PhH (0.3 mL), and TFA (15 μL, 0.2 mmol) were
sequentially added in the glovebox and then sealed with an aluminum cap with a
septum. The reaction vial was taken out of the glovebox and stirred under the
irradiation of a 390 nm Kessil lamp at 100% light intensity for 20–28 h at 35 °C
(Supplementary Fig. 1). After the reaction was completed, the solution was basified
with saturated sodium bicarbonate (aq), followed by extracting the organic layer
with ethyl acetate and filtering through a short pad of magnesium sulfate. The
volatiles were removed under reduced pressure to obtain the crude product. The
product was isolated by preparative thin-layer chromatography.

Preparation of Rh2O3/GaN (Supplementary Methods). Rh2O3/GaN was pre-
pared based on a reported photodeposition method41. To a 10 mL quartz tube
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equipped with a Teflon-coated magnetic stirring bar were added commercial GaN
powder (50 mg), RhCl3•xH2O (1.3 mg, 1 wt%), deionized water (3 mL), and
methanol (2 mL). The tube was sealed, evacuated, and backfilled with argon three
times using freeze-pump-thaw and sonicated for 30 min. The reaction was stirred
under photoirradiation of a Xenon lamp (PE300 BUV) for 3 h. The suspension was
collected by centrifugation and washed with deionized water three times and then

with methanol twice. The final sample was obtained after drying under a vacuum
overnight.

Data availability
The data supporting the findings of this study is included in the article and
its Supplementary Information. Electron paramagnetic resonance experiment in
Supplementary Data 1. Recyclability of the heterogeneous catalyst in Supplementary
Data 2. NMR data in Supplementary Data 3. All data are available from the
corresponding author upon reasonable request.
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