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Accurate prediction of RNA secondary
structure including pseudoknots through
solving minimum-cost flow with learned
potentials
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Pseudoknots are key structure motifs of RNA and pseudoknotted RNAs play important roles in a
variety of biological processes. Here, we present KnotFold, an accurate approach to the prediction of
RNA secondary structure including pseudoknots. The key elements of KnotFold include a learned
potential function and a minimum-cost flow algorithm to find the secondary structure with the lowest
potential. KnotFold learns thepotential from theRNAswith knownstructures using an attention-based
neural network, thus avoiding the inaccuracyof hand-crafted energy functions. The specially designed
minimum-cost flow algorithm used byKnotFold considers all possible combinations of base pairs and
selects from them the optimal combination. The algorithm breaks the restriction of nested base pairs
required by the widely used dynamic programming algorithms, thus enabling the identification of
pseudoknots. Using 1,009 pseudoknotted RNAs as representatives, we demonstrate the successful
application of KnotFold in predicting RNA secondary structures including pseudoknots with accuracy
higher than the state-of-the-art approaches. We anticipate that KnotFold, with its superior accuracy,
will greatly facilitate the understanding of RNA structures and functionalities.

Ribonucleic acid (RNA) are polymermoleculeswith essential roles in a large
variety of biological processes1,2, including transcription, translation3,
catalysis4, gene expression regulation5, protein synthesis6, and degradation7.
Most biologically active RNAs, say mRNA, tRNA, and non-coding RNAs
(ncRNAs), usually fold into specific structures due to the existence of self-
complementary parts formed by base pairing. These structures, together
with RNA primary sequences, largely determine the biological functions of
RNAs8; thus, a deep understanding of RNA structures is of great
significance.

RNA structures can be experimentally determined using X-ray
crystallography9, nuclear magnetic resonance10, or cryo-electron
microscopy11. Besides, RNA secondary structures, which typically
form through pairing certain bases with hydrogen bonds and are stable
and accessible in cells12,13, can be experimentally investigated using
enzymatic and chemical probing methods14,15. These experimental
determination technologies have achieved great progress; however, the

high experimental cost usually required by these technologies16 pre-
cludes their applications – over 24million ncRNAs have been sequenced
and collected in the RNAcentral database17 but only a tiny fraction of
themhave their structures experimentally determined18. Compared with
these experimental determination technologies, computational predic-
tion of RNA structures purely from RNA sequences is substantially
efficient and has become a promising method for understanding RNA
structures.

Thermodynamic models are commonly employed in RNA secondary
structure prediction, as they quantify the stability of an RNA structure by
calculating its folding free energy change and then select the structure with
the lowest free energy or the maximum expected accuracy as the most
probable one in the entire structure ensemble19–21. Turner’s nearest-
neighbor model21, a representative of thermodynamic prediction approa-
ches, decomposes an RNA secondary structure into a collection of nearest-
neighbor loops. It characterizes these loops by using multiple free energy
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parameters and then sums up the parameters to obtain the free energy of the
entire secondary structure22,23. The free energy parameters are typically
determined using experimental techniques, such as optical melting24, or
determined statistically through machine learning analysis of known RNA
structures25–27. The optimal base pairs for the secondary structure with the
lowest free energy or the maximum expected accuracy can then be calcu-
lated using the recursive dynamic programming technique28. The repre-
sentative prediction approaches using this strategy include mfold19,
RNAfold29, and RNAstructure30.

RNA structures often contain a unique type of structure motif known
as pseudoknots (Fig. 1), which are bipartite helical structures formed by
pairing a single-stranded region inside a stem-loop structure with a com-
plementary stretch outside31. Pseudoknots can serve as standalone elements
or parts of complex RNA structures for stabilization32,33, replication, RNA
processing, inactivation of toxins, and gene expression control34–36. Thus,
understanding pseudoknots is important.

Despite the importance of pseudoknots, accurately predicting RNA
secondary structure including pseudoknots is challenging, partly due to
the various composition of loops and helices and the lack of sequence-
specific features37. Calculating the lowest free energy pseudoknotted
structure under the nearest neighbor model has been proved to be NP-
hard38. To address this problem, conventional prediction approaches
make compromises by limiting pseudoknot types or even focusing on
pseudoknot-free structures only. However, even when imposing rea-
sonable limitations on pseudoknot types, the conventional dynamic
programming algorithms still need O(L4) ~O(L6) time for an RNA with
L bases, thereby precluding their applications for medium or large
RNAs39–42. Other approaches, such as ILM43, HotKnots44, FlexStem45,
ProbKnot46, BiokoP47, and IPknot48,49, circumvent this computation
difficulty using heuristic strategies. Although these approaches are
relatively fast, they often cannot guarantee the quality of the predicted
secondary structures. Recently, deep learning has been applied to predict
base pairing probabilities with promising results. The popular deep
learning-based approaches include SPOT-RNA50, E2Efold51, and
UFold52. However, constructing the secondary structure from the pre-
dicted base pairing probability remains a challenge.

In this study, we report an accurate and fast approach (called Knot-
Fold) to the prediction of RNA secondary structure including pseudoknots.
KnotFold comprises two key elements:

(1) A structural potential learned using attention-based neural
network: KnotFold learns a structural potential from known RNA
structures, i.e., it predicts the base pairing probabilities for any two bases
using an attention-based neural network and then transforms the pre-
dicted probabilities into a potential function. This strategy reduces the
inaccuracies of hand-crafted free energies as it is learned from a large
number of RNAs with known structures. Unlike the nearest-neighbor
model calculating the contribution of a base pair to free energy according
to its neighboring base pairs, the self-attention mechanism enables
KnotFold to capture the relationship between bases, including long-
distance interactions and non-nested base pairs, thus making it more
suitable for identifying pseudoknots.

(2) A specially designed minimum-cost flow algorithm to find the sec-
ondary structure with the lowest potential:We realize the structure with the
lowest potential by solving a minimum-cost network flow problem. Briefly,
the network uses nodes to represent bases and uses edges to represent base
pairs with appropriate capacity and cost for each edge according to the
calculated potential values. This way, KnotFold can consider all possible
combinations of base pairs rather than posing constraints on pseu-
doknot types.

We evaluatedKnotFold onmultiple benchmark sets, including PKTest
(1009 RNAs), TS0 (1305 RNAs), and RfamNew (472 RNAs). KnotFold
exhibits performance improvements inpredictingpseudoknots, particularly
for pseudoknotted base pairs (see Section for the classification of base pairs
and Fig. 1 b for an example). We anticipate that the enhanced accuracy of
KnotFold will contribute to comprehending RNA structures and
functionalities.

Results
In this section, we first demonstrate the concept of KnotFold using RNA
CP000097.1_937913-937973 (retrieved from Rfam53) as a repre-
sentative, and then exhibit the performance of KnotFold on three bench-
marks (includingPKTest,TS0, andRfamNew), and compare itwith existing
approaches as well. We further construct a confidence index that measures
the reliability of the predicted secondary structures.We also analyze the role
of the key elements of KnotFold through examining the running process of
KnotFold on a representative RNA.

Overview of the KnotFold approach
KnotFold predicts the secondary structure of a target RNA through three
main steps, i.e., predicting the base pairing probabilities for any two bases of
the given RNA, constructing a potential function using the acquired base
pairing probabilities, and realizing the optimal secondary structure with the
lowest potential using a specially designed minimum-cost flow algorithm.
We describe these steps in detail as follows.

Learning the base pairing probability. For an RNA sequence x with L
bases, we describe one of its possible secondary structures as an L × L
matrix S = {Sij∣Sij ∈ {0, 1}, 1 ≤ i, j ≤ L}, where Sij = 1 if the i-th base and
the j-th base form a base pair in the secondary structure and Sij = 0
otherwise. To find themost likely secondary structure for the target RNA
sequence, we first apply an attention-based deep neural network to
predict the base pairing probability P(bpi,j∣x) for any two bases i and j. In
particular, the neural network uses transformer encoder layers54 to
encode bases and then calculates the outer product of the encoding of
any two bases, which is further projected as an L × Lmatrix, representing
the pairing probabilities P(bpi,j∣x). The use of self-attention mechanism
gains our approach an advantage that, when predicting the pairing
probabilities between two bases, the entire sequence including long-
range interactions, rather than these two bases alone, is taken into
consideration.

Constructing structural potential considering all pairs of bases. To
measure the likelihood of a secondary structure S for an RNA with its
sequence x, we construct an RNA-specific structural potential from the

Fig. 1 | An example of RNA secondary structure including pseudoknots
(CP000097.1_937913-937973). a The RNA secondary structure includes a pseu-
doknot formed by five base pairs: 4C-51G, 5G-50C, 6U-49A, 7U-48A, and 8G-
47C. b Base pairs are divided into three categories for better evaluation of structures
including pseudoknots: (i) pseudoknotted (PK) base pairs (in magenta), (ii)
pseudoknot-free (PKF) base pairs (in blue), and (iii) crossing-pseudoknot (CPK)
base pairs (in green).
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predicted base pairing probabilities P(bpi,j∣x) as follows:

EðS; xÞ ¼ �
X

i<j

Si;j ¼ 1

log
Pðbpi;jjxÞ

Pðbpi;jjlengthÞ

�
X

i<j

Si;j ¼ 0

log
1� Pðbpi;jjxÞ

1� Pðbpi;jjlength Þ
þ λ

X

i<j

Sij:

ð1Þ

Here, the first and second term account for the contributions by each
base pair, with P(bpi,j∣length) representing the reference base pairing
probabilities employed to rectify the over-representation of the prior. The
third term introduces a penalty on unsuitable structures exhibiting either an
excess or a deficiency of base pairs, with λ representing the weight of this
term. We provide the details of the reference base pairing probabilities in
Methods and the discussion on λ in Supplementary Text.

Calculating the optimal secondary structure. To find the optimal
secondary structure S that minimizes the potential E(S, x), KnotFold
solves a modified minimum-cost flow problem55–57, in which the optimal
flow corresponds to the optimal secondary structure. Briefly speaking, we
first construct a bipartite graph, in which both parts consist of L nodes,
and each node corresponds to a base of the given RNA.We draw an edge
from each node in the left part to each node in the right part. We further
add an extra node (called source node, denoted as s) and connect it to each
node in the left part. Similarly, we also add an extra node (called sink node,
denoted as t) and connect it by each node in the right part. The key point
of KnotFold is that, by setting an appropriate capacity and cost for each
edge according to the calculated potential values, theminimum-cost flow

for this network-flow problem exactly corresponds to the secondary
structure with the lowest potential. The algorithm to solve theminimum-
cost flow, together with the setting of capacities and costs for edges, are
described in more detail in Methods.

Using RNACP000097.1_937913-937973 (containing 61 bases,
see Fig. 2a) as a representative of pseudoknotted RNA, we demonstrate the
basic idea and main concepts of KnotFold as follows:

First, using a deep neural network, KnotFold predicts the base pairing
probability and calculates the potential accordingly. As shown in Fig. 2, the
potential exhibit three strips with low values. These strips, which are per-
pendicular to the main diagonal, provide strong signals of three possible
base pair stackings formed by the base pairing between the regions [4, 8]
and [47, 51], [10, 15] and [20, 25], and [36, 43] and [53,
61], respectively.

Next, KnotFold constructs a flow network with associated cost and
capacity on edges. Each edge’s capacity is set as 1, thus posing a restriction
that a base can pair with at most one base, and the edge’s costs are set
according to the learnedpotential function. For example, the edges5G-50C
and 41U-56A are assigned with a negative cost of −8.84 and −0.47,
respectively. In contrast, the edges 5G-41U and 41U-50C have a positive
cost of 11.93 and 9.35, respectively.

Then, KnotFold calculates the minimum-cost flow using the
specially designedalgorithmdescribed inMethods.Here, the cost of aflow is
defined as the sum of costs over all edges traveled by the flow. To solve the
minimum-costflow, the algorithmbeginswith a zeroflowand continuously
improves the current flow by adding, removing, or replacing some edges, in
the hope of decreasing the total cost of the flow step by step. In the case of
RNA CP000097.1_937913-937973, after a total of 36 steps of
improvement, the algorithm eventually acquired the minimum-cost
flow with a total cost of −351.6, among which 5G-50C and 56A-41U
are saturated, whereas 5G-41U and 50C-41U are empty edges (Fig. 2b).
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Fig. 2 | Overview of the KnotFold approach to predicting RNA secondary
structure including pseudoknots. a The main procedures of KnotFold illustrated
using CP000097.1_937913-937973 as an example: KnotFold first predicts the base
pairing probabilities for any two bases of the target RNA, then constructs a potential
function based on the acquired base pairing probability, and finally realizes the
optimal secondary structure with the lowest potential using the specially designed
minimum-cost flow algorithm. Here, the flow network shows four bases, i.e., 5G,
41U, 50C, 56A, and 12 edges among these bases as representatives, and KnotFold
selects the corresponding base pairs5G-50C (inmagenta) and41U-56A (in green)

as part of the predicted secondary structure. The final prediction consists of a total of
18 base pairs but only one false-positive base pair 15G-20C (in blue). b The
iteration steps of solving the optimal flow. The proposed algorithm begins with a
zero flow with no edges and iteratively adds new edges to the current flow, or
sometimes removes existing edges. We use KnotFold to construct the secondary
structures corresponding to the intermediate flows. The cost decreases as iteration
proceeds and finally reaches −351.6 after 36 steps. During this process, some base
pairs are newly added (shown as orange lines here) while some are removed, which is
described in more detail in Supplementary Fig. 5.
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Finally, we obtained a predicted secondary structure using the edges
traveled by the optimal flow, i.e., selecting the saturated edges with the flow
value of 1. In this case, KnotFold reported 18 base pairs, including 5G-50C
and 41U-56A, and successfully identified the pseudoknot (Fig. 2).

Performance evaluation and comparison with existing approa-
ches over pseudoknotted RNAs
We evaluated KnotFold and nine existing approaches in terms of the
accuracy of the predicted secondary structure and base-pair probabilities.
We further investigated how pseudoknot types and RNA length affect these
predictions.

Secondary structure prediction accuracy for pseudoknotted RNAs.
To evaluate the performance of KnotFold on pseudoknot identification,
we constructed a dataset (PKTest) by randomly selecting 1009 pseu-
doknotted RNAs from bpRNA58 and Rfam 14.553, with a nucleotide
length limit of 500. We performed filtering such that the sequence
identity between PKTest and the training set is below 80%, thus avoiding
the overlap between training and test sets (see Methods for details of
dataset construction).

We compared KnotFold with nine widely-used RNA secondary
structure prediction methods, including RNAstructure30 ProbKnot46,
HotKnots44, pKiss42, Knotty59, IPknot48,49, SPOT-RNA50, MXfold260 and
UFold52. These approaches, except MXfold2 and RNAstructure, support

pseudoknot prediction. Among these approaches, ProbKnot, pKiss, Knotty,
HotKnots, and IPknot use dynamic programming or heuristic method to
predict structures with theminimum free energy or themaximum expected
accuracy, whereas UFold and SPOT-RNA fold structures using rule-based
strategies from base pairing probabilities predicted by deep learning tech-
niques. In the case ofMXfold2 andUFold,we initially assessed their released
versions. However, the performance of deep learning models is affected by
training data size, thus we mitigated potential biases and ensure fair com-
parison by retrainingMXfold2 and UFold with the same dataset utilized by
KnotFold. We provide the details of these experiments in Supplementary
Text. Fig. 3a and Supplementary Table 1 suggest that KnotFold exhibits
superior performance compared to all other approaches on the PKTest
dataset, as demonstrated by its average F1 score. Specifically, KnotFold
achieves a highF1 score of 0.758, followedbyUFold (retrained version)with
an F1 score of 0.602. SPOT-RNA achieves an F1 score of 0.579, and
MXfold2 (retrained version) with an F1 score of 0.498.

Base-pair-level evaluation on pseudoknotted RNAs. The structural
configuration of pseudoknots poses a challenge to bio-computational
detection due to its “overlapping" nature38. Unlike other base pairs,
pseudoknot base pairs are not well nested and occur overlap one another
in sequence positions. This feature makes it difficult for standard
methods, such as dynamic programming algorithms, to detect non-
nested base pairs. To address this challenge, we classify base pairs in the

a b

c d

Fig. 3 | Performance ofKnotFold andnine existing approaches toRNAsecondary
structure prediction over PKTest data set. a The overall F1 scores of predicted
structures by various approaches evaluated on the PKTest dataset. b The prediction
accuracy of RNA secondary structure prediction approaches for pseudoknot-free

base pairs. c The prediction accuracy of RNA secondary structure prediction
approaches for crossing-pseudoknot base pairs. d The prediction accuracy of RNA
secondary structure prediction approaches for pseudoknotted base pairs. Error bars
in b–d represent standard errors.
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target structures into three categories based on their structural motifs,
inspired by IPknot48: (i) pseudoknot-free (PKF) base pairs, which do not
cross with any other base pair, (ii) pseudoknotted (PK) base pairs, which
are the minimum set of base pairs that, if removed, the remaining sec-
ondary structure would be pseudoknot-free, and (iii) crossing-
pseudoknot (CPK) base pairs, which cross with some pseudoknotted
base pairs (see Fig. 1b for an example). For the three categories of base
pairs, pseudoknot-free base pairs are nested base pairs, whereas crossing-
pseudoknot and pseudoknotted base pairs are non-nested. Detecting
these non-nested base pairs, particularly pseudoknotted base pairs, is
crucial for accurate structure prediction approaches.

To better evaluate the performance of RNA secondary structure pre-
diction methods on structures containing pseudoknots, we conduct a base-
pair-level analysis on the PKTest dataset. As summarized in Fig. 3 and
SupplementaryTable 2, KnotFold achieves the accuracy of 0.697, 0.783, and
0.734 for pseudoknot-free, crossing-pseudoknot, and pseudoknotted base
pairs, respectively. Interestingly, the majority of current methods demon-
strate satisfactory performance when predicting pseudoknot-free and
crossing-pseudoknot base pairs, but less so for pseudoknotted base pairs.
Specifically, the prediction accuracy for most techniques surpasses 0.4 for
pseudoknot-free and crossing-pseudoknot base pairs but falls short of 0.25
for pseudoknotted base pairs. KnotFold, however, offers a more consistent
performance across all base pair types, boasting a 37% improvement over
the next-best approach, pKiss, with an accuracy of 0.260 for the pseu-
doknotted base pair category. As a result, KnotFold outperforms other
approaches across the three base pair categories, with its superiority being
particularly evident for crossing-pseudoknot and pseudoknotted base pairs.

We further observe that approaches designed for pseudoknot predic-
tion do better in pseudoknotted base pair identification. For example,
although pKiss and Knotty exhibit modest accuracy levels for pseudoknot-
free base pairs (0.454 and 0.382, respectively) and crossing-pseudoknot base
pairs (0.390 and 0.301, respectively), they achieve relatively high accuracy
for pseudoknotted base pairs prediction (0.260 and 0.236, respectively). In
contrast, MXfold2 and RNAstructure yield poor performance for pseu-
doknotted base pair prediction, with respective accuracies of 0.137 and
0.144. This performance difference may lie in the construction strategy of
these approaches. For example, the dynamic programming algorithm used
by MXfold2 and RNAstructure, which takes a recursive scoring system to
identify paired stems and consequently, fails in detecting non-nested
base pairs.

The prediction accuracy on RNAs with various pseudoknot types.
Pseudoknots can be classified according to its complexity, and compli-
cated pseudoknots are commonly regarded more difficult to predict.
Here, we adopted the complexity category proposed byMKucharík, et al.,
which classifies pseudoknots into four types, includingH-type (involving
a loop and a single-stranded region outside the loop), K-type (involving
interactions between loops), as well as more intricate L-type and M-type
pseudoknots61. According to this category, 720 out of the 1009 pseu-
doknotted RNAs in PKTest are classified asH-type, 218 as K-type, and 71
as L- or M-type.

We summarized the performance of KnotFold and other nine
approaches in Supplementary Table 1. As shown in this table, KnotFold
achieves F1 scores of 0.713, 0.782, and 0.783 for H-type, K-type, and L- or
M-type pseudoknots, respectively. It is noteworthy that many established
prediction methods, including SPOT-RNA, IPknot, pKiss, and Knotty,
workwell on theH-type andK-type pseudoknots but relativelyworse on the
L- or M-type pseudoknots.

Furthermore, we exhibited two solid cases in Supplementary Fig. 1,
where KnotFold succeeds in identifying both K-type and L-type pseu-
doknots. These instances highlight KnotFold’s unique strength in addres-
sing complex RNA structures that are traditionally hard to predict.

The prediction accuracy for RNAs with various length. To assess the
accuracy of RNA secondary structure prediction for various RNA

lengths, we stratify the RNA sequences in PKTest into three groups based
on length: 535 RNAs ranging from 0 to 149 nt, 229 RNAs ranging from
150 to 299 nt, and 255 RNAs ranging from 300 to 499 nt. For each RNA
length group, we depicted the frequency density of the overall F1 score
and prediction accuracy for pseudoknotted base pairs in Fig. 4. To
facilitate clearer visual comparisons, we presented the results of the most
accurate five approaches, including KnotFold, SPOT-RNA, MXfold2,
IPknot, and ProbKnot. KnotFold demonstrated F1 scores of 0.708 (with
improvements of 0.102), 0.642 (0.133 improvements), and 0.646 (0.167
improvements) for RNAs with lengths in the ranges of 0–149, 150–299,
and 300–499, respectively. Concurrently, KnotFold achieved an accuracy
of 0.763 (0.428 improvements), 0.673 (0.527 improvements), and 0.701
(0.553 improvements) for pseudoknotted base pairs in each group. The
results show that KnotFold’s advantage is more pronounced for longer
RNAs, indicating its ability of identifying long-distance and non-nested
base pairs.

Figure 5 provides a concrete example: AP009044.1_2333762-
2333355 is a 408-nucleotide-long RNA containing five large bulges
together with two pseudoknots, one connecting regions [12, 18] and
[349, 355], while the other connects regions [79, 82] and [289,
292]. UFold, ProbKnot and MXfold2 report secondary structures with
five, four and three bulges, respectively; however, neither of them correctly
identified the pseudoknots. IPknot, SPOT-RNA, and Knotty only success-
fully identified one pseudoknot each. Additionally, RNAstructure, pKiss,
and UFold reported structures with F1 scores of 0.367, 0.383, and 0.689. In
contrast, KnotFold successfully identified both the five large bulges and the
two pseudoknots, achieving a high prediction accuracy of 0.943. A similar
observation can be made for another pseudoknotted RNA, TRW-
314253_1-314 (see Supplementary Fig. 2 for further details).

Overall, KnotFold shows superiority in improving RNA secondary
structure prediction across different RNA lengths and base pair categories,
particularly for challenging pseudoknotted structures.

Assessing the robustness of KnotFold
To investigate the robustness of KnotFold, we performed two types of cross
validation as conducted by MXfold260, including sequence-wise cross-
validation, in which individual RNA sequences are partitioned into test
datasets and training datasets, and family-wise cross-validation, in which
test RNAs belong to different families as RNAs in training datasets.

Sequence-wise cross-validation. We evaluated KnotFold and the
existing approaches on TS0, a subset extracted from bpRNA-1m58 by
SPOT-RNA50. Specifically, SPOT-RNA first extracts 13,419 non-
redundant RNAs with length less than 500 bases from by running CD-
HIT-EST62, and randomly splits them into three datasets, including
training set TR0 (10,814RNAs), validation setVL0 (1300RNAs), and test
set (1305 RNAs, containing 129 pseudoknotted RNAs). For fair com-
parison, we trained KnotFold on SPOT-RNA’s training set TR0 and then
evalutated its performance alongside existing approaches on the test set
TS0. The existing approaches were executed with their default parameter
settings.

As shown in Fig. 6 and Supplementary Table 3, KnotFold achieves a
high F1 score of 0.666, followed by UFold with an F1 score of 0.630, and
SPOT-RNAwith an F1 score of 0.596. Detailed comparison of the accuracy
of each target structure constructed by SPOT-RNA and KnotFold (Fig. 6b,
c) indicates that KnotFold outperforms SPOT-RNA for most target RNAs
(67.1%), and this ratio is even higher for the pseudoknotted targets (76.0%).

Family-wise cross-validation. To test whether these approaches can
predict RNAs from new families, we collected 1435 sequences from 168
newly added RNA families after the release of Rfam 14.5. After removing
redundant sequences at 80% sequence-identity cut-off using CD-HIT-
EST62, we acquired 472 RNAs (containing 51 pseudoknotted RNAs) and
used them to build a test set RfamNew (see Methods for more details of
RfamNew). This data process guarantees that the test set RfamNew has
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no overlap with the training set at the family level. As sequence-wise
cross-validation, the existing approaches were executed with their default
parameter settings.

As shown in Fig. 6d–f and Supplementary Table 4, KnotFold, together
with nine existing approaches, exhibited perfect prediction accuracy.
KnotFold achieved an F1 score of 0.667, slightly lower than IPknot (0.681)
and MXfold2 (0.674). Head-to-head analysis suggested that the advantage
of KnotFold is much more clear in the pseudoknotted RNAs. We also
observed that IPknot, MXfold2, and RNAstructure achieved relatively high
accuracy on RfamNew than that on TS0 (Fig. 6d). The underlying reason
might be that these approaches emphasize the common characteristics
shared by various RNA families.

Constructing confidence index for secondary structure
prediction
For a prediction approach, an important issue is whether we can judge the
quality of its prediction results in advance. When the target structure of
RNA is already known, we can easily evaluate a predicted structure through
comparing it with the target structure; however, this issue becomes chal-
lenging when the target structure is not available. Here we present an index
that measures the confidence of the predicted secondary structure
for an RNA.

We constructed a confidence index according to the high correlation
between the average cost of saturated edges in the optimal flow reported by
KnotFold and the accuracy of secondary structure prediction. Here, an edge
is called saturated if it is traveled by the minimum-cost flow, which exactly
means the two bases corresponding to this edge form a base pair in the
predicted secondary structure. We observed that, on the 1131 RNAs in the
validation set, the Pearson’s correlation coefficient between the log average
cost over saturated edges and the prediction accuracy (F1 score) achieves
0.836 (Fig. 7). This strong correlation enabled us to use the log average cost
over saturated edges as a confidence index for the prediction. For example,
when setting the confidence index cut-off as 1.35, most of KnotFold’s pre-
dictions are highly accurate: for 717 out of 755 RNAs, the prediction
accuracy exceeds 0.60 (see Supplementary Fig. 7 for further details). The
proposed confidence index provides an effective way to assess the reliability
of RNA structure predictions.

Assessing the role of minimum-cost flow algorithm in KnotFold
To assess the role of the key elements ofKnotFold, we developed a variant of
KnotFold as control (called KnotFold-DP), which uses the same potential

function as KnotFold but employs dynamic programming technique
instead of minimum-cost flow to find the optimal secondary structure (see
Supplementary Text for further details of KnotFold-DP).

For the potential function we constructed (Eq. (1)), theminimum-cost
flow algorithm constructs an arbitrary secondary structure with the lowest
potential. However, when restricting RNAs to nested base pairs only, i.e.
non-pseudoknot RNAs, a dynamic programming algorithm could be
applied to construct the lowest potential structure.

We observed that KnotFold-DP can accurately predict secondary
structure for non-pseudoknot RNAs. In particular, sequence-wise and
family-wise evaluation indicate that KnotFold-DP gains 0.005 improve-
ments for the non-pseudoknot RNAs in TS0 and 0.008 improvements for
the non-pseudoknot RNAs in RfamNew.

However, KnotFold-DP showed poor performance on pseudoknotted
RNAs. Specifically, on PKTest dataset, KnotFold-DP achieved an accuracy
of 0.716 for pseudoknot-free base pairs, 0.698 for crossing-pseudoknot base
pairs, and only 0.176 for pseudoknotted base pairs, which is 55.8% less than
that byKnotFold. A failure case of KnotFold-DP is shown in Fig. 8: for RNA
AACY020619257.1_605-730, all five pseudoknotted base pairs
(shown in magenta) were completely missed by KnotFold-DP; in contrast,
KnotFold can successfully identify these base pairs. The failures can be
attributed to the fact that the dynamic programming algorithm is recursive,
making it suitable for nested base pairs. However, pseudoknotted base pairs
defy this recursion assumption, resulting in the identification of only a
subset of base pairs by KnotFold-DP.

Moreover, the minimum-cost flow algorithm could further enhance
the predictions of other methods based on the prediction of base pair
probabilities. For example, SupplementaryTables 7 and 8demonstrates that
the application of the minimum-cost flow algorithm can enhance the pre-
dictions of SPOT-RNA.

These findings highlight the role of minimum-cost flow algorithm and
the broader utility of the minimum-cost flow algorithm in improving the
prediction of pseudoknotted RNA structures.

Discussion
The results presented in this study emphasize the unique features of
KnotFold: KnotFold employs a deep neural network to learn a structural
potential considering all base pair interactions, making it suitable for
identifying long-distance interactions and non-nested base pairs, particu-
larly pseudoknots. Additionally, KnotFold utilizes a specially designed
minimum-cost algorithm to determine the secondary structure with the

0-149 300-499150-299Length  (nt)

Fig. 4 | Performance of RNA secondary structure prediction approaches over PKTest. The frequency density of the overall F1 and the accuracy of pseudoknotted base
pairs of five approaches including KnotFold, SPOT-RNA,MXfold2, IPknot, and ProbKnot are evaluated over three subgroups of PKTest, which are divided by RNA lengths.
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lowest potential. Through popular benchmark datasets, we demonstrate
KnotFold’s accuracy and superiority over the existing approaches. In
addition, we propose a confidence index for evaluating the prediction
accuracy of RNA secondary structures even when the ground-truth is
unknown. This confidence index facilitates robust assessments of the
reliability of KnotFold’s predictions.

KnotFold’s ideas can be readily extended without significant
modifications to solve other complex structural motifs. For instance, by
changing the edge capacity from 1 to 2, KnotFold can predict secondary
structures including base triples63, an important RNA structural motif
involving three bases interacting edge-to-edge through hydrogen
bonding64,65. The benchmark tests and case studies shown in Supple-
mentary Tables 12, 13, and Supplementary Fig. 3, 4 demonstrate that, the
enhanced KnotFold successfully identified base triples and predicted
RNA secondary structures including base triples with high accuracy.

This advantage will greatly facilitate the understanding of RNA
functions.

KnotFold constructs secondary structures using a specially designed
minimum-cost flow algorithm from base pairing probabilities learned by
neural networks. To investigate the advantages of our proposed algorithm
over the rule-based strategies, we examined the middle results of the pro-
posed algorithm.As shown inSupplementaryFig. 5, theproposed algorithm
sometimes removes certain base pairs that have been tentatively selected
using “backward flows", a unique feature of the network flow algorithm,
thereby obtaining the optimal secondary structure. Furthermore, the
structure ensembles constructedby these tentativeflowsyield a series of sub-
optimal secondary structures, which may provide a deep insight into the
predicted secondary structure.

The parameter λ in Eq. (1) is introduced to control the number of base
pairs expected to appear in the predicted RNA secondary structure,

a b

c d e

Overall: 0.615 
PKF:      0.840 
CPK:     0.308 
PK :          0.0

Overall: 0.646 
PKF:      0.733 
CPK:     0.654 
PK:           0.0

Overall: 0.367 
PKF:      0.587 
CPK:        0.0 
PK:           0.0

Overall: 0.943 
PKF:      0.987 
CPK:     0.846 
PK :          1.0

f

Overall: 0.518 
PKF:      0.667 
CPK:     0.231 
PK:           0.0

g

Overall: 0.432 
PKF:      0.600 
CPK:     0.231 
PK:           0.0

i

Overall: 0.689 
PKF:      0.827 
CPK:     0.654 
PK:        0.182

h

Overall: 0.400 
PKF:      0.640 
CPK:       0.0 
PK:          0.0

Fig. 5 | Predicting secondary structure of AP009044.1_2333762-2333355
using KnotFold and nine existing approaches. a The ground-truth secondary
structure of the target RNA, with pseudoknotted base pairs shown in red. The
predicted structures by KnotFold (b), ProbKnot (c), SPOT-RNA (d), MXfold2 (e),

UFold (f), HotKnots (g), IPknot (h), and Knotty (i) have accuracies of 0.943, 0.367,
0.646, 0.615, 0.689, 0.400, 0.432, and 0.518, respectively. KnotFold identifies all
pseudoknotted base pairs (in red) and 84.6% of crossing-pseudoknot base pairs.
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achieving a trade-off between precision and recall of predictions. As
demonstrated in Supplementary Fig. 6a, when setting λ as 4.2, the precision
and recall over the validation set achieve a balance. As the setting of λ is
strongly associated with the number of base pairs, we can modify the
objective function to treat λ as a function of the number of base pairs.

Specifically, the optimal λ displays a strong linear correlation with RNA
length (Pearson correlation coefficient: 0.988, as illustrated in Supplemen-
tary Fig. 6b). This finding allows us to appropriately set λ prior to running
KnotFold according to RNA length.

The generalization ability for new RNA families structure prediction is
a common challenge for deep learning based methods. To assess this issue,
we conducted a series of experiments. Family-wise cross-validation
experiments on RfamNew revealed that the performance of deep learning
models, including KnotFold, fell short compared to existing physics-based
models (e.g., IPknot). Similar results were observed on the TORNADO
dataset (seeSupplementaryTable 9 for details). The underlying reasonsmay
be the susceptibility to overfitting of deep learningmodels, and the low data
coverage and density over diverse structures, as discussed in earlier
studies66,67. To address this challenge, potential solutions include: 1)Actively
exploring the integration of inductive bias terms, such as statistical energy
terms, into the KnotFold model; 2) Considering the implementation of
more ensemble strategies to introduce greater diversity to the models. This
approach has proven effective in mitigating overfitting (see Supplementary
Tables 5 and 6 for further details); and 3) Viable efforts towards the
incorporation of relevant data. Beyond experimental determinations of
secondary structures, high-throughput experimental data such as SHAPE68

and PARIS69 yield nucleotide-level activity profiles, presenting an oppor-
tunity for integration70. As part of future work, we aim to enhance the
model’s robustness across RNA families.

To assess performance changes with lower sequence identity, we
evaluated KnotFold on the bpRNA dataset. KnotFold exhibited diminished
performance (0.761 to0.512)when trainedand testedondatasetswith lower
sequence identity cut-offs (0.80 to 0.40), as shown in Supplementary
Table 10. This highlights the common challenge for computational models
under stricter sequence identity cut-offs, leading to decreased performance.
In ongoing efforts, we are actively exploring strategies to improve the
model’s performance under these conditions.

a

d

b

e

c

f

Fig. 6 | Sequence-wise and family-wise evaluation of KnotFold and nine other
RNA secondary structure prediction approaches. a The overall F1 scores of pre-
dicted structures by various approaches over TS0 (1305 RNAs). b Head-to-head
comparison of built structures of SPOT-RNA and KnotFold over TS0. c Head-to-
head comparison of built structures of SPOT-RNA and KnotFold over pseudoknot

targets in TS0. d The overall F1 scores of predicted structures by various approaches
over RfamNew (472 RNAs). e Head-to-head comparison of built structures of
SPOT-RNA and KnotFold over RfamNew. f Head-to-head comparison of built
structures of SPOT-RNA and KnotFold over pseudoknot targets in RfamNew.

Fig. 7 | Correlation between the prediction accuracy and the estimated
confidence index. We use the value of average cost on saturated edges as the con-
fidence index (logarithmically transformed). For the 1131 RNAs in the validation
dataset, the Pearson correlation coefficient between the prediction accuracy
(F1 score) and confidence index reaches 0.836.
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We anticipate that KnotFold, with its superiority in accuracy and
efficiency, will greatly facilitate our understanding of RNAs with compli-
cated structures and their biological functions.

Methods
The KnotFold framework
The main steps of KnotFold are described in Algorithm 3, involving three
main steps: 1) predicting base pairing probabilities for any two bases in the
target RNA using an attention-based neural network, 2) calculating struc-
tural potential from these predicted probabilities, and 3) constructing the
optimal secondary structure with the lowest potential using a specially
designed minimum-cost flow algorithm.

The workflow of KnotFold [1] Target RNA sequence x The secondary
structure Sopt with the lowest potential Predict base pairing probabilities
P(bpi,j∣x) by the prior neural network; Predict reference probabilities
P(bpi,j∣length) by the reference neural network;

Construct a flow network G with edge capacities and costs calculated
according to P(bp∣x) and P(bp∣length); Calculate the lowest potential
structure Sopt through solving the minimum-cost flow;

Predicting base pairing probabilities using an attention-based
neural network
Network architecture. We propose an attention-based prior neural
network to predict base pairing probabilities P(bpi,j∣x) (Supplementary
Fig. 8). The prior neural network takes an RNA sequence of length L as its
sole input, and outputs an L × Lmatrix of base pairing probabilities. The
network comprises twomain steps, i.e., encoding bases using transformer
encoder layers54, and predicting the base pairing probabilities from the
base encoding thus acquired. These two steps are described in more
detail below.

Initially, each base type (A, C, G, U, or N) is converted into a learnable
embedding ofD dimensions using an embedding layer. This RNAsequence
embedding, denoted as Z 2 RL×D, is then processed through a stack of
transformer encoder layers. Transformer is an attention-based architecture
that can efficiently capture long-range dependencies within sequences54.
Each transformer encoder layer includes amulti-head self-attentionmodule
and a position-wise feed-forward network. By stacking several such layers,
the prior model effectively captures the context and dependencies of bases
within the given RNA sequence. As highlighted by Vaswani et al.54, the
transformer architecture possesses a permutation-invariant nature; thus, we
supplement the sequence embedding with relative positional encodings71.

Subsequently, the priormodel predicts base pairing probabilities based
on the base encoding thus acquired. We calculate the outer product of the
L ×D representation, obtaining a L × L feature map denoted as
gði; jÞ 2 RD×D; 1≤ i; j≤ L. Specifically, for the embedding features of base i

(ti 2 RD) and base j (tj 2 RD), their outer product is calculated as:

gði; jÞ ¼ ti � tj : ð2Þ

Here, “⊗ ”denotes the outer productoperation. Finally, a regression layer is
applied to each g(i, j), transforming the D ×D representation into the
probability that the i-th and j-th base form a base pair.

To correct the over-estimation of the prior probabilities, we also cal-
culate the reference probability P(bpi,j∣length) using a reference neural
network, which has the same architecture as the prior network but uses the
length of RNA instead of the entire sequence.

Loss function. To ensure that the predicted base pairing probabilities
closely resemble the ground-truth secondary structure, we calculate the
loss function using binary cross-entropy over all possible base pairs as
follows:

Loss ¼ �
X

i<j

½P�ðbpi;jÞ log Pðbpi;jjxÞ þ ð1� P�ðbpi;jÞÞ log ð1� Pðbpi;jjxÞÞ�:

ð3Þ

Here, P*(bpi,j) = 1 if bases i and j form a base pair in the ground-truth
structure, and P*(bpi,j) = 0 otherwise. This loss function measures the
dissimilarity between the predicted base pairing probabilities and the
ground-truth secondary structure.

Hyperparameter setting and training setup. For the balance of per-
formance andmodel size, we set the embedding dimensionD as 256, and
use 8 transformer encoder layers with 8 attention heads in the study,
resulting in a total of 6.5 million parameters. To fit the memory limita-
tion, we crop the RNA sequence to a 512 base fragment randomly if its
length exceeds 512 bases during training.

We train KnotFold with a batch size of 4 RNAs for 300,000 steps on
GPU (Tesla V100 PCIe, 16GBmemory).We use AdamW72 with a learning
rate of 0.001, β1 = 0.9, β2 = 0.999, L2 weight decay of 0.01, learning rate
warm-up over the first 30,000 steps, and linear decay of the learning rate. To
reduce the influenceof the bias of training sets,we employ amodel ensemble
strategy forKnotFold by calculating the average of base pairing probabilities
from five randomly initialized prior models.

Calculating the potentials from base pairing probabilities
We develop an RNA-specific structural potential, denoted as E(S, x), to
assess the likelihood of a secondary structure S for the target RNA sequence
x (Eq. (1)). Briefly speaking, the potential function considers the accumu-
lated contribution by all possible pairs of bases. In Eq. (1), the first and the

b ca

Fig. 8 | The difference betweenKnotFold and its variant KnotFold-DP illustrated
using AACY020619257.1_605-730 as an example. Both KnotFold and
KnotFold-DP use the same potential as their input, and they differ only in the
algorithms to find the secondary structure: KnotFold uses a specially designed
minimum-cost flow algorithm while KnotFold-DP uses the dynamic programming
algorithm. a The calculated potential for the target RNA. Here, circles highlight two

regions of base pairs that are crossing. b The predicted secondary structure by
KnotFold-DP. The orange dash lines represent the missing base pairs, while the blue
lines represent the false-positive base pairs. c The predicted secondary structure by
KnotFold. The base pairs missed by KnotFold-DP are successfully predicted (shown
in magenta).
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second term calculate the negative log-likelihood of the relative base pair
probabilities for all pairs of bases in the given secondary structure, whereas
the third term penalizes the inappropriate number of base pairs in the
secondary structure.

In fact, this potential function is designed to conform to the loss
function, as Eq. (3) can be reformulated as

Loss ¼ �P
i<j;Struthi;j ¼1 logPðbpi;jjxÞ �

P
i<j;Struthi;j ¼0 log ð1� Pðbpi;jjxÞÞ,

with Struth refers to the ground-truth secondary structure.
This way, the secondary structure S with the lowest potential E(S, x)

essentially describes the the most likely base pairs.

Constructing the flow network G
To realize the secondary structure with the lowest potential, we calculate the
minimum-cost flow of a network, in which the edge cost and capacity are
appropriately set such that the optimal flow corresponds to the secondary
structurewith the lowest potential. Briefly speaking, theminimum-costflow
problem is an optimization and decision problem to find the cheapest
possible way of sending a certain amount of flow through a flow
network73–75. In this problem, each edge in the network has an associated
cost, and the goal is to find the flow with the minimal cost.

The construction of the flow networkG is described inAlgorithm 3. In
particular,we initialize anetworkconsistingof a bipartite, inwhicheachpart
of the bipartite consists of L nodes that represent the L bases of the target
RNA. Each node in the left part is connected to each node in the right part
with an edge, which essentially represents a possible base pair. For the edge
(i, j) connecting the i-th base and the j-th base, we set its capacity as 1 and its
cost as H(i, j), the value of which is described as follows.

Hði; jÞ ¼ �½ log
Pðbpi;jjxÞ

Pðbpi;jjlengthÞ
� log

1� Pðbpi;jjxÞ
1� Pðbpi;jjlength Þ

� þ λ: ð4Þ

By setting the edge’s capacity as 1, the flow value of each edge inG is either 0
or 1, i.e., an edge should be either saturated (flow value is 1) or empty (flow
value is 0)74. This property ensures that, in this flow network, the optimal
flow essentially describes the secondary structure with the lowest potential,
and each saturated edge exactly corresponds to a base pair in the predicted
structure. A detailed derivation process is provided in Supplementary Text.

Construct a flow network G [1] RNA length L, edge costsH(i, j) Flow
network G Add L nodes to the left part Vleft and L nodes to the right part
VrightAdd two extra nodes: source node s and sink node t each node i∈Vleft

Addan edge (s, i)with a cost of 0 and a capacity of 1 eachnode j∈VrightAdd
anedge (j, t)with cost 0 andcapacity1 eachnode i∈Vleft eachnode j∈Vright

Add an edge (i, j) with a cost of H(i, j) and a capacity of 1

Solving the optimal flow using a specially designed minimum-
cost algorithm
We solve theminimum-cost flow in the constructed flownetworkG using a
modifiedminimum-costflowalgorithm (Algorithm3). Specifically,we start
from a 0-flow, i.e., all edges are initialized with a flow value of 0. Next, we
iteratively execute the following two steps:
(i) Constructing a residual graph Gf according to the current flow f. For

each edge (i, j) in the flow network, we add two edges into the residual
graphGf, including a forward edge (i, j)with capacity 1− f(i, j) and cost
H(i, j), and a backward edge (j, i) with capacity f(i, j) and cost−H(i, j).

(ii) Finding the shortest path from the source s to the sink t, denoted as
s⇝ t, in the residual graph Gf, followed by pushing along this path to
augment the current flow f. Here, the shortest s⇝ t path refers to the
path with the minimum accumulated cost of the edges traveled by
this path.Finally, we extract the saturated edges from the optimal flow,
i.e., the edges with a flow value of 1, and report a secondary structure
with base pairs corresponding to these saturated edges as the predicted
secondary structure.
Construct the secondary structure with the lowest potential using the

specially designed minimum-cost flow algorithm [1] Initialized flow net-
work G The optimal secondary structure Sopt Set the initial flow f as 0 the

residual graph Gf contains an s⇝ t path with negative cost Select a shortest
s⇝ tpathPAugment the currentflow f along thepathPUpdate the residual
graph Gf Construct S

opt from saturated edges
This proposed algorithm is derived from the classical successive

shortest path algorithm, proposed by Ford et al.55–57. Briefly, the successive
shortest path algorithm iteratively augments a flow along the cheapest path
from the source s to the sink t that has non-zero capacity until no more
augmenting paths can be found.

Unlike the classical algorithm, we use a modified stopping criterion by
early stopping the algorithm if no s⇝ t path with negative cost exists in the
residual network Gf. As illustrated by Ford et al.55, the proposed algorithm
maintains a feasible flow fwith the lowest cost among all possible flowswith
the same size as f. This property ensures our proposed algorithm reaches the
optimal flow corresponding to the secondary structure with the lowest
potential with the change of stopping criterion.

Theoretically speaking, the proposed algorithm runs efficiently, with a
time complexity of O(L3) for an RNA with L bases. As highlighted in pre-
vious works74,75, the flow augmentation (line 2 of Algorithm 3) is performed
for nomore than L times, and each augmentation process costsO(L2) time,
which is dominatedbyfinding the shortest path.Despite the theoretical time
complexity, the algorithm runs extremely fast in practice due to the unit
capacity of edges and the bipartite graph. For example, for anRNAwith less
than 1000 bases, the proposed algorithm can construct a secondary struc-
ture from base pairing probabilities within 20 s (Intel CPU 2.6GHz). We
provide the practical running time details for different RNA lengths of our
proposed algorithm in Supplementary Fig. 9.

Datasets and data processing
Datasets. In this study, we assessed the performance of various pre-
diction approaches using RNA extracted from several databases. Speci-
fically, we evaluated the following datasets:
(i) bpRNA-1m: This comprehensive dataset contains 102,318 RNA sec-

ondary structures from various sources, including Rfam (version 12.2).
We used bpRNA-1m for training, testing, and validation purposes58.

(ii) Rfam: This database contains 3940 RNA families (version 14.5). We
used RNAs released after the version 12.2 to extend our training,
testing, and validation datasets53.

(iii) PKTest: We created this dataset by randomly extracting 1009 pseu-
doknot RNA sequences with no longer than 500 bases from bpRNA-
1m and Rfam 14.5. There are 535, 229 and 255 RNAs with lengths
between 0 and 149, between 150 and 299, and between 300 and 499,
respectively (see Supplementary Table 11 for further details). We used
PKTest to evaluate the approaches’ ability to identify general
pseudoknots.

(iv) TS0: This dataset is a subset of bpRNA-1m extracted by SPOT-RNA50.
It contains 1305 RNAs, including 129 pseudoknot RNAs.

(v) RfamNew: This dataset collects 472 non-redundant RNAs from the
168RNA families newly added to Rfam14.9 after the release of version
14.5 (see Supplementary Table 11 for further details). We used this
dataset for family-wise validation.

Data processing. We used non-redundant RNAs collected in bpRNA-
1m58 and Rfam 14.553 to prepare the training, validation, and test sets for
KnotFold. We first removed redundant sequences using CD-HIT-EST62

with a cut-off threshold of 80% sequence-identity. After that, we ran-
domly selected 1009 RNAs with pseudoknots in their secondary struc-
tures whose lengths are less than 500 from the non-redundant RNAs as a
pseudoknot test set PKTest. The remaining RNAs are split into a training
set and a validation set, comprising 23,819 and 1131 RNAs, respectively.

To evaluate RNA secondary prediction approaches on new RNA
families, we constructed an RNA family test set RfamNew by collecting
RNAs that belong to different families with the 23,819 training RNAs. We
initially collected 1435 RNA sequences from the 168 families that are newly
added to Rfam 14.9 after the release of version 14.5. Next, we removed
sequences with sequence similarity of more than 80% using CD-HIT-EST.
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After removing sequence similarity, 472 sequences remained, which are
used to form RfamNew.

The training and test datasets are available in Supplementary Data 1.

Evaluation criteria
We evaluated the accuracy of the prediction accuracy through precision,
recall and F1 score of the base pairs, defined as

Precision ¼ TP
TPþFP ;

Recall ¼ TP
TPþFN ;

F1 ¼ 2× Precision×Recall
PrecisionþRecall ;

ð5Þ

where TP is the number of correctly predicted base pairs (true positives), FP
is the number of incorrectly predicted base pairs (false positives), and FN is
the number of base pairs in the reference structure that were not predicted
(false negatives).

We calculated the average precision, recall, and F1 score to evaluate the
overall performance on a dataset and the average of recall to evaluate the
performance on different types of base pairs on PKTest.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Our training and test data splits are available with this paper. The following
versions of public datasets were used in this study: bpRNA-1m 1.0 (https://
bprna.cgrb.oregonstate.edu/); and RFAM 14.9 (https://rfam.org/).

Code availability
All source codes and models of KnotFold are publicly available through
https://github.com/gongtiansu/KnotFold.
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