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Interplay of biotic and abiotic factors
shapes tree seedling growth and root-
associated microbial communities
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Joey Chamard1,2,3,8, Maria Faticov 1,2,3,8 , F. Guillaume Blanchet 1,4,5, Pierre-Luc Chagnon 6,7 &
Isabelle Laforest-Lapointe 1,2,3

Root-associatedmicrobes can alleviate plant abiotic stresses, thus potentially supporting adaptation
to a changing climate or to novel environments during range expansion. While climate change is
extending plant species fundamental niches northward, the distribution and colonization ofmutualists
(e.g., arbuscular mycorrhizal fungi) and pathogens may constrain plant growth and regeneration. Yet,
the degree to which biotic and abiotic factors impact plant performance and associated microbial
communities at the edge of their distribution remains unclear. Here, we use root microscopy, coupled
with amplicon sequencing, to study bacterial, fungal, and mycorrhizal root-associated microbial
communities from sugar maple seedlings distributed across two temperate-to-boreal elevational
gradients in southernQuébec, Canada. Our findings demonstrate that soil pH, soil Ca, and distance to
sugar maple trees are key drivers of root-associated microbial communities, overshadowing the
influence of elevation. Interestingly, changes in root fungal community composition mediate an
indirect effect of soil pH on seedling growth, a pattern consistent at both sites. Overall, our findings
highlight a complex role of biotic and abiotic factors in shaping tree-microbe interactions, which are in
turn correlated with seedling growth. These findings have important ramifications for tree range
expansion in response to shifting climatic niches.

Climate change, characterized by higher temperatures and increased fre-
quency of extreme weather events, has major consequences for the spatial
distribution of organisms1. Though it is now recognized that plant dis-
tributions are affected by changing climatic conditions2–4 and that species
tend to migrate poleward5,6, there is accumulating evidence that non-
climatic factors, such as biotic interactions, also play a critical role for plant
colonization beyond their current geographic range7–9. This may partly
explain why climatic conditions are often found to shift more rapidly than
species range limits10–12, especially for trees. A tree’s ability to expand its
geographic range in response to shifting climatic conditions relies on a
complex combination of abiotic (e.g., variation in temperature, soil pH and
nutrients,water availability) andbiotic factors (e.g., pathogenic, competitive,
mutualistic interactions). Research has shown that soil chemistry, such as
pH13, base cations14,15, and nutrient availability16, not only affect tree carbon

uptake and growth, but also shape the composition and functionality of root
and soil microbial communities17,18. However, the interplay between abiotic
and biotic factors in constraining or facilitating tree growth at range limits
remains poorly understood, thus hindering our ability to predict tree spe-
cies’ range expansion in response to novel climatic conditions.

In the last twenty years, research on tree-microbe interactions has
evidenced potential roles for soil microbes in driving tree recruitment and
range expansion19–21. Most often such studies are restricted to narrow eco-
logical guilds (with a particular emphasis on arbuscular mycorrhizal fungi;
AMF), thus neglecting the complexity of tree-associated microbial
communities22–25. Plant establishment and growth is influenced by a variety
ofmicrobial interactions,with root-microbe associations thought tobemost
influential for host fitness26,27. Beneficial root-associated microbes can
promote plant growth28,29, nutrient acquisition30, and stress tolerance31–34,
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while pathogenic microbes may cause disease35,36. These effects stem from
interactions among different microbial guilds and kingdoms17,37. For
example, non-mycorrhizal bacteria can either promote38 or inhibit39 sym-
biotic activity of AMF, with consequences on plant growth. In contrast, root
and soil bacterial diversity were shown to be negatively affected by dark
septate endophyte (DSE). DSE is a cryptic and diverse fungal group, whose
interactions with plants range from mutualistic to pathogenic, impacting
root and soil microbiomes as well as plant health17. Although more chal-
lenging, multi-kingdom and multi-guild microbial studies are essential to
improve our understanding of microbial co-occurrence, interactions, and
functions, based on their niche and resource use40. Studying tree-microbe
relationships in forest ecosystems remains difficult because many microbes
are still not well characterized taxonomically and ecologically. Yet, unra-
veling tree root microbial community assembly and variation in natura is
crucial to better understand their role for tree species distribution in a
changing climate.

Elevational gradients are frequently used to study plant-microbe
interactions41–43 based on the space-for-time substitution method44. This
method is particularly useful to study ecological processes over short dis-
tance, allowing for the observation of novel biotic interactions. For example,
the specificity of foliar fungal endophytes (microbes living within and
among the cells of leaves) has been shown to peak at the core of a species
distribution41,where thehost ismost abundant.A lackof specificityhas been
demonstrated for root fungal endophytes at host range limits45,46. This lack
of specificity could suggest that stochastic processes, such as dispersal and
drift, play a greater role in driving microbial community assembly, thus
partly explaining shifts in microbial community composition with
elevation43,47,48. Yet, if biotic selection forces, driven by the plant host, are
weaker at host range limits, abiotic selection forces (e.g., climatic conditions)
could correspondingly increase in relative strength. The influence of abiotic
(e.g., temperature, soil nutrients an moisture) and biotic factors (e.g.,
neighboring plant communities and microbe-microbe interactions) on
root-associated microbial communities also varies across and within
microbial kingdoms49,50, thus complexifying our understanding of the
dynamics of microbial communities. In this context, the field stands poised
to integrate cutting-edge insights from (1) studies on tree-microbe inter-
actions with (2) the refined application of established ecological theories to
elucidate the mechanisms driving tree performance along elevational
gradients.

Previously, tree species that successfullymigrated beyond their current
range limits have been shown to display less above- and belowground
enemy pressures51. The enemy-release hypothesis, which posits that plant
species experience reduced pathogen loads beyond their range limits52, is
often invoked to explain higher seedling density at species range limits36,
where propagule density is high and pathogen or predator densities are
low53. More recently, several studies have added to this understanding,
showing that for different tree species, variation in root bacterial and fungal
community composition can be attributed to elevational and latitudinal
gradients. This is explained by lower diversity of microbial communities,
such as root bacterial endophytes andmycorrhizal fungi, at the edges of tree
species ranges54,55. Additionally, greater tree regeneration has been observed
at the upper elevation edge of their distribution, potentially due to a release
from predation pressure53. On the other hand, tree colonization in non-
native ranges could also be enhanced by novel associations with generalist
mutualists56, thus gaining greater benefits compared to their native range57.
Such observations were previously theorized as the enhanced mutualism
hypothesis58,59, a theory that remains debated for AMF25,60–62 and seems to be
context-dependent63. Though these two hypotheses provide potential
explanations for the role of tree-microbe interactions for plant distribution,
to this day few studies have tested these theories at tree species range limits.

In this study,we investigated thedrivers of tree seedling root-associated
microbial communities and assessed their relationshipwith seedling growth
along two elevation gradients. We sampled 100 sugar maple (Acer sac-
charum) seedlings along two elevation gradients in southern Québec,
Canada. We characterized the microbial communities associated with each

of these seedlings (AMF from both soil and roots, as well as root-associated
bacteria and fungi) and measured soil chemistry, leaf nutrients, the com-
position of neighboring plant communities, canopy openness, and seedling
growth. We predicted that (1) local soil chemistry and neighboring plant
communities would be the main drivers of seedling root-associated
microbial richness, diversity, and community composition; (2) seedling
microbial richness, diversity, and community composition would shift
across microbial kingdoms and elevation; (3) seedling growth would
decrease with elevation because of shifts in microbial abundance and
community composition (i.e., due to lower colonization by AMF at higher
elevation or loss of symbionts) and unfavorable soil conditions (i.e., low pH
and C, N, P, Mg, Ca, and K availability) closer to conifer-dense stands.

Results
Sugar maple seedling growth increases with elevation at
both sites
Sampling was conducted along two elevational gradients located at Mont
Écho near Sutton (45°6′46.09″Net 72°32′28.67″W; 811m) andMont Saint-
Joseph in Mont Mégantic National Park (45°26′51′′N, 71°06′52′′W;
1075m) in southern Québec, Canada (Fig. 1a; Supplementary Table 1).
Both these gradients show steep shifts in tree community composition over
short distances. For the remainder of this paper, we will refer to both
locations as Sutton andMégantic. The 98 seedlings in this study (Sutton [S]
n = 51 / Mégantic [M] n = 47; Fig. 1a, b) were sampled along two elevation
gradients of respectively 158m and 120m (Fig. 1c, d, Supplementary
Table 1). At both sites, sugar maple seedling growth increased significantly
with elevation (Fig. 2).

Soil chemistry and conspecific metrics are key drivers of tree
microbial communities
To identify the relative importance of elevation, canopy openness, soil
chemistry, distance to conspecifics, conspecific diameter, AMF root length,
arbuscule, vesicle colonization, and total DSE colonization, we performed
linear regressions andPERMANOVAs(Fig. 3, SupplementaryData 1–5). In
both sites, the same three predictors tended to best predict root fungal
colonization: soil pH, soil Ca, and distance to conspecifics. In Sutton, soil Ca
was the most common predictor for all microbial communities (Fig. 3a,
Supplementary Data 1, 3, 5) but especially for root bacteria. Similarly, soil
pH was an important driver of soil AMF, root fungi, as well as of root
bacteria (Fig. 3a, SupplementaryData 1, 3, 5).On the other hand, distance to
conspecifics showed a significant association with the diversity of soil AMF
and root fungi (Fig. 3a, Supplementary Data 1, 3, 5). Finally, elevation only
showed a significant relationship with root fungi (Fig. 3a, Supplementary
Data 1, 3, 5). InMégantic, soil pHwasoneof themost commonpredictors of
variation for all microbial community alpha-diversity and community
composition (Fig. 3b, Supplementary Data 2, 4, 5). Distance to conspecific
also influencedmicrobial richness and community composition for soil and
roots, showing for example a significant decrease in both root AMF and
fungi richness, but not for bacteria. Soil Ca again predicted significantly root
microbial community composition (Fig. 3b, Supplementary Data 2, 4, 5). In
comparison, elevation was found to be a significant predictor of fungal
richness and Shannon index as well as bacterial Shannon index, which all
showed negative trends with elevation (Fig. 3b, Supplementary Data 2, 4, 5,
Supplementary Fig. 1). Conspecific diameter was a significant predictor
mostly for soil AMF. Finally, vesicle and DSE colonization showed a sig-
nificant association with soil and root AMF community composition
(Fig. 3b, Supplementary Data 2, 4, 5).

Strong covariation between abiotic and biotic conditions with
root microbial communities
At Sutton, both root and soil AMF covaried significantly with the above-
ground environment (RVs of 13.5%, p = 0.025 and 17.3%, p = 0.025,
respectively), conspecific and root microscopy metrics (RVs of 21.7%,
p = 0.002 and 9.7%, p = 0.016), soil chemistry (RVs of 16.3%, p = 0.005 and
15.4%, p = 0.023), but not with host characteristics or neighboring plant
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community (Supplementary Table 2, Fig. 4a). Additionally, fungal, and
bacterial communities demonstrated significant correlations with envir-
onmental factors. The fungal community was strongly linked to the
aboveground environment (RV 24.7%, p < 0.001; Supplementary Table 2,

Fig. 4b), while the bacterial community showed a significant association
with soil chemistry (RV 33.8%, p < 0.001; Supplementary Table 2a, Fig. 4b).

InMégantic, the root AMF community covaried significantly with the
aboveground environment (RV 14%, p = 0.014) as well as with conspecific
and rootmicroscopy (RV 8.6%, p = 0.001), but not with host characteristics,
neighboring plant community or soil chemistry (Supplementary Table 2,
Fig. 4c). The soil AMF community, however, did correlate significantly with
host characteristics (RV 23.9%, p = 0.003) and the neighboring plant
community (RV 32%, p = 0.005; Supplementary Table 2c, Fig. 4c). Fur-
thermore, both fungal and bacterial communities were found to sig-
nificantly correlate with all environmental matrices, but with varying
strengths of association. The highest correlations were found between fungi
and the neighboring plant community (RV 41.7%, p < 0.001) and between
bacteria and the aboveground environment (RV 44.6%, p < 0.001; Supple-
mentary Table 2c, Fig. 4d). To summarise, rootAMF correlates significantly
with the aboveground environment and rootmicroscopy, but not with host
or soil chemistry at Mégantic.

Across both sites, while all rootmicrobialmatrices showed correlations
with each other, there were a few exceptions, such as between bacterial and
soil AMF communities in Sutton (Supplementary Table 2b). The highest
correlations were found between bacterial and fungal communities (RVs of
S: 82.3%andM:86.3%,p < 0.001; SupplementaryTable 2d),while the lowest
between bacterial and root AMF at Sutton (RV 50.4%, p < 0.001; Supple-
mentary Table 2d), as well as between root and soil AMF (RV 23.2%,
p = 0.013; Supplementary Table 2d) at Mégantic.

Soil pH and root fungi influence seedling growth
In Sutton, our results revealed that soil Ca (std.coef [SC] = 0.32, p = 0.024),
soil AMF MDS1 (SC = 0.56, p < 0.001), and fungal MDS1 (SC = 0.61,
p < 0.001)werekeydrivers of seedling growth, collectively explaining41%of
its variation (AIC = 301, Fisher’s C = 12.98, p = 0.528; Fig. 5a). Soil pH and
AMF vesicle colonization were found to significantly influence soil AMF
MDS1, accounting for 19% of its variation (SC =−0.27, p = 0.045 and
SC =−0.36, p = 0.007, respectively). Additionally, soil pH (SC = 0.59,
p < 0.001) and Ca (SC = -0.67, p < 0.001) were the primary factors
explaining 67% of the variation in fungal community composition (Fig. 5a).

Fig. 2 | Seedling growth significantly increases with elevation. Point colors indi-
cate site identity (blue for Mégantic and pink for Sutton). Line shading represents
95% intervals from smoothed conditionalmeans with a linearmodel regression. The
legend shows statistical significance and coefficient of determination (R2) per site
based on a linear regression model.N = 51 and 47 for Sutton andMégantic samples,
respectively.

Fig. 1 | Sampling design along two elevation gra-
dients. aWhite squares indicate the location of
seedlings along elevation gradients respectively in
Sutton and Mégantic, both located in Southern
Québec, Canada. Shades of gray indicate bioclimatic
domains. b Schematic of performed analyses with
the various seedling tissues. c, d Seedling location at
each elevation gradient displayed in meters above
sea level (masl) overlaid on gray relief. Starting at
567 and 675 masl (Sutton and Mégantic), seedlings
were randomly sampled until species distribution
limit at ~725 and ~796masl respectively. Projection:
NAD 1983 MTM 8 (Sutton) & MTM 7 (Mégantic).
Sources: Québec Ministère des Ressources Natur-
elles et des forêts (2005) andMinistère des Forêts, de
la Faune et des Parcs (2020). Author: Center for
Forest Research 2022.
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In Mégantic, soil pH (SC = 0.57 p = 0.009) and elevation (positive
effect, SC = 0.49, p < 0.001) explained 52% of the variation in growth, thus
being the main factors influencing this variable (AIC = 254, Fisher’s
C = 14.94, p = 0.529; Fig. 5b). Fungal community composition, represented
by fungal MDS1, was primarily affected by soil pH (SC =−0.79, p < 0.001)
and distance to conspecific (SC = 0.17, p = 0.043), which together explained
72% of its variation along the elevation gradient. This finding suggests that
changes in fungal composition could indirectly affect seedling growth
through soil pH and distance to conspecific (Fig. 5b). Furthermore, root
AMF MDS1 was significantly associated with distance to conspecific
(SC = 0.38, p = 0.004), soil pH (SC = 0.35, p = 0.009), and root DSE colo-
nization (SC =−0.32, p = 0.016), explaining 37% of the variation in root
AMF composition; yet it did not show a significant direct association with
seedling growth.

Fungal functional guilds and fungal taxa associated with
seedling growth
In total, we assigned functional guilds to 1018 and 1163 root fungal ASVs in
Sutton and Mégantic, respectively. In Sutton, out of 1018 ASVs, 19 (2%)

were other fungi, 38 (4%) pathogens, 167 (16%) mutualists, 309 (30%)
saprotrophs, and 484 (48%) unknown; in Mégantic, of 1163 ASVs, 19 (2%)
were other, 54 (5%) pathogens, 86 (7%) mutualists, 355 (30%) saprotrophs,
and 649 (56%) unknown (Supplementary Data 6, 7, respectively). None of
the fungal functional guilds differed in their relative abundances with
seedling annual growth in both sites (Supplementary Table 3). Two fungal
families (decrease in Dermateaceae and Chaetosphaeriaceae; Supplemen-
tary Table 4a, b) and two genera (increase in Gyoerffyella and decrease in
Pezicula; SupplementaryTable 4c, d) differed in the relative abundancewith
higher seedling growth at Sutton. Interestingly, the genus Gyoerffyella was
assigned to fungal saprotrophs, while Pezicula to root endophytes (see
Supplementary Data 6).

Discussion
As climate change alters plant species distribution, a growing body of evi-
dence suggests that both climatic and non-climatic factors (including the
interactions between plants and soil microbes) play pivotal roles in shaping
plant range expansion64,65. Our study reveals that a complex interplay of
abiotic and biotic factors drives sugar maple (Acer saccharum) tree root-

Fig. 3 | Environmental factors drive sugar maple
root microbial endophyte alpha- and beta-diver-
sity, as well as community composition. Predictors
(aMégantic; b Sutton) are ordered based on how
frequently they showed significant associations in
final models (after selection). Numbers indicate
standardized coefficients (linear models) or sums of
squares (PERMANOVAs for composition). Diag-
onal stripes show lines without significant drivers.
N = 51 and 47 for Sutton and Mégantic samples,
respectively. For test statistic details, degrees of
freedom, and R2 see Supplementary Data 1–5.
*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001.
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associated microbial communities, which in turn impact seedling growth.
Soil pH, soil Ca, and distance to conspecific are shown to be important
drivers of root-associated microbial alpha-diversity and community com-
position (Fig. 1). The direct and indirect effects of these abiotic and biotic
drivers on seedling growth further demonstrate how environmental factors
(soil pH, Ca, distance to conspecific) and microbial community composi-
tion (root fungi, soil AMF, root DSE colonization) can impact the perfor-
mance and potentially tree species adaptation to changing environmental
conditions (Fig. 5). Overall, this study provides insights into the complex
interactions between trees and root-associated microbes spanning multiple
microbial kingdoms, and how they affect tree growth, particularly at the
range limits. These findings emphasise the need to improve our under-
standing of the role of tree-microbe and microbe-microbe (e.g., bacteria-
fungi) interactions in natura to reveal their influence on tree species dis-
tribution and migration in changing climatic conditions.

Soil pH was a key driver of community composition across microbial
kingdoms, in line with previous studies which established pH as an
important edaphic factor influencing microbial communities along both
latitudinal and elevational gradients66–69. Soil Ca, which plays key functions
formicrobes by enhancingmicrobial cell wall stability, nutrient uptake, and

pH buffering, also impacted significantly soil and root endophytic richness,
diversity, and community composition70. Interestingly, the importance of
distance to conspecific on root AMF, soil AMF, and root fungi could be
explained by community assembly mechanisms such as dispersal or selec-
tion (e.g., plant-soil feedback). Dispersal limitation could lead to soil and
root microbial community turnover as distance to conspecific trees
increases, thus explaining in part the observed decrease in root AMF and
fungal diversity with higher distance to conspecific trees in one of the sites71.
On theotherhand, plant-soil feedbackmay influence root and soilmicrobial
richness, diversity, and composition as trees can alter the soil, pre-
dominantly through the secretionof specific root exudates to recruit or repel
certainmicrobial taxa72,73. Over time, these biochemical processes lead to the
selection of distinct microbes in the soil surrounding conspecific trees. As
distance from conspecific trees increases, the influence of conspecific root
exudates is reduced, leading to a turnover in microbial communities, even
when environmental conditions remain constant74.

In our study, DSE colonization showed a significant association with
root and soil AMF at both sites. However, the interpretation of this asso-
ciation, as positive or negative, is not straightforward, particularly due to the
complexity of interpreting data from axis scores (e.g., MDS), which mainly

Fig. 4 | Multivariate correlations between the four root microbial community
matrices and (i) the environment, (ii) host characteristics, (iii) neighboring plant
community, (iv) conspecific and root microscopy metrics, as well as (v) soil
chemistry. Multivariate correlations for (a and c) root and soil AMF; as well as for
(b and d) fungal and bacterial communities in (a and b) Sutton and (c and d)

Mégantic. Lines indicate significant correlations (see Supplementary Fig. 6 for
insignificant correlations). Numbers show RV coefficients (degree of association
between matrices in percentages). For all RV coefficients and significance statistics
see Supplementary Table 2. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001.
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capture the broad variation in soil and root AMF community composition
rather than direction of the interactions. This ambiguity is further com-
pounded by the diverse andunderstudied ecological roles ofDSE,which can
range frombeneficial to detrimental75,76. If someDSE are indeedmutualistic
and positively associated with certain AMF taxa, such tripartite interactions
between these fungal groups and plant roots might enhance the overall
health and performance of the plant host. However, considering the
diversity within DSE, encompassing various taxa from several orders of the
phylum Ascomycota, different DSE might show contrasting interactions
withplant roots andAMF17.On the otherhand, at least someDSEcould also
be detrimental toAcer, and the relationships we observe in our studymight
be antagonistic. In particular, the order Pleosporales, which was found at
higher relative abundance in sugar maple by De Bellis et al.75, might play a
crucial role in these interactions. Interestingly, a recent study by Netherway
et al.17 reported an effect of DSE colonization on root and soil fungi and
bacteria community composition and functional genes, highlighting an
intriguing role of DSE in structuring microbial interactions belowground.
Future work combining fieldwork and controlled experiments will be
instrumental tounderstand the functional rolesofDSEonmicrobe-microbe
and tree-microbe interactions17,75,76.

Contrary to our predictions, elevation was not a primary driver of the
shifts in microbial communities at both sites. However, we did observe a
shift in fungal community composition along elevation at Sutton. Similarly,
wedetected a slightdecrease in fungal richness andShannondiversity aswell
as a decrease in bacterial richness and a hump-shaped relationship of root
bacterial diversity and elevation at Mégantic (Supplementary Fig. 1d, f, h).
Notably, root and soil microbial richness and diversity responses to
elevation show different patterns across studies: some indicate an increase
in soil fungi diversity with elevation77, while others report a decrease78.
Additionally, certain studies have identified a hump-shaped79, U-shaped54,80

or no change81 in diversity patterns along elevational gradients. As for sugar
maple microbiome, a previous study investigating changes in microbial
richness, diversity, and community composition along the same elevational
gradient at Mégantic, but using only two elevations (within and at species
range edge), had documented a decrease in root bacterial diversity54.
Interestingly, our dataset shows a hump-shaped relationship between root
bacterial diversity and elevation at the same site (Supplementary Fig. 1d),
thus providingmore resolutionon this spatial pattern andwarranting future
research intowhich abiotic or biotic factors contribute to this relationship at
mid-elevational ranges.

Covariation analyses demonstrated that root AMF communities were
correlated with the aboveground environment (canopy openness and ele-
vation), conspecific and root microscopy metrics, and soil chemistry (only
inMégantic), but not with host characteristics. The microbial communities
that showed a significant correlation with host characteristics were only

fungi and bacteria in Mégantic. This correlation can be attributed to the
well-established relationship between host nutritional status and commu-
nity composition82, as well as the influence of microbial metabolites on host
nutrient uptake and growth83,84. In contrast to our predictions, neighboring
plant community had a weak covariation with root and soil AMF com-
munities. Similarly, while fungi andbacteria covariedwith almost all studied
environmentalmatrices, theyshowednocovariationwithneighboringplant
community in Sutton85–87. To better understand codependency between
AMF and neighboring plant communities, future experimental studies
could try to keep constant the plant or AMF community while altering the
other. These multivariate correlations support our earlier results showing
the importance of distance to conspecific for sugar maple root-associated
microbes. Notably, comparatively weak correlations of neighboring plant
community and higher correlations of distance to conspecific with root-
associated microbes are in line with a growing number of studies that
demonstrate that understory plant communities have aminor contribution
to microbial communities as compared to dominant canopy trees88,89. For
example, dominant canopy trees, with their extensive root systems and
interactions with AMF and ECM fungi, are more likely to have a pro-
nounced impact on soil nutrient profiles and in return influence root
microbial communities.

Very rarely have studies on plant-microbe interactions provided
simultaneous data on soil mycorrhizae, root mycorrhizae, bacteria, and
fungi with both microscopy and genomics. This strength of our study
allowed us to highlight the significant correlations across almost all root-
associated microbial communities. These results suggest that, not only
higher-level processes such as dispersal limits or host selection can alter
microbial community composition, but that strong and complex inter-
kingdom interactions occur and contribute to shaping these communities.
For example, the strong correlation observed between bacterial and fungal
communities (S: 82%,M: 86%), suggests that these twomicrobial kingdoms
are deeply linked by trophic interactions (e.g., certain fungal groupsmayuse
bacterial metabolites) and/or respond to largely similar environmental
filters90,91. On the other hand, a weaker correlation between root and soil
AMF (23%), at least in one of the two sites, suggests niche differentiation of
soil and root AMF species, plant selectivity towards certain AMF species or
strains, or differences in resource allocation between soil and roots92,93.

In contrast to what we initially predicted, our data showed a positive
relationship between seedling growth and elevation at both sites (Fig. 2). In
an in natura study design in which we could not control for external vari-
ables, our SEM models explained respectively 42% and 52% of seedling
growth at both sites. These models highlighted the preponderant effect of
soil chemistry and root fungi, but not canopy openness or neighboring
understory plant communities, in driving sugar maple growth along two
elevation gradients.Ofnote,many studies havepreviously showedapositive

Fig. 5 | Structural equation models (SEM) representing the relationships among
environmental factors, root microbial communities, and seedling growth.
aMost parsimonious SEM showing relationships between seedling growth, envir-
onmental variables, and rootmicrobial community composition (soil AMFand root
fungalMDS1) for Sutton.bMost parsimonious SEMshowing relationships between
seedling growth, environmental variables, and root microbial community

composition (root AMF and fungal MDS1) for Mégantic. Solid and dotted black
arrows indicate significant positive and negative paths, respectively, while gray
arrows represent non-significant paths. Conditional R2 values (%) are displayed
below corresponding exogenous variables. Arrowwidth indicates the strength of the
standardized coefficients. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001.
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relationship between canopy openness (in particular canopy gaps) with
seedling growth, an effect that varied with the identity of the neighboring
canopy tree species94,95.

When exploring which fungal taxa may explain the observed pattern,
we found that the genusGyoerffyella (a fungal saprotroph) increased, while
the genusPezicula (a root endophyte) decreased in their relative abundances
withhigher seedling growth in Sutton.At this stage it is unclear howchanges
in the relative abundance of these two genera are linked to seedling per-
formance, warranting targeted experiments to understand the underlying
mechanisms. The higher seedling growth at the edge of sugar maple’s dis-
tribution could be explained by the enemy-release hypothesis, a pattern
previously observed at Mégantic53. However, in our study, we did not find
any evidence of fungal pathogens (or any other functional groups) changing
in their relative abundance with seedling annual growth. This could suggest
that there are no real hotspots of root pathogens, or higher AMF or ecto-
mycorrhizal abundances along seedling growth at both sites. Similarly, we
did not find evidence that would support the enhanced mutualism
hypothesis. For example, neither AMF colonization nor relative abundance
showed a significant association with seedling growth. These findings
indicate that other aspects of fungal communities, for example network
complexity and inter-taxa or inter-kingdom interactions, rather than their
relative abundances or colonization rates, could have significant influence
on seedling performance. Notably, the higher seedling growth at the edge of
distribution could also be explained by other mechanisms, such as lower
herbivore pressures ormicroclimatic variation (e.g., temperature) along the
gradient.

Understanding the mechanisms through which fungal community
influences seedling growth proves to be even more challenging when con-
sidering the strong covariation between fungal and bacterial community
matrices in our study (RVSutton: 82.3% and RVMégantic: 86.3%). This strong
correlation suggests that bacterial and fungal communities may not simply
coexist, but also interact in a manner that impacts plant growth96,97.
Importantly, trees not only respond to, but also shape their root and soil
microbial communities (e.g., by recruiting or repelling certain microbial
taxawith root exudates98 or by changingmicrobial legacy in the soil99). Thus,
to fully understand plant-microbe relationships and their implications for
plant performance and adaptation, future research should not only focus on
experimental manipulations decoupling the impacts of inter-kingdom
microbial interactions, but also investigate the role of trees in shaping
belowground microbial communities.

In conclusion, our results demonstrate that soil chemistry (pH andCa)
as well as distance to the closest conspecific trees are key drivers of root-
associated microbial communities. Sugar maple root microbial commu-
nities covary strongly across elevation gradients, especially root bacteria and
fungi. As sugarmaple seedling growth increased with elevation, soil pH and
root fungal community composition were correlated with seedling growth.
Altogether, our data provides evidence of the importance of both biotic and
abiotic factors on tree-microbe interactions and tree host growth. Our work
is one of the most comprehensive studies of tree-microbe interactions in
natura and suggests several major avenues to investigate further the roles of
tree rootmicrobiota at species range limits in the context of climate change.

Methods
Study sites
From 1981 to 2010, themean annual temperature was 6.1 °C (Sutton, value
measured ~238 masl) and 4.0 °C (Mégantic, value measured ~240 masl),
and the mean annual total precipitation was ~1310mm and ~1370mm,
measured at the nearest weather station for Sutton and Mégantic,
respectively100. As for soil properties, the upper layer of soil tends to be of
high acidity (pH of 4.6 ± 0.41 and 4.6 ± 0.5)0 in Sutton and Mégantic; and
high carbon-to-nitrogen (C:N) ratios (Supplementary Table 1)8. Along
these elevational gradients, variations in abiotic conditions are portrayed by
a transition of vegetation from AMF-dominated stands of temperate tree
species (mostly sugar maple [Acer saccharum], with some companion
ectomycorrhizal [ECM] species such asAmerican beech [Fagus grandifolia]

and yellow birch [Betula alleghaniensis]), to ECM-dominated stands of
boreal tree species including balsam fir (Abies balsamea) and spruces
(Picea spp.).

In summary, when comparing the two gradients (Supplementary
Table 1), Mégantic showed a higher elevation (p < 0.001), canopy openness
(p = 0.011), exchangeable soil calcium (p < 0.001), and magnesium
(p < 0.001), seedling growth (p = 0.001), as well as foliar phosphorus
(p = 0.001) and potassium (p = 0.001). Sutton showed a higher soilmoisture
(p = 0.041), total root length colonization by AMF (p = 0.016), and coloni-
zation by DSE (p < 0.001; Supplementary Table 1).

To characterize sugar maple root-associated fungi, bacteria, and
AMF along the elevational gradients, in 2021, we randomly sampled
50 sugar maple seedlings (�x = 12.3 years ± 4.3 standard deviation (SD)) at
each site in stands that had not been managed for at least 60 years
(Fig. 1b–d). One extra seedling was sampled at Sutton and three were lost at
Mégantic, yielding a total of 98. For each seedling, we measured
mean annual tip growth (terminal internode length mm), age (years),
height (cm), and root collar diameter (mm) as well as canopy openness
(using 360° photos above each seedling using a Gap light analyzer). To
capture understory plant communities in early season, for eachplant species
within 1m radius of each seedling we estimated percent cover using
the following five classes: (1) 0%–understory plants are absent; (2) 1%–25%,
(3) 25%–50%, (4) 50%–75%, and (5) 75%–100%. We also measured the
distance to the closest adult conspecific tree (DBH > 10 cm) and its diameter
at breast height.We collected seedling leaves, roots, and surrounding soil for
chemical andmolecular analyses. Soil samples (20 cm-deep cores,matching
depth of root systems of seedlings) were used to characterize AMF com-
munities and estimate soil properties (see below), while root samples
were used to characterize root-associated AMF, bacteria, and fungi
(see details below). Soil and root samples were kept on ice upon transpor-
tation to the laboratory, where they were stored at −20 °C (on the day of
collection).

Root sample preparation
Roots were cleaned using distilled water to remove residual attached soil
particles and organic matter. They were then divided into two subsamples,
one for microscopy and the other for molecular analyses. Subsamples for
mycorrhizal colonization were stored in FAA solution (5:5:50:40 for-
maldehyde: glacial acetic acid: 95% ethanol: distilled water) until root
clearing-staining. The second portion of acquisition roots was surface-
sterilized as in Wallace et al.54 to remove epiphytic organisms. Roots were
submerged in 15mL of 70% ethanol and vortexed at high speed for five
minutes, then vortex-rinsed three times with DNA-free water for three
minutes. Roots were then stored in sterile 2mL tubes at −80 °C.

Soil nutrients analysis
To quantify soil nutrients and moisture content, soil samples were first
homogenized. Then, 2mL per sample were transferred to a sterile tube for
molecular analyses. The remaining soil was placed in a 1 L aluminum foil
and oven-dried at 65 °C for 48 h to determinemoisture content in the soil (g
water per g dry soil). Sampleswere then sieved (0.5 cm) to remove rocks and
debris. 2 g of soil were used to determine pH in a 1:2 soil:water volumetric
ratio101. A second subsample of 10mL was finely ground using a soil mill
(BallMill). Subsequently, physicochemical analyseswere carried out on two
soil subsamples per seedling (total = 196 samples). Total carbon and
nitrogen were determined using dry combustion (LECO CR-412, LECO
Corporation, St. Joseph, MI, USA), while phosphorus and base cations
(calcium, magnesium, and potassium) were extracted from 2.5 g dry soil
with 25mL of Mehlich-III solution and quantified using inductively cou-
pled plasma emission spectrophotometry (ICP-AES).

Root staining and mycorrhizal quantification
To quantify mycorrhizal and dark septate endophytes (DSE) colonization,
we first stained sugar maple roots using the protocol of Vierheilig et al.102

(Supplementary Fig. 2). In summary, samples were treated for 4 h with 10%
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KOH at 90 °C in a water bath and then exposed to an alkaline hydrogen
peroxide solution (15% NH4OH, 15% H2O2; 70% H2O) for 15min. When
roots showed little root discoloration after these two steps, they were
exposed a second time to 10% KOH at 90oC in a water bath but this time
with checks every 15min to limit the alteration of the acquisition roots.
When roots had lost their epidermis and showed a golden coloration
(Supplementary Fig. 2), we performed a rinse with distilled water followed
by a five-minute soak in a 1% acetic acid solution at room temperature.
Roots were then exposed for 4min in a 5% v/v solution of ink (Waterman
Mysterious Blue) in 5% acetic acid. Successive washes in distilledwater were
performed to remove excess ink. Samples were stored in 50% lactoglycerol
for a minimum of 24 h before slide observation under light microscopy to
remove excess dye.

Stained root samples were then mounted on slides using a semi-
permanent mounting solution103 (Supplementary Fig. 2). Root length
colonization by arbuscules, vesicles, DSE, were scored using the grid-line
intersect method104. DSE are ubiquitous ascomycete fungal root colonizers
grouped based on morphological characteristics105,106. Although to this day
the effect of DSE on plant hosts is unclear, they can act as pathogens and
their virulence has been correlated to root colonization magnitude107.

Foliar elements quantification
Leaf sampleswereused tomeasure foliar elemental concentrations (K,P,Ca,
and Mg) according to the protocol of Renaudin et al.75. Samples were air-
dried for 72 h and grounded in liquid N2. Fifty milligrams of air-dried
sample were digested in 2mL of nitric acid (trace metal-free grade, Ther-
moFisher Scientific) and 200 μl of hydrogen peroxide (trace metal-free
grade,MilliporeSigma). Digestions started at room temperature for 30min,
followed by 1 h at 45 °C and 2 h at 65 °C in a heating block digestion system
(DigiPREP, SCP Sciences). Digested samples were diluted with Milli-Q
water (MilliporeSigma) to reach a 2%v/v acid concentration.Ca,Mg,K, and
P concentrations were measured by ICP-MS (X-Series II, ThermoFisher
Scientific) using rhodium (Rh) as the internal standard. All leaf nutrient
analyses were carried out in triplicates and concentrations were reported as
ppm (μg of element per g of leaf dry weight). Two samples could not yield
foliar nutrients measurements.

Soil and root DNA extraction, amplification, and sequencing
DNA was extracted from approximately 150mg of fresh roots using the
PowerSoil DNA Isolation Kit (QIAGEN, Hilden, Germany) with two
modifications following De Bellis et al.75. Soil DNA was extracted from
250mg of homogenized soil with the same extraction kit following the
manufacturer’s protocol. All extracted DNA extracts were then stored
at −20 °C.

To characterize root bacterial communities, we amplified the
V5-V6 region of the bacterial 16S ribosomal RNA gene using the
chloroplast-excluding primers 799F-1115R108,109. For root fungal commu-
nities, the internal transcribed spacer (ITS) region was amplified using
fungal-specific primers ITS-1F and ITS2110,111. For root and soil AMF
communities, we used the Glomeromycota-specific primer AML2112 and
the universal eukaryotic primerWANDA113. Primer sequences and reaction
conditions for each microbial group are showed in Supplementary Table 5.
For all amplicons, PCRproductswere visualized on 2%agarose gel andwere
normalized using Just-a-plate 96 PCR purification and normalization kit
(CharmBiotech) following the manufacturer protocol. Multiplexed ampli-
con libraries for eachof the three groupswerepreparedbymixingequimolar
concentrations of DNA. Pools were purified with AMPure XP using the
manufacturer protocol (Beckman Coulter). Quality control of the libraries
as follows: libraries were quantified using the Qubit™ dsDNAHS Assay Kit
(Invitrogen™) and the NEBNext® Library Quant Kit for Illumina®
(New England BioLabs). Average size fragment was determined with
Bioanalyzer (Agilent). Before sequencing, PhiX control library (Illumina)
was spiked into the amplicon pool to improve the unbalanced base com-
position. Sequencing was performed on Illumina MISEQ (CERMO-FC
platform, UQÀM).

Bioinformatics
Read processing was conducted using dada2114 in R115 including quality and
chimera filtering. Bacteria and root fungi read processing was conducted
using dada2 in R, which included quality and chimera filtering. Specifically,
for bacteria, the processing involved setting maximum expected errors
(argumentmaxEE) to a threshold of 2 for both forward and reverse reads,
truncating reads at a quality score below 2 (argument truncQ), and trun-
cating forward reads to 260 bp and reverse reads to 200 bp (argument
truncLen). Additionally, the first 19 bases of forward reads and the first 16
bases of reverse reads were trimmed (argument trimLeft) to remove primer
sequences and low-quality starting bases. For fungi, the processing involved
settingmaximum expected errors (argumentmaxEE) to a threshold of 2 for
both forward and reverse reads, truncating reads at a quality score below 2
(argument truncQ) and retained sequences of minimum 50 base pairs or
longer for the subsequent steps in the analysis. For bacteria and root fungi, to
reduce the presence of bioinformatic artifacts, we filtered amplicon
sequence variants (ASVs) with <10 reads in their respective dataset, as well
as ASVs not identified at the kingdom level.

16S taxonomy was assigned with SILVA version 138.1116 and for ITS
with UNITE version 8.366. For root and soil AMF, taxonomy was assigned
using an evolutionary placement algorithm (EPA)67. To affiliate reads via
EPA, we first filtered the ASV table to keep: (1) ASVs that were present in
more than one sample and (2) ASVs that, after rarefaction of the samples at
4000 reads, still had more than 100 reads. We then ran a series of BLAST
analyses against NCBI (SSU_eukaryote_rRNA and 18S_fungal_sequences)
and MaarjAM databases to remove ASVs that scored high against non-
AMF eukaryotes and other fungi, but not high against known AMF
sequences, or simply ASVs that were nowhere close to sequences found in
MaarjAM68. Then we aligned the filtered ASVs with the 1.5 kb reference
sequence published by Krüger et al.69. The maximum-likelihood phyloge-
netic backbone tree for these reference sequences was calculated using
RAxML117 and epa-ng118 was used to map query sequences on the reference
tree. Finally, we used GAPPA (a command line interface for phylogenetic
placement analysis)119 to assign the most likely taxonomy to each
query ASV.

For bacteria, we obtained a final dataset of 2,356,945 sequences
assigned to 7066 ASVs (Supplementary Table 6). For fungi, we obtained a
final dataset of 1,745,695 sequences assigned to 1797 ASVs (Supplementary
Table 6). Finally, for root and soil AMF respectively, we obtained a final
dataset of 344,267 and 95,011 sequences assigned to 182 and 173 ASVs
(SupplementaryTable 6). Summary statistics for (i) quality, chimera-filtered
sequences, and average sequence size, (ii) final ASV counts as well as (iii)
taxonomical annotation of the four final datasets are respectively presented
in Supplementary Tables 6 and 7.

In total, for root and soil AMF, we rarified each sample to 4000 reads,
when assigning taxonomy. For bacteria and fungi, the resulting read counts
after rarefactionwere the following: (i) for bacteria, we rarified to 9000 reads
for Mégantic and 12,000 reads for Sutton; (ii) for fungi, dataset was rarified
to 5500 reads for Mégantic and 4000 for Sutton.

To understand the relationship between fungal guilds, seedling annual
growth, and elevation gradients, we manually assigned functional traits to
fungal ASVs based on their taxonomic rank at the genus level using the
FungalTraitsdatabase for Sutton andMégantic, respectively120.We assigned
ASVs to a total of five functional guilds at each of two sites: (i) mutualists
(including AMF and ECM fungi), (ii) saprotrophs, (iii) pathogens
(including animal, lichenparasites andmycoparasites), (iv) other (including
root endophytes and lichenized fungi), and (v) unknown fungi (fungi that
couldnot be assigned to any functional guild) (see SupplementaryData6, 7).
We then calculated the relative abundance of each fungal guild (i.e., the
summednumberof readsof allASVs in eachguild outof the total numberof
reads) for each sample.

Site similarities in root microbial community dominance
The most prevalent AMF ASVs were respectively assigned to the family
Glomeraceae in roots and soil, while many mycorrhizal ASVs (62%) could
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not be assigned to a family (Supplementary Fig. 3; Supplementary Table 7).
For fungi, Sutton and Mégantic showed similar patterns in their pre-
dominant fungal classes and families (Supplementary Fig. 4a–d). Specifi-
cally, the Agaricomycetes class was predominant (S: 43%; M: 38%), closely
followed by Leotiomycetes (S: 31%; M: 30%) (Supplementary Fig. 4a, b).
Among fungal families the Hyaloscyphaceae (15%) and Tricholomataceae
(11%) were most relatively abundant in Sutton (Supplementary Fig. 4c),
while it was the Hyaloscyphaceae (14%) and Entolomataceae (10%) in
Mégantic (Supplementary Fig. 4d). For bacteria, the classes Actinobacteria
(S: 38%;M: 40%) andAlphaproteobacteria (S: 19%;M: 17%) were shown to
be most relatively abundant at both sites (Supplementary Fig. 4e, f). Finally,
the bacterial families Actinospicaceae (S: 13%, M: 12%) and Xanthobacter-
aceae (S: 11%; M: 10%) were most dominant at both sites (Supplementary
Fig. 4g, h).

Statistics and reproducibility
All statistical analyses and visualization were conducted using R (version
4.2.1)115 on the seedlings (n = 98) sampled at our two sites (Sutton [S]n = 51
/Mégantic [M] n = 47)121,122. Two samples did not have an entry of seedling
height and an entry of annual growth, respectively. The values for these
samples were imputed with a principal component analysis using the mis-
sMDA package123. We also performed non-parametric Kruskal-Wallis
tests124 to assess the differences in environmental parameters between sites.
We performed non-parametric Kruskal-Wallis tests124 to assess the differ-
ences in environmental parameters between sites. For all analyses described
below, each matrix (e.g., root bacteria) contains 98 values, which represent
98 independent sampling units (i.e., seedlings). All our analyses are repro-
ducible from our published raw sequences, datasets, and codes121,122.

We calculated fungal, bacterial, soil and root AMF richness and
Shannon diversity on rarefiedmatrices using the function estimate.richness
from the phyloseq package125. We repeated rarefaction randomly 100 times
to compute averaged alpha-diversity (richness and Shannon index) metrics
following the steps outlined in Schloss126. These averages for fungal, bac-
terial, root AMF and soil AMF were used in subsequent analyses.

For community composition analyses, we used normalized our data
with variance stabilizing transformations (VST) in DESeq2 to account for
uneven sequencing depth127,128. We analyzed the variation in microbial
community composition (based on Bray-Curtis dissimilarity index) using
permutational multivariate analyses of variance (PERMANOVAs)129,130

with 9999 permutations, performed with the adonis2 function in vegan128.
To further explore the determinants of microbial community composition,
we conducted Principal Coordinates Analysis (PCoA) on ASV tables,
extracting site scores from the first and second axes (Multi-Dimensional
Scaling [MDS] 1 & 2) for each microbial community131. As a preliminary
step in building our structural equation models (SEMs), we evaluated the
associations between abiotic and biotic drivers with root-associated
microbial alpha-diversity (richness, Shannon index) and beta-diversity
(MDS1, MDS2) using the lm function in R, following the approach used in
Laforest-Lapointe et al.132. We used the function plot_model in sjPlot to
assess models’ fit133. To achieve normality in residual distribution, we log-
transformed a list of predictors using the function bestNormalize (see
Supplementary Data 1–5 for details on transformed predictors)134.We used
p ≤ 0.05 as the significance threshold.

Linear and multivariate models
Toexplore the effects of environmental factors on fungal, bacterial, root, and
soil AMF richness and diversity at each site, we focused on predictors that
were not or weakly collinear with one or a combination of the considered
predictors using variance inflation factor (VIF). In brief, we removed pre-
dictors sequentially, starting with those that exhibited the highest VIF (see
Supplementary Fig. 5 for removed predictors). The VIFs of the subset were
all lower than the recommended cut-off value of 3 in all final models,
indicating that multicollinearity did not significantly affect model
inference135. Thefinal list of predictors for Sutton included elevation, canopy
openness, seedling growth, distance to conspecifics, conspecific diameter,

soil chemistry (soilmoisture, pH,Ca),AMFroot length colonization, vesicle
colonization, and total DSE colonization (Supplementary Fig. 5a). For
Mégantic, the final set included elevation, canopy openness, seedling
growth, distance to conspecifics, conspecific diameter, soil chemistry (soil
moisture, pH, Ca, P), AMF arbuscule colonization, vesicle colonization, and
total DSE colonization (Supplementary Fig. 5b). The same sets of predictors
were used to test the effect of abiotic and biotic factors on root and soilAMF,
fungal and bacterial richness, Shannon index, MDS1, MDS2, and com-
munity composition.

Multivariate associations
To evaluate the covariations between root-associated microbial commu-
nities, environmental factors, and neighboring plant communities, we cal-
culated RV coefficients with coeffRV function of the FactoMineR R
package136, a multivariate generalization of the squared Pearson’s correla-
tion. RV coefficients quantify the correlation between two matrices with
corresponding rows137,138, giving a single value ranging between 0 (no cor-
relation) and1 (perfect correlation). RVcoefficient significancewas assessed
using 999 permutations following Josse et al.139. We measured the covar-
iation between each pair of the nine following matrices: (1–4) fungal, bac-
terial, soil and root AMF; (5) aboveground abiotic environment (canopy
openness and elevation); (6) soil chemistry (soilmoisture,pH,C,N, P,K,Ca,
and Mg); (7) conspecific and root microscopy (distance to conspecific,
conspecific diameter, AMF root length colonization, arbuscule, vesicle
colonization, and total DSE colonization); (8) host characteristics (annual
growth, as well as foliar P, K, Ca, and Mg); and (9) the neighboring plant
community (Supplementary Fig. 6). We also investigated the degree of
associationbetween eachpair of rootmicrobialmatrices (e.g., root bacteria–
root fungi, root fungi – root AMF).

Structural equation models
We conducted Structural Equation Models (SEM) to investigate the direct
and indirect effects of soil chemistry, canopy openness, soil moisture, dis-
tance to conspecifics, conspecific diameter, AMF root length, vesicle,
arbuscule and DSE colonization, as well as soil- and root-associated
microbial communities (soil AMFMDS1, root AMFMDS1, fungal MDS1,
and bacterial MDS1) on seedling growth, using the package
PiecewiseSEM140. Models included five exogenous variables: seedling
growth, soil AMF MDS1, root AMF MDS1, fungal MDS1, and bacterial
MDS1. In examining the indirect impact of the environment on seedling
growth throughmicrobial communities, we operated under the assumption
that the primary factors influencing microbial communities were those
previously identified to have a significant association with microbial com-
munities in linear regressions and PERMANOVAs (Supplementary
Fig. 7a, b for Sutton and Mégantic, respectively). We then assessed the
overall model fit using direction separation tests (d-sep) based on Fisher’s C
statistics with models being considered if p > 0.1.We simplified ourmodels
using a backward stepwise elimination procedure for which we con-
secutively removed pathways with the highest p-value. Endogenous vari-
ables were allowed to drop from the model in case effects were not
significant (p > 0.05). The model with the lowest Akaike information cri-
terion was then selected as the best fit base model.

Relative abundance of functional guilds and multivariate gen-
eralized linear model
To further investigate the significant association that was detected between
fungal community composition and seedling growth, we used two
approaches. First, we used the lm function in R to model seedling annual
growth as the response variable, with the e relative abundances of fungal
mutualists, saprotrophs, pathogens, other fungi, and unknown fungi as
predictor variables. Second, to explore, which fungal taxa can explain a
significant association that was detected between fungal community com-
position and seedling growth, we ran a multivariable generalized linear
model (GLM). That is, a GLM was fitted to each of the 20 most abundant
fungal families and genera using the manyglm function in the mvabund
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package141. In total four models, two for Sutton and two for Mégantic, were
fitted using negative binomial probability distribution. VST-transformed
ASV tables were used as response variables. To do that, we modeled the 20
most abundant families and genera in Sutton andMégantic as a function of
seedling growth.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
All amplicon sequencing data generated in this study is deposited on the
National Center for Biotechnology Information’s (NCBI) Sequence Read
Archive under BioProject accession number PRJNA1065908 and are
available here: www.ncbi.nlm.nih.gov/bioproject/PRJNA1065908. All
metadata, taxa, and ASV tables and the numerical source data behind for
Fig. 2 are available on Figshare121.

Code availability
All scripts for data analysis are available on Figshare122.
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