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Unified and practical access to ɤ-alkynylated
carbonyl derivatives via streamlined assembly at
room temperature
Xu-Lu Lv1 & Wei Shu 1,2*

The development of a unified and straightforward method for the synthesis of ɤ-alkynylated

ketones, esters, and amides is an unmet challenge. Here we report a general and practical

protocol to access ɤ-alkynylated esters, ketones, and amides with diverse substitution pat-

terns enabled by dual-catalyzed spontaneous formation of Csp3–sp3 and Csp3–sp bond from

alkenes at room temperature. This directing-group-free strategy is operationally simple, and

allows for the straightforward introduction of an alkynyl group onto ɤ-position of carbonyl

group along with the streamlined skeleton assembly, providing a unified protocol to syn-

thesize various ɤ-alkynylated esters, acids, amides, ketones, and aldehydes, from readily

available starting materials with excellent functional group compatibility.
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A lkynes and carbonyl derivatives are among the most
important functional groups since they are ubiquitous in
organic compounds as well as they serve as useful che-

mical handles transformed to other diverse functional groups1–4.
The introduction of alkyne onto a specific remote position to
carbonyl groups is of interest to organic chemists5–14. In parti-
cular, the alkynylation at ɤ-positon of carbonyl functional group
is challenging. Yu and Chatani reported a coordination-assisted
strategy for alkynylation of amides via Pd/Rh catalyzed C–H
activation (Fig. 1a)15,16. This strategy gave only two examples for
ɤ-alkynylation with poor results (<40% yield) and is only
applicable to the terminal methyl group of amide with directing
group. Recently, Zhu and Studer independently developed an
elegant alkynyl migration of propargyl alcohol with a pendant
olefin via a radical initiated chain reaction to give ɤ-alkynylated
ketones (Fig. 1b)17–19. Despite significant progress in this field20,
the existing methods suffer from several major limitations and
drawbacks: (1) Requiring additional steps to synthesize the
backbone of sophisticated substrates. (2) Restricted to specific
carbonyl functional groups (amide or ketone). (3) Limited sub-
stitution patterns at ɤ-position (R=H, or CnFmCH2). Thus, a
general, practical, and straightforward method to introduce ɤ-
alkynylation for diverse carbonyl derivatives, including ketones,

esters, and amides, from easily available and cost-effective starting
materials is highly desirable. On the other hand, intermolecular
carbo-difunctionalization of alkenes is unarguably an attractive
alternative to build molecular complexity via simultaneous for-
mation of two C–C bonds by backbone assembly 21–35.

Herein, we establish a unified and general protocol for the
direct synthesis of ɤ-alkynylated aryl or alkyl ketones, aldehydes,
esters, acids, secondary and tertiary amides using α-bromomethyl
carbonyl precursors with alkynes in the presence of alkenes at
room temperature (Fig. 1c). Over the past years, reports disclosed
that α-halomethyl carbonyl compounds could be converted into
alkyl radicals (A)36–46 to initiate coupling with unsaturated sys-
tems, such as alkenes and alkynes, to produce C-centered radical
(B) (Fig. 1c). We hypothesize that the direct utilization of the
radical intermediate (B) with copper catalysis47–51 by the merger
of photocatalysis52–57 to give desired ɤ-alkynylated carbonyl
compounds. However, several highly competitive reactions have
to be suppressed. First, radical B is facile to undergo atom
transfer39–42 or single electron oxidation43–46 by transition metal
or photocatalyst (k= 105−109 M−1 s−1)58,59. Moreover, A would
directly undergo metal-catalyzed (Pd, Cu) cross-coupling to give
α-alkynylated carbonyl derivatives C in the presence of
alkyne 60,61.
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Fig. 1 Synthesis of ɤ-alkynylated carbonyl derivatives. a Coordination-assisted strategy for alkynylation of amides via Pd/Rh catalyzed C–H activation.
b Alkynyl migration of propargyl alcohols with a pendant olefin by radical initiated chain reaction. c This work
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Results
Reaction conditions evaluation. With these concerns in mind,
we set out to explore the possibility of direct incorporating radical
intermediate B into copper-catalyzed Csp3–sp bond-forming to
furnish ɤ-alkynylated carbonyl derivatives using ethyl α-bro-
moacetate 1a, styrene 2a, and trimethylsilylacetylene. After some
initial trials, we found the use of alkynyl silicate 3a significantly
improve the radical cascade coupling efficiency. Upon intensive
examining a wide range of reaction parameters, we determined
that CuI (10 mol%), a tridendate ligand L1 (10 mol%) and a
photocatalyst Ir(ppy)3 (1 mol%) can accomplish the desired
reaction in the presence of Cs2CO3 using DCM as solvent with
blue LED irradiation, affording ɤ-ethynyl ester 4a in 78% isolated
yield (Table 1, entry 1). No desired product was obtained in the
absence of copper or light (entries 2 and 3). The absence of
photocatalyst dramatically decreased the reaction efficiency, albeit
delivering 4a in 35% yield (entry 4). The selection of ligand has
significant impact on the radical cascade process. The employ-
ment of tridentate ligand is crucial for the success (entries 5–7).
The use of bidentate ligand gave 4a in low yields (entries 8–11).
When CuTc was used, 4a was obtained in 66% yield (entry 12).
When the reaction was carried out with other bases, such as
potassium carbonate or lithium tert-butoxide, no substantial

amount of 4a was detected (entries 13 and 14). The use of other
chlorine-containing solvents led to diminished yields (entries 15
and 16).

Reaction scope. With the optimal conditions in hand, we turned
to test the generality of this reaction. We first evaluated different
types of carbonyl derivatives (Fig. 2a). The reaction is applicable
to a variety of α-bromomethyl carbonyl functional groups,
affording ɤ-alkynylated esters, ketones, secondary and tertiary
amides, which are inaccessible otherwise. ɤ-Alkynylated esters
with two or one enolizable proton can be obtained in good yields
(4a–4e). ɤ-Alkynylated lactone could be isolated in moderate
yield (4e). Notably, this method is applicable to synthesize α,α-
disubstituted ɤ-alkynylated esters in good yields (4f and 4g). It is
delighting that ɤ-alkynylated alkyl or aryl ketones could be
furnished in good yields (4h–4j). This reaction also tolerates
secondary and tertiary amides to afford corresponding ɤ-alky-
nylated amides in synthetically useful yields (4k and 4l). This
protocol tolerates a wide variety of carbonyl derivatives, providing
a unified directing-group-free alternative to access ɤ-alkynylation
of esters, ketones, amides with diverse substitution patterns under
mild conditions.

Table 1 Effect of the reaction parametersa

Ph +Br
OEt

O
+

CuI (10 mol%)
L1 (10 mol%)

Ir(ppy)3 (1 mol%)

Ph

TMS

OEt

O
1a 2a 3a 4a

Cs2CO3 (2 equiv)
visible light

DCM, rt

TMS

Si(OMe)3

N N
Me MeN N

R R
R

N
NN

N N

R = 4-MeC6H4, L1
R = 4-MeOC6H4, L2
R = Ph, L3; R = H, L4

R = t -Bu, L5
R = OMe, L6

L7

L8

Entry Variation from the “standard” conditions Yield of 4ab

1 None 82% (78%)c

2 No CuI 0%
3 No light Trace
4 No Ir(ppy)3 35%
5 L2 instead of L1 75%
6 L3 instead of L1 70%
7 L4 instead of L1 36%
8 L5 instead of L1 23%
9 L6 instead of L1 28%
10 L7 instead of L1 20%
11 L8 instead of L1 18%
12 CuTc instead of CuI 66%
13 K2CO3 instead of Cs2CO3 Trace
14 t-BuOLi instead of Cs2CO3 5%
15 DCE instead of DCM 40%
16 Chloroform instead of DCM Trace

aThe reaction was carried out on 0.1 mmol scale of 2a, using 1a (2 equiv) and 3a (2 equiv) in DCM (3mL) under the irradiation of 30W blue LED for 12 h
bThe yield was determined by the 1H NMR of crude mixture using mesitylene as internal standard
cIsolated yield after flash chromatography
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Next, we tested the scope of alkyne precursors using ethyl α-
bromoacetate 1a (Fig. 2b). The reaction tolerates silyl and alkyl
alkynes, giving corresponding ɤ-alkynylated esters in good yields
(5a–5d). Aryl alkynes with electron-donating or -withdrawing
group proceeded smoothly under the reaction conditions,
affording desired product in good yields (5e–5g).

We also examined the scope of alkenes (Fig. 3), which
corresponds to the substitution patterns of ɤ- and β-position of
the esters using ethyl α-bromoacetate (1a) and trimethylethynyl
silicate (3a). Styrenes with electron-donating or -withdrawing
substituents at para-, meta- or ortho-position could be all applied
in the reaction conditions, affording corresponding ɤ-alkynylated
esters in good yields with diverse aryl substitutions at ɤ-position
(4a, 4b, 6a–6l). Electron-deficient styrenes, which are challenging
for radical involved cross-coupling due to the propensity of
radical oligomerization, are also good substrates for this reaction

(6d and 6e). Vinylpyridine is tolerated in this reaction, furnishing
ɤ-pyridinyl substituted ɤ-alkynylester 6m in 52% yield. Cyclic and
acyclic internal alkenes could be transformed into the desired
products with ɤ- and β-substitutions in moderate yields (6n and
6o). Emamine could be transformed to ɤ-alkynyl ɤ-aminoester 6p
in 33% yield. To further demonstrate the potential utility of this
protocol, late-stage functionalization of natural product deriva-
tives was examined. Isoflavone, estrone, tocopherol ocurring
alkenes could be tolerated under the reaction conditions and be
further modified to deliver natural product containing ɤ-
alkynylesters in good yields (6q–6s).

Synthetic application. We further demonstrated the synthetic
application potential of this reaction using 4a as the model sub-
strate (Fig. 4). Trimethylsily group could be removed under basic
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conditions, delivering ɤ-alkynyl ester (7a) or ɤ-allenyl ester (7b)
in a controllable manner in 82% and 70% yield, respectively. In
the presence of sodium hydroxide, 4a was deprotected as well as
saponificated, giving the formal ɤ-ethynyl carboxylic acid (7c) in
60% yield, which is the precursor for an inhibitor of serine pro-
teases62. ɤ-Triazole substituted ester (7d) could be obtained in
54% yield via copper catalyzed [3+2] reaction. The triple bond
could also be cleaved via ruthenium catalysis to deliver 1,4-
dicarboxylic acid (7e) in 70% yield. In the presence of DIBAL-H,
δ-alkenyl or δ-alkynyl alcohol (7f and 7g) could be obtained in
good yields depending on the reaction conditions, providing a
divergent method to functionalize δ-position of alcohol which is
inaccessible otherwise. It is noteworthy that ɤ-alkynylated alde-
hyde (7h) could be obtained in 62% yield, rendering this three-
component radical cascade protocol accessible to ɤ-alkynylated
acids, esters, amides, ketones, and aldehydes.

Mechanistic investigation. To further understand the reaction
process, we carried out a series of experiments to probe the
reaction mechanism (Fig. 5). In the presence of TEMPO, the
reaction was completely shut down with the formation TEMPO
adduct 8 in 60% yield, indicating the formation of radical inter-
mediate M2. The use of 2-cyclopropyl styrene under the standard
conditions delivered the radical ring-opening and cyclization
product 9, which further suggested the presence of radical
intermediate M4. When phenyethynyl copper was used as the
catalyst, the desired product 10 was obtained in 66% yield,
proving alkynylcopper M1 as one of the intermediates in the
catalytic cycle.

Based on the results and literature, we proposed the following
reaction mechanism (Fig. 6). First, ligand ligated copper (I)
undergoes transmetalation with alkynyl silicate to generate
alkynyl copper (I) species M1, which reduces α-bromomethyl
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carbonyl derivatives 1 to give radical intermediate M2 and
copper (II) intermediate M3 by single electron transfer. M2
could be trapped by alkene 2 to give a new carbon-centered
radical M439–46, which recombines with M3 to deliver
intermediate M5. M5 could be activated by energy transfer
from excited Ir(III) photocatalyst to generate M663, which
accelerates reductive elimination to furnish streamlined three-
component assembly product and regenerate Cu(I) catalyst. At
this stage, the possibility of undergoing direct reductive

elimination from M5 to generate final product and Cu (I)
species could not be ruled out 64,65.

Discussion
In summary, we have developed a unified ɤ-alkynylation of esters,
ketones, secondary and tertiary amides enabled by the combi-
nation of copper- and visible-light catalysis at room temperature.
This method features with the exclusive chemoselectivity of
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alkenes over alkynes, and is applicable to a wide variety of car-
bonyl derivatives with excellent functional group compatibility.
The merger of photocatalysis and copper catalysis along with
judicious selection of ligand allows for the streamlined formation
of Csp3-sp3 bond and Csp3-sp bond to assemble the carbon chain
skeleton and alkynylate ɤ-position from alkene, α-bromomethyl
carbonyl precursors, and alkyne silicates, circumventing the
tedious synthesis of skeleton. Further synthetic extention provides
access to ɤ-alkynylated esters, acids, amides, ketones, and alde-
hydes. Mechanistic investigation suggests the reaction undergoes
copper catalyzed radical cascade reaction, facilitated by energy
transfer from excited photocatalyst.

Methods
Synthetic procedures. See Supplementary Methods.

Characterization. See Supplementary Methods, Supplementary Figs. 1–103 for 1H,
19F and 13C NMR spectra of synthesized products.

Data availability
The datasets generated during and/or analyzed during the current study are available
from the corresponding author on reasonable request.
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