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Longitudinal development of the human white
matter structural connectome and its association
with brain transcriptomic and cellular architecture
Guozheng Feng 1,2,3,9, Rui Chen 1,9, Rui Zhao4,5, Yuanyuan Li1, Leilei Ma1, Yanpei Wang1, Weiwei Men6,

Jiahong Gao 6, Shuping Tan7, Jian Cheng8, Yong He1,3, Shaozheng Qin 1, Qi Dong1, Sha Tao 1✉ &

Ni Shu 1,2,3✉

From childhood to adolescence, the spatiotemporal development pattern of the human brain

white matter connectome and its underlying transcriptomic and cellular mechanisms remain

largely unknown. With a longitudinal diffusion MRI cohort of 604 participants, we map the

developmental trajectory of the white matter connectome from global to regional levels and

identify that most brain network properties followed a linear developmental trajectory.

Importantly, connectome-transcriptomic analysis reveals that the spatial development pat-

tern of white matter connectome is potentially regulated by the transcriptomic architecture,

with positively correlated genes involve in ion transport- and development-related pathways

expressed in excitatory and inhibitory neurons, and negatively correlated genes enriches in

synapse- and development-related pathways expressed in astrocytes, inhibitory neurons and

microglia. Additionally, the macroscale developmental pattern is also associated with myelin

content and thicknesses of specific laminas. These findings offer insights into the underlying

genetics and neural mechanisms of macroscale white matter connectome development from

childhood to adolescence.
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From childhood to adolescence, the neural circuitry of the
human brain undergoes dramatic changes, which supports
rapid behavior and cognitive development1–4. As the ana-

tomical substrate of the neural circuitry, white matter (WM)
shapes functional synchronization and undergoes extensive bio-
physical development, such as myelination, synaptic pruning, and
increased axonal density5,6, which facilitates rapid neural signal
communication between regions. Importantly, brain development
exhibits heterogeneous patterns across different regions, and the
primary sensorimotor cortex matures earlier than the higher-
order association cortex7. Genes play an important role in reg-
ulating brain structural and functional development across age
and regions8–11. Although previous studies have characterized the
age-related trajectory of typical WM development5, the genetic
and cellular mechanisms of WM development from a long-
itudinal perspective remain largely unknown.

As the brain is a complex system, network modeling and graph
theory-based analyses have provided an important approach in
investigating brain integration and segregation from a system
level12–15. With diffusion MRI (dMRI) and tractography techni-
ques, the whole-brain WM structural connectome can be deli-
neated in vivo. This delineation captures the tangible fiber
connections interconnecting distinct cerebral regions and unveils
several nontrivial topological properties, such as small-worldness,
modular structure, and rich-club organization12,13,16. With nor-
mal development, increased global and local efficiency, stable or
decreased clustering, and the modularity of the WM structural
connectome can be observed, typically indicating a WM network
reconfiguration from being local to more distributed and
integrated17–21. Our previous studies also revealed increased
trade-off between the integration and segregation of the WM
connectome with development, which may be the outcome of
both the heterogeneous strengthening and the pruning of specific
fibers22–24.

Longitudinal cohorts can be evaluated to characterize brain
development trajectory more accurately than cross-sectional
cohorts by disentangling within-person developmental change
from between-person variation5. With a longitudinal cohort, a
spatial refinement of WM connectivity between hub regions
appears in late adolescence25. Another longitudinal study repor-
ted spatial distribution and topological differences with devel-
opment across different edge types of the WM connectome26.
However, there were hardly longitudinal studies with large sam-
ples on multiscale WM connectome development from global to
regional/connectional levels, limiting insight into patterns and
trends in multiscale WM connectome development.

Genes play important roles in regulating WM development.
Typical twin studies have observed moderate to high heritability
of specific WM tracts27, and genetic factors can mediate the
relationship between WM microstructure and intelligence28.
Furthermore, large-scale genome-wide association studies have
found that the WM microstructure is regulated by hundreds of
genes that are associated with brain neurodevelopment, cognitive
functions and multiple brain disorders10,29,30, but these previous
studies lack information of spatial variations on gene expression.
The Allen Human Brain Atlas (AHBA, http://human.brain-map.
org/) offered RNA expression levels of more than 20,000 genes
taken from 3,702 spatially distinct brain tissue samples31, making
it possible to bridge the gap between neuroimaging and
transcriptomics32. With imaging transcriptomic analysis, genes
whose expression pattern co-varying with brain imaging pheno-
types can be identified and further enrichment analyses can be
carried out to explore potentially functional pathways and cellular
processes11,33–35. A recent functional network study investigated
the association between modular variability with development
and gene expression profiles, which identified the genes enriched

for ion transport and nucleobase-containing compound
transport36. Another study revealed that the transition of func-
tional gradient during development is associated with the
expression levels of calcium ion regulated exocytosis and synaptic
transmission-related genes37. WM structural connectivity
between brain regions has been shown to correlate with cortical
gene expression using AHBA38. However, the transcriptomic
architecture of WM connectome development remains largely
unknown.

Developmental studies have demonstrated heterogeneous age-
related increases in cortical myelination which may underlie the
enhanced cognitive ability35,39,40. The age-related increases in
cortical myelination accompanied by cortical shrinkage are
maximized approximately at the internal layer of projection
neurons35. Recently, a quantitative laminar atlas41 derived from a
3D histological atlas of the human brain at 20-micrometer iso-
tropic resolution (BigBrain)42, provided high level of cytoarchi-
tectonic detail to capture six cortical laminas formed by cellular
division and differentiation. Thus, we attempted to establish a
link between the developmental patterns of the macroscale WM
connectome and microscale myelin content43 or cortical laminar
thickness.

In the present study, we aimed to characterize the age-related
longitudinal trajectory of the WM structure connectome from
global, regional, and connectional levels, based on a large-sample
cohort with 604 typically developing children from 6 to 13 years
of age. To explore the potential genes regulating spatial patterns
of WM connectivity development, we referred to the AHBA, and
recognized the enrichment pathways and their cellular organi-
zations based on connectome and transcriptome association
analyses. Moreover, we examined whether the heterogeneous
spatial development of the WM connectome can reflect the
cytoarchitectural properties of cortical organization. Finally, dif-
ferent modeling methods and an independent development
cohort were used to assess the reproducibility of our findings.

Results
In the present study, we used the 3-year longitudinal development
data from the Children School Functions and Brain Development
Project (CBD, Beijing Cohort)44, including 604 typically devel-
oping children from 6 to 13 years of age (339 males and 266
females) (Supplementary Table 1, Fig. 1). A total of 1033 scans
taken at up to three time-point were used for following modeling
and analysis. The overview of analysis workflow is shown in
(Fig. 2). For validation analysis, we employed a cross-sectional
development cohort from the Human Connectome Project in
Development (HCP-D)45,46 (https://www.humanconnectome.
org/study/hcp-lifespan-development), including 179 typically-
developing children from 6 to 13 years of age (76 males and
103 females) who were unrelated to each other (Supplementary
Table 2).

Longitudinal developmental trajectory of the WM structural
connectome. The network efficiency of the WM connectome
reflects information integration, stands as a critical aspect of brain
maturation, essential for information processing and cognitive
functions20. The development of WM structural connectivity also
promotes functional specialization47–50. For each participant,
individual dMRI and T1 data were utilized to construct the brain
WM structural connectome based on the Human Brainnetome
Atlas with 246 brain regions (BNA246)51 template. Our study
comprehensively delineates the development of the WM con-
nectome in children aged 6 to 13 years from global, nodal, and
connectional perspectives. We measured global integration and
local segregation properties, including global efficiency, local
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efficiency, network strength, shortest path length, and clustering
coefficient in relation to age. To understand the contribution of
individual nodes (brain regions) to information transmission
within the WM network, changes in nodal efficiency, nodal local
efficiency, and nodal degree centrality were evaluated with age.
Additionally, age-related changes were analyzed at the connection
level, encompassing rich-club, feeder, and local edges; within-
module and between-module edges; and long-range and short-
range edges. For a detailed description of network properties,
please refer to the Methods section. For each property, both linear
and quadratic models were estimated by a mixed effect model52

to characterize the intrinsic longitudinal relationship between
brain network properties and age. By comparing the Akaike
information criterion53 of the linear and quadratic models, we

found that most brain network properties followed a linear
developmental trajectory over the age range of 6 to 13 years.

At the global level, we observed that the global efficiency
(βage = 0.35, CI= [0.31,0.40], t= 16.05, p= 4.05E-51), local effi-
ciency (βage = 0.53, CI= [0.46,0.60], t= 14.35, p= 2.46E-42) and
network strength (βage = 8.82, CI= [7.86,9.77], t= 18.12,
p= 1.16E-61) of the whole-brain WM network linearly increased
with age, and the shortest path length (βage =−4.88E-03,
CI= [−5.51E-03,−4.25E-03], t=−15.25, p= 8.20E-47) signifi-
cantly decreased with age, as shown in Fig. 3a. The clustering
coefficient (βage =−1.23E-05, CI= [−9.08E-05,1.16E-05], t= 0.23,
p= 0.81, Supplementary Fig. 1a) showed no significant changes
with age. For small-world properties, γ (βage =−6.79E-02,

Fig. 1 Age distributions of scans (n = 1033) in different sexes and different acquisition times. a Each point represents an individual scan, and the
connecting lines indicate the interval between scans for each participant. b Age distribution of participants who completed different waves of scans. Of
note, “1 time, 2 times, 3 times” represents the number of scans for each participant.

Fig. 2 Overview of analysis workflow. a Based on WM network, the age-related longitudinal trajectories of global, regional, and connectional properties
were analyzed using mixed effect model. b By correlating developmental slope of nodal efficiency and AHBA transcriptomic data, the significant genes
were identified and were recognized the enrichment pathways and cell-type-specific expression. Meanwhile, the relationships between the developmental
slope of nodal efficiency and the cytoarchitectural properties of cortical organization were identified.
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CI= [−9.75E-02,−3.84E-02], t=−4.55, p= 6.05E-06) and σ
(βage =−5.55E-02, CI= [−8.11E-02,−2.99E-02], t=−4.27,
p= 2.16E-05) significantly decreased with age, and λ
(βage =−1.14E-03, CI= [−3.21E-03,9.31E-04], t=−1.08,
p= 0.28) remained stable with age, as shown in Supplementary
Fig. 1b–d. The effects of sex and age-by-sex interaction were
nonsignificant for all global network properties (p > 0.05, Bonfer-
roni corrected).

At the regional level, we calculated the nodal efficiency, nodal
local efficiency and nodal degree centrality for each brain region.
For nodal efficiency, 229 regions exhibited a linear increase with
age (p < 0.05, Bonferroni corrected), with various development
slopes (βage 2 ½0:07; 0:21�, Fig. 3b), which were distributed across
most regions of the brain. For nodal local efficiency, 85 regions
showed a linear increase with age (βage 2 ½0:08; 0:15�, p < 0.05,
Bonferroni corrected, Fig. 3b). For nodal degree centrality, 115
regions exhibited a significant age-related increase
(βage 2 ½0:07; 0:19�, p < 0.05, Bonferroni corrected, Fig. 3b). Of
note, regions with a high rate of development were mainly located
in the occipital cortex, fusiform gyrus, superior temporal gyrus,
cingulate gyrus, hippocampus and precuneus. Furthermore, we
also observed different developmental slopes of nodal properties,
which followed posterior-to-anterior and inferior-to-superior
gradients (Supplementary Fig. 2). Similar spatial patterns of
development were observed when categorizing brain regions into
8 functional subnetworks according to Yeo’s brain parcellation54

(visual, somatomotor, dorsal attention, ventral attention, limbic,

frontoparietal and default networks) and subcortical network
within BNA246 template. Among the different networks, the
visual network and somatomotor network had relatively higher
βage than the other networks (Fig. 3c).

At the connectional level, the rich-club, feeder and local edges
were categorized according to hub and nonhub regions
(Supplementary Fig. 3a). The within-module or between-
module edges were assigned based on a functional module
architecture consisting of the 8 subnetworks (Supplementary
Fig. 3b), and the long-range or short-range edges were classified
by comparing the mean strength of the group-averaged network.
When fitted with age, we calculated the connectivity strength
changes of different types of edges after controlling for the global
network strength. In Supplementary Fig. 3c-e, the connectivity
strength of the local edge (βage = 0.22, CI= [0.15,0.30], t= 5.64,
p= 2.18E-08), within-module edge (βage = 0.19, CI= [0.10,0.29],
t= 4.12, p= 4.03E-05) and short edge (βage = 0.22, CI=
[0.15,0.29], t= 6.42, p= 2.17E-10) increased with age, while that
of the between-module edge (βage =−0.19, CI= [−0.31,−0.07],
t=−3.09, p= 2.10E-03) and long edge (βage =−0.38, CI=
[−0.61,−0.15], t=−3.30, p= 1.00E-03) decreased with age. The
connectivity strength of the feeder edge (βage =−0.08, CI=
[−0.20,0.04], t=−1.28, p= 0.20) and rich-club edge
(βage =−0.37, CI= [−0.77,0.02], t=−1.85, p= 0.07) remained
stable with age. Additionally, the strength comparisons of
different edges are shown in Supplementary Fig. 3f.

Fig. 3 longitudinal changes in network organization properties during childhood and adolescence. a Age effect on mainly global network properties
(n= 1033 scans). b Spatial patterns with significant development (p < 0.05, Bonferroni correction, n= 1033 scans) in various nodal properties. The size of
the circle was proportional to the statistical t value, and its color indicated the developmental slope (standard effect value βage), with red for large changes
and blue for small changes. c Developmental slope of the functional subnetwork (n= 1033 scans). In each radar chart, a line with a different color
corresponded to an age subgroup and values for each subnetwork were the average of properties over all scans in that subgroup. Of note, ***p < 0.001;
n.s.p > 0.05, Bonferroni correction.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05647-8

4 COMMUNICATIONS BIOLOGY | (2023)6:1257 | https://doi.org/10.1038/s42003-023-05647-8 | www.nature.com/commsbio

www.nature.com/commsbio


Transcriptomic and cellular architectures of WM connectome
development. To explore the potential transcriptomic association
with WM connectome development, we employed AHBA31 along
with a standardized processing pipeline55 to obtain spatial gene
transcriptomic profiles across brain regions. Employing the par-
tial least square (PLS) analysis56, we linked the spatial pattern
(βage) of WM nodal efficiency development (Fig. 4a) and gene
transcriptomic profiles (Fig. 4b). The gene expression score of the
first PLS component accounted for the highest spatial variance
explained at 28.2% (Fig. 4c). After spatial autocorrelation cor-
rection (SAC)57, there was a significant positive correlation
(r= 0.53, p= 0.001, permutation test with SAC, Fig. 4c) between
the first PLS component score of genes and the spatial pattern of
WM regional development. Furthermore, we identified potential
transcriptomic architectures in the GO biological process
pathway58 using positive/negative genes with high weight on the
first PLS component, respectively. The positive weight genes (771
genes) were prominently enriched for ion transport-related and
development-related terms (p < 0.05, FDR corrected, Fig. 4d),
such as “metal ion transport”, “regulation of peptide transport”,
“regulation of neuron projection development”, and “axon
development”. The negative weight (714 genes) gens were mainly
enriched for synapse-related and brain development pathways
(p < 0.05, FDR corrected, Fig. 4e), such as “synaptic signaling”,
“synapse pruning”, and “brain development”.

To further investigate cell-specific expression of genes related to
WM nodal efficiency development, the related genes were
agglomerated into seven canonical cell classes9,59–63. These classes
encompassed astrocytes, endothelial cells, excitatory neurons,
inhibitory neurons, microglia, oligodendrocytes, and oligodendro-
cyte precursors. Our findings showed that the selected genes with
high positive weights were significantly expressed in excitatory
neurons and inhibitory neurons (118/88 genes, p < 0.001, permuta-
tion test, Fig. 5a). The genes with negative weights were expressed
in astrocytes, inhibitory neurons and microglia (62/67/57 genes,
p < 0.001, permutation test, Fig. 5b).

Relationship to the cytoarchitecture of cortical organization.
To assess the spatial correspondence between the developmental
pattern of WM nodal efficiency and fundamental cytoarchi-
tecture, we considered myelin content43 and the thicknesses of six
cortical laminas (L1-L6) from the BigBrain atlas41. The high-
resolution laminar thickness provided a more direct marker to
map the relationship between WM nodal efficiency development
and cytoarchitecture. We found that the spatial development
pattern of WM nodal efficiency (Fig. 6a) was significantly asso-
ciated with myelin content (r= 0.40, p= 0.025, permutation test
with SAC, Fig. 6b) and L4 thickness (r= 0.40, p= 0.018, per-
mutation test with SAC, Fig. 6d). In contrast, the nodes with
higher development slopes tended to have lower thicknesses in
the three laminas (L1: r=−0.37, p= 0.022, permutation test with
SAC, Fig. 6c; L5: r=−0.38, p= 0.001, permutation test with
SAC, Fig. 6e; L6: r=−0.43, p < 0.001, permutation test with SAC,
Fig. 6f). After controlling effects of remaining laminas, L5 and L6
thicknesses showed specific positive correlations with the spatial
development pattern of nodal efficiency, while L4 thickness
exhibited a tendency of specific negative correlation (L4: rpar=
0.41, p= 0.056, permutation test with SAC, Fig. 6c; L5: rpar=
−0.26, p= 0.016, permutation test with SAC, Fig. 6e; L6: rpar=
−0.37, p= 0.044, permutation test with SAC, Fig. 6f). By directly
calculating the cortical thickness on individuals, it was found that
the development slope of brain region was negatively correlated
with the group-average cortical thickness (r= 0.39, p= 0.036,
permutation test with SAC, Supplementary Fig. 4).

Reproducibility analyses. We assessed the consistency of the
results by incorporating head movement as an additional cov-
ariate. Briefly, we integrated head movements as an additional
covariate within the mixed effect model to assess the develop-
mental changes of global and nodal properties. The normalized
gene weights were derived from PLS correlation between βage of
nodal efficiency and gene expression. At the global level, global
efficiency, local efficiency, and network strength exhibited a sig-
nificant positive correlation with age, and the shortest path
showed a significant negative correlation with age (p < 0.05,
Bonferroni corrected, Supplementary Fig. 5a). At the regional
level, the developmental slope βage across nodal efficiency, local
efficiency and degree centrality were consistently significant,
aligning with the results from the original model (Supplementary
Fig. 5b, c). The normalized gene weights demonstrated con-
sistency between the two models, based on the significance of the
correlation (r= 0.998, p < 0.001, permutation test with SAC,
Supplementary Fig. 5d).

We examined whether changes in the WM connectome were
robust to distinct brain parcellation templates. Using the Auto-
mated Anatomical Labeling with 90 brain regions (AAL90)64, we
repeated the network construction and analysis procedures. At the
global level, several global network metrics, including global
efficiency, local efficiency, and network strength exhibited a
significant positive correlation with age, and the shortest path
showed a significant negative correlation with age (p < 0.05,
Bonferroni corrected, Supplementary Fig. 6a). At the regional level,
the spatial distributions of the regions with significant age-related
alterations were similar to the results from BNA246 template, which
were mainly distributed across the occipital cortex, fusiform gyrus,
superior temporal gyrus, cingulate gyrus, hippocampus and
precuneus (Supplementary Fig. 6b). To examine sex differences,
similar results were found between the male and female groups and
none of properties with significant sex differences were observed
(p > 0.05, Bonferroni corrected).

We proceeded to create networks weighted by FN, FA, and the
inverse of mean diffusivity (1/MD) employing the BNA246
template. These networks were formulated to systematically
assess the resilience of diverse connection-weighting approaches
in delineating WM connectomes, complementing the principal
findings. At the global level, various weighting strategies exhibited
similar outcomes (Supplementary Table 3-5). At the regional
level, spatial distributions were similar to those observed in the
FN×FA-weighted network outcomes (Supplementary Fig. 7a–c),
with the FN-weighted network demonstrating greater consistency
than that of FA and 1/MD (Supplementary Table 7).

We constructed an additional FN×FA-weighted network using
deterministic tractography based on a ball-and-stick model65. The
validation of global and nodal properties is detailed in
Supplementary Table 6 and illustrated in Supplementary Fig. 7d.
Additionally, a significant correlation was established with the
nodal outcomes of a tensor model-based FN×FA-weighted
network (Supplementary Table 7). Through PLS analysis, we
identified a significant positive correlation (r= 0.46, p < 0.001
permutation test with SAC, Supplementary Fig. 8a) between the
first PLS component score of genes and the βage of nodal
efficiency. The gene analysis results remained consistent,
contingent on the significance of the correlation (r= 0.94,
p < 0.001, permutation test, Supplementary Fig. 8b) of the
normalized gene weight. Notably, the positively correlated genes
were predominantly enriched for transport- and development-
related terms, while the negatively correlated genes exhibited
significant enrichment for synapse- and development-related
terms (Supplementary Fig. 8c, d). In cell-specific analysis, genes
positively correlated expressed in excitatory neurons and
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Fig. 4 Association between the development slope of nodal efficiency and gene transcriptional profiles. a The map of standardized development slope
(βage) in nodal efficiency across 199 brain regions. b The normalized gene transcriptional profiles comprised 10,027 genes in 199 brain regions, in which
each row denotes the gene expression level for each gene in a brain region. c Explained ratios (left vertical axis) and correlation coefficients (right vertical
axis) for the first 15 components obtained from PLS regression analysis. Enriched terms of positive genes (d) and negative genes (e). In d and e, the length
of the bar denotes the enrichment significance and its color denotes the number of input genes falling under that term. Each circle node within network
layout represented a term colored by cluster identity and its size denoted the number of genes falling into the term. The edge represents a similarity score
between filtered terms.
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inhibitory neurons, whereas negatively correlated genes expressed
in astrocytes and microglia (p < 0.01, permutation test, Supple-
mentary Fig. 8e, f). We additionally found that the gene
association and cell specificity results based on probabilistic

tractography exhibited agreement with the original results as
shown in Supplementary Fig. 9.

Utilizing the ABAnnotate toolbox66,67, which considered both
gene coexpression and spatial autocorrelation, we validated the

Fig. 5 Cell type-specific analysis. Cell type-specific expression of positive genes (a) and negative genes (b). In a and b, the length and color of the bar
shows overlapping numbers of the selected genes in each cell class. The color of the heatmap shows the statistically enriched terms in each cell class. Of
note, OPCs: oligodendrocyte precursors. ***p < 0.001, permutation test.
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enrichment results regarding the spatial correlation between the
developmental slope βage of WM nodal efficiency and gene
expression profiles. The results revealed that the majority of the
initially identified functional pathways remained significantly
enriched, as illustrated in Supplementary Fig. 10.

Finally, we also evaluated whether our connectomic and
transcriptomic findings could be replicated in an independent
development cohort (HCP-D). The changes of global properties
were consistent with those of the CBD cohort (Supplementary
Table 8). For developmental alterations in nodal efficiency
(Supplementary Fig. 11a), a significant correlation (r= 0.43,
p < 0.001, permutation test with SAC, Supplementary Fig. 11b)
existed across nodal age-related changes between two distinct
cohorts, indicating that the heterogeneous spatial development
found in this study was robust during childhood and adolescence.
The findings of the gene analysis were consistent between two
cohorts, depending on the significance of the correlation
(r= 0.80, p < 0.001, permutation test, Supplementary Fig. 11c)
of the normalized gene weight. The selected positive genes were
mainly enriched for transport-related terms, while the negative
genes were significantly enriched for development-related terms,
as shown in Supplementary Fig. 11d. In cell-specific analysis, the
positively correlated genes expressed in excitatory neurons, and
the negatively correlated genes expressed in astrocytes (p < 0.001,
permutation test, Supplementary Fig. 11e). We also replicated a
tendency that the spatial development pattern of global efficiency
is associated with L4 thickness (r= 0.32, p= 0.04, permutation
test with SAC) but not with other fundamental properties.

Discussion
This study performed a multiscale evaluation of WM connectome
development from childhood to adolescence. Using a large
longitudinal cohort aged 6 to 13 years old of up to 3 times of MRI
scans, we observed a linear increase in brain network efficiency
with increasing age, and more rapid development were found
mainly in the occipital cortex, fusiform gyrus, superior temporal
gyrus, cingulate gyrus, hippocampus and precuneus. Moreover,
we found that the spatially heterogeneous development of the
WM connectome was associated with transcriptomic

architectures. Specifically, the positive genes were enriched in
transport-related and development-related pathways, with sig-
nificant expression in excitatory neurons and inhibitory neurons.
The negative genes were enriched in synapse-related and
development-related pathways, relating to astrocytes, microglia,
and inhibitory neurons. Additionally, we demonstrated that the
heterogeneous development was related to the myelin content
and laminar thickness properties of cortical organization, pro-
viding microscopic evidence for the underlying mechanisms at
the gene and cell levels. Together, our study characterized the age-
related trajectory of WM connectome development from child-
hood to adolescence and investigated whether its heterogeneous
development is associated with transcriptomic architecture, cel-
lular organization, or cortical properties.

From childhood to adolescence, the WM connectome exhibits
enhanced integration capacity that can be characterized by
increases in global efficiency, local efficiency, and network
strength with age. These findings not only are consistent with
previous findings mainly from cross-sectional studies and small-
sample longitudinal studies5,17–20 but also extend to longitudinal
evidence of higher statistical power with the large-sample, and
multiple assessments68. Our results also revealed a heterogeneous
development layout in nodal network properties, with primary
regions (e.g., visual cortex, sensorimotor cortex) showing more
rapid growth in nodal efficiency than other regions. From the
perspective of structure-function coupling, the development of
WM structural connectivity promoted the maturation of func-
tional specialization47–50. Combing with findings from previous
studies of early childhood69 and late adolescence70, this study
particularly suggested that the rapid development in the WM
connectome of the primary cortex between 6 and 13 years may
support the subsequent development of higher-order cognitive
functions. Furthermore, we observed a broad pattern of hetero-
geneous development across brain regions along posterior-to-
anterior and inferior-to-superior gradients, in line with findings
of previous WM microstructure studies of development71,72.
More changes in medial than lateral regions for local efficiency
and degree centrality were also in agreement with an FA study of
the WM skeleton71. Therefore, the development of the WM
connectome may also follow major gradients in the brain.

Fig. 6 Developmental alterations of nodal efficiency align with cytoarchitecture of cortical organization. Developmental alterations in nodal efficiency
(a) were significantly associated with myelin content (b) and laminar thickness of L1 and L4-L6 (c–f). The inset brain map in each panel is the pattern of
fundamental properties of brain organization.
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Neurodevelopmental changes in network connections are char-
acterized by simultaneous progressive and regressive changes13.
Likewise, our results demonstrated a developmental pattern of
WM connections characterized by integration and segregation.
Additionally, we observed a strengthening of connectivity in local,
within-module and short-distance edges, as well as a pruning of
connectivity in between-module and long-distance edges. Such
findings suggest that over the course of development, the WM
connectome is dominated by spatial increases in intramodule
connections, along with the refinement of intermodule connec-
tions. The connectivity of the feeder edge and rich-club edge
remained stable with age, highlighting the stability of the hubs
structure that supports the enhancement of complex information
integration during this period16,73,74. In recent years, the topology
of WM functional connectome have been gradually studied75–77.
Comparative studies examining both functional and structural
integration and separation of WM networks, alongside the con-
sideration of mental illness, could provide valuable insights into
the neurodevelopmental processes and disease mechanisms
associated with the WM network.

The AHBA31 has been pivotal in bridging the gap between neu-
roimaging and transcriptomics32. The analyses of regional expression
has proven valuable in identifying associations between regional gene
variations and some regional properties32,78. Earlier studies in mouse
and rat brains have uncovered correlations between regional gene
profiles and nodal degree centrality as well as participation
coefficients79,80. In human brain studies, spatial correlations between
transcriptome patterns and WM network disconnection patterns
have been leveraged to identify pathologically associated genes38,81. A
recent study utilized spatial patterns of nodal degree centrality for
correlating transcriptome patterns as a methodological validation67.
These collective findings give rise to a common hypothesis suggesting
that genes in the cortex of corresponding locations influence the
nodal properties of the WM connectome. Additionally, the WM
network efficiency is considered a key aspect of brain maturation,
crucial for information processing and cognitive functions20. The
heritability of global efficiency during adolescence has been demon-
strated by twin studies18,70. In light of these contexts, we regarded the
pattern of developmental changes in nodal efficiency of cortical
regions as a brain phenotype, seeking to identify gene associations
within the transcriptome of cortical regions.

Our results showed that positively correlated genes were
enriched for ion transport-related and development-related
pathways, while negatively correlated genes were enriched for
synapse-related and development-related pathways. Interestingly,
the finding of ion transport we identified coincided with previous
studies of cortical structural connectome development35 and
functional connectome development36. Ion transport balances
intracellular and extracellular concentration difference to stabilize
brain neural circuits82,83. It is speculated that ion transport-
related gene pathways may regulate development in the brain
connectome by maintaining and enhancing network stability.
Synaptogenesis (especially synaptic pruning) is considered critical
for brain connectome specificity during childhood and
adolescence84,85. Notably, genes related to ion channels and
synapses have been found to shape neuronal timescales, which are
associated with higher-order cognitive functions, such as mem-
ory, decision making, and reasoning86. Axon development and
neuron projection development87 were important pathways
directly associated with enhanced and refined changes in WM
connectome through processes such as axonal fasciculation and
defasciculation. Our findings suggested that the transport-related,
synapse-related, and development-related pathways may regulate
gradual integration and differentiation in WM connectome from
childhood to adolescence, thus laying the foundation for their
cognitive and learning development.

Additionally, we investigated cell-specific types in spatial gene
expression of WM connectome development. We found that the
positively correlated genes related to WM connectome develop-
ment were significantly expressed in excitatory neurons and
inhibitory neurons also known as glutamatergic neurons and
GABAergic neurons, respectively. These neurons have different
neuronal subsets and projection patterns, which jointly constitute
a homeostatic regulatory mechanism of the brain connectome to
control signal flow, sculpt network dynamics88,89, and regulate
different behavioral functions90. A recent study of developmental
neuroplasticity markers found that the decreased cortical
excitation-inhibition ratio is driven by the pruning of excitatory
neurons and the maturation of GABAergic neurons91. In con-
trast, the negatively correlated genes were expressed in astrocytes,
inhibitory neurons, and microglia. Both astrocytes and microglia
have been implicated in synaptic pruning, or the elimination of
weak and inappropriate synapses, a critical developmental pro-
cess for the formation of fully functional neuronal circuits92–94.
Notably, the specific and precise expression of synapses is con-
ducive to the establishment of intercellular connection patterns of
GABAergic neurons95. From childhood to adolescence, learning
and the environment factors can drive changes in the brain while
maintaining a balance of brain activity is key to constant fine-
tuning of the brain96,97. Learning-related adaptations are encoded
as changes in synaptic strength or other cellular properties97 and
may be further refined through synaptic pruning94, ultimately
resulting in the precise wiring of mature neural circuits. This
process is particularly important for cortical plasticity in children
and adolescents98. Therefore, genes associated with the develop-
mental WM connectome exhibit specific expression patterns in
cellular organization, may be closely related to the construction
and maintenance of connectomic homeostasis within the brain
during learning and development. Nevertheless, the associated
physiological mechanisms will require further study.

One crucial question concerns whether the heterogeneous
development of the WM connectome across regions can reflect
fundamental properties of cortical organization. We found that
the spatial development of the WM connectome conformed to
the myelin content, which is present in most long-distance pro-
jection neurons and supports the enhancement of the neural
signal-to-noise ratio and the coordination of distributed neural
activity43. Histologically, cortical regions that are more heavily
myelinated generally tend to be thinner43. The spatial pattern of
accelerated cortical thinning from childhood to adulthood is
associated with increased expression of genetic markers related to
inhibitory and excitatory neurons, with enriched axon-related
terms (e.g., axonal development)99, further supporting our find-
ings at the gene and cell levels. We also found that the spatial
development of the WM connectome was inversely associated
with the cortical thickness of L1, L5, and L6, with L5 and L6
contributing to overall thickness gradients and sending infor-
mation externally100. In contrast, L4 may be involved in the
reception, integration, synchronization, and regulation of sensory
peripheral signals in the human cortex and extracortex84,101.
Interestingly, the cortical thickness of L4 had a positive associa-
tion with the development of the WM connectome, indicating
that the transfer function of L4 is enhanced in conjunction with
the transmission efficiency of the developing WM connectome. A
recent study has proposed that glutamatergic pathways between
the cortex and thalamus transmit information to L4 through
transthalamic circuits, and from L4 to other laminas via internal
intercellular communication102. In the rat barrel cortex, L4 has
averaged 62% more GABA contacts per unit volume than any
other cortical layer103, and the axonal projection of spiny L4
neurons highly associates with the structure of a cortical
column104. These findings highlight that the cortical
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differentiation microstructure underpins the developmental of the
WM connectome and predict that the association may be
dominated by genes that tend to regulate neuronal cell pro-
liferation, differentiation, and migration.

Several methodological issues should be addressed. First, the
observed developmental trajectories in the WM connectomes
could be influenced by the age range of 6 to 13 years in this study.
Conducting future longitudinal studies across a wider age spec-
trum will enhance the precision of WM connectome trajectories.
Second, although we contributed by uncovering the tran-
scriptomic architecture of the spatial development pattern of the
WM connectome using the AHBA, it is essential to acknowledge
that the results might miss the main factor of development due to
indirect gene association and variable gene expression during
development. Nevertheless, a study found that the relative spatial
patterns of genes did not change much after birth8. Third, the
network topologies usually involve different structures, including
cortical regions and extra-cortical WM pathways. This raises the
possibility that results associated with gene expression in cortical
regions may reflect the overall gene effects on different structures.
Moreover, the construction of WM network is constrained by
issues like directionality and time variability, which could impact
spatial gene association results. Addressing these challenges will
necessitate more reasonable assumptions and advanced methods
to broaden our understanding of the spatial transcriptome pat-
terns of WM connectome. Fourth, a multivariate paradigm that
encompasses gene–brain–behavior–environment has been advo-
cated to understand the complex neurodevelopmental processes
of growth and specialization that modify the brain to adapt to the
environment105. Future research should incorporate this para-
digm to further refine our findings in WM connectome devel-
opment. Fifth, coupling studies of WM and functional
connectomes revealed that brain function is structurally con-
strained by WM structure47,48,50. Therefore, future longitudinal
studies combining multimodal connectomes will provide a more
comprehensive view of the developmental process during this
period. Finally, validating the sensitivity of the analytical pipeline
and ensuring compatibility with independent longitudinal data is
crucial. In our study, we took steps to validate our main findings
by employing different network construction106,107 and gene
association67 methods. We observed that the choice of pipeline
had some impact on the subsequent findings, underscoring the
importance of methodological guidance in studies of this nature.
Additionally, we obtained a moderate correlation of a main
finding using a cross-sectional cohort from the HCP-D, which
can arise from a variety of factors including ethnicity, environ-
ment, the paradigm of data acquisition, etc., which also empha-
sizes the importance of research harmonization.

In conclusion, we have demonstrated the multiscale development
pattern of the WM connectome from childhood to adolescence.
The spatially heterogeneous development of WM connectivity was
regulated by transcriptomic architectures. In particular, positively
correlated genes contribute to the cellular organization of excitatory
and inhibitory neurons, while negatively correlated genes relate to
astrocytes, inhibitory neurons, and microglia. Additionally, the
heterogeneous development of the WM connectome was associated
with myelin content and the thicknesses of specific lamina of the
cortex. Therefore, our findings may offer insights into under-
standing the normal development of the brain connectome and
plasticity, which may provide clues for the early diagnosis and
treatment of development-related brain disorders.

Methods
Participants. We used a cohort from the CBD44, an ongoing
longitudinal dMRI study, in the present study. From the cohort,

typically developing children were recruited from Beijing primary
schools. The exclusion criteria included the presence of intellec-
tual or developmental abnormalities, a history of neurological or
psychiatric disorders, the use of psychoactive drugs, and the
presence of a significant head injury. All the participants under-
went at least one MRI acquisition at three-time points 1 year
apart. A total of 604 typically-developing children (age range of 6
to 13 years, 339 males and 266 females), including 1033 scans
were selected for analysis in the present study (Supplementary
Table 1) after age matching and quality control during MRI
preprocessing. This study was conducted according to the
guidelines of the Declaration of Helsinki and was approved by
Beijing Normal University Institutional Review Board. Informed
consent was obtained from parents/guardians of all participants.

Imaging acquisition and preprocessing. The MRI data were
acquired using the same Siemens Trio 3 T scanner with a 16-
channel phased array head coil at the Beijing University center
and the Beijing Huilongguan Hospital center. MRI scanning
included the collection of 3D T1-weighted structural MRI with a
1 mm3 isotropic voxel size (TR= 2530 ms, TE= 2.98 ms, TI=
1100 ms, flip angle = 7°, FOV= 256 × 224 mm2, and 192 sagittal
slices) and diffusion-weighted MRI (DWI) with a 2 mm3 iso-
tropic voxel size (64 diffusion directions with b= 1000 s/mm2

and 10 images with b= 0 s/mm2, TR= 7500 ms, TE= 64 ms, flip
angle = 90°, FOV= 224×224 mm2, and 70 axial slices). The
preprocessing procedures for dMRI data comprised the correc-
tion of the eddy current and motion artefacts, the estimation of
the diffusion tensor elements, and the calculation of the fractional
anisotropy (FA). The eddy current distortions and motion arte-
facts in the dMRI data were corrected by applying an affine
alignment of each DWI image to the b0 image. Then the diffusion
tensor elements were estimated by solving the Stejskal and Tan-
ner equations, and the FA value of each voxel was calculated. All
procedures were executed using the FMRIB’s Diffusion Toolbox
of the FMRIB Software Library (https://fsl.fmrib.ox.ac.uk/fsl/
fslwiki/FDT).

Image quality control. Rigorous quality control was conducted
for T1 and dMRI images. An experienced radiologist examined
each T1 image to ensure the absence of arachnoid cysts, neu-
roepithelial cysts, or any other intracranial occupying lesions.
Subsequently, five trained raters visual inspected the T1 images
for brain damage, missing layers, or evident noise. Out of the
original 1072 T1 images, 32 were excluded due to poor image
quality, leaving 1040 images entering the subsequent analysis. For
dMRI image, images reported as failures by DTIprep108 were
excluded. Additionally, visual inspections by five trained raters
were conducted, and images with abnormal volume proportions
exceeding 10% were excluded. Out of the 1053 dMRI images
initially acquired, 1033 images passed the quality control. Finally,
1033 scans with both T1 and dMRI images were included in the
subsequent analysis.

WM network construction. The BNA24651 template was used to
define network nodes. Briefly, a b0 image was first aligned to a
native T1 image, and then the native T1 image was normalized to
an asymmetric T1 template for 6-12 years from Chinese Pae-
diatric Atlases109 using the FMRIB Software Library (https://fsl.
fmrib.ox.ac.uk/fsl). Inverse transformation matrices derived from
the aforementioned steps were applied to transform the brain
atlas of standard space into native space. Following our previous
methodological evaluation study107, the dMRI data with single b
value is suitable for a deterministic tractography with a single
tensor model to reconstruct whole-brain fiber tracts based on the
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Diffusion Toolkit (http://www.trackvis.org/dtk/). Based on the
tractography results, the FA ´ FN-weighted network of each
participant was constructed, where the FA ´ FN weight was
defined as the average FA value of the voxels traversed along the
connected fibers between two regions times the number of fiber
streamlines (FN) connecting two brain regions. Two regions are
deemed structurally connected if there is at least one streamline
fiber present, with both of its end-points located within these two
regions24.

Global network properties. Leveraging graph theory model,
network properties can be derived to reflect the brain’s various
characteristics. Eight whole-brain properties were calculated
according to the constructed network, including global efficiency,
local efficiency, shortest path, network strength, clustering coef-
ficient, and small-world parameters (γ, λ and σ)13.

The global efficiency measures the efficiency of parallel
information transfer in the whole network G110, which can be
computed as:

Eglob Gð Þ ¼ 1
N
∑i2G

∑j2G;j≠id
�1
ij

N � 1
ð1Þ

where dij is the shortest path length between node i and node j in
G. N is the number of nodes in G.

The local efficiency of G reveals how much the network is fault
tolerant, showing how efficient the communication is among the
first neighbors of the node i when it is removed. The local
efficiency of a graph is measured as:

ElocðGÞ ¼
∑i2GEglobðGiÞ

N
ð2Þ

where Gi denotes the subgraph composed of the nearest
neighbors of node i.

The shortest path of a network quantifies the ability for
information to propagate in parallel. The shortest path length of a
network was computed as follows:

Lp Gð Þ ¼ ∑j2G;j≠idij
N N � 1ð Þ ð3Þ

where the shortest path length dij between any pair of nodes (e.g.,
node i and node j) is defined as the sum of the edge lengths along
this shortest path. For weighted networks, the length of each edge
was assigned by computing the reciprocal of the edge weight
(1=wij).

The network strength quantifies the overall connectivity within
the brain network. For a network G, the strength of G was
calculated as:

Sp Gð Þ ¼ ∑i2GS ið Þ
N

ð4Þ

where SðiÞ is the sum of the edge weights wij linking to node j.
And the strength of a network is the average of the strengths
across all of the nodes in this network.

The clustering coefficient indicates the extent of the local
interconnectivity or cliquishness in a network111, and calculated
as:

Cp Gð Þ ¼ ∑i2GCp ið Þ
N

ð5Þ

where CðiÞ is the likelihood of whether the neighborhoods of
node i were connected with each other or not, and is computed as

follows:112

Cp ið Þ ¼
2 ´∑j;l2G �wij�wjl�wli

� �1
3

ki ki � 1
� � ð6Þ

where ki is the degree of node i and �w is the weight of edge, which
is scaled by the largest weight of the network. Of note, the
clustering coefficient is zero if the nodes are isolated or have just
one connection.

The small-world network exhibits a high level of clustering
close to regular networks, while still maintaining a short average
path length close to random networks. The clustering coefficient
and the shortest path length of the brain networks were compared
with those of random networks. In this study, we generated 5,000
matched random networks, which had the same number of
nodes, edges, and degree distribution as the real networks113.
Furthermore, we computed the normalized γ and λ as follows:

γ ¼
Creal
p

Crand
p

ð7Þ

λ ¼
Lrealp

Lrandp

ð8Þ

where Crand
p and Lrandp are the mean Cp and the mean Lp of 5,000

matched random networks, respectively. A real network would be
considered small-world if γ>1 and λ � 1111. Thus, the small-
worldness σ can be defined as follows:

σ ¼ γ

λ
ð9Þ

where σ is typically greater than 1 for small-world networks114.

Local network properties. For each brain region, four common
nodal properties were calculated: nodal efficiency, nodal local
efficiency, nodal degree centrality, and nodal betweenness
centrality13.

The nodal efficiency115 quantifies the nodal contribution to the
overall efficiency of communication across the entire network,
which can be calculated using the following equation:

nEglob ið Þ ¼
∑j2G;j≠id

�1
ij

N � 1
ð10Þ

where n is the number of nodes and dij is the shortest path length
between nodes i and j.

The nodal local efficiency115 quantifies the nodal contribution
to the local communication efficiency, which can be calculated as:

nEloc ið Þ ¼ Eglob Gi

� �
ð11Þ

The nodal degree centrality quantifies the total number/
strength of the connections of one node in the network:

ki ¼ ∑
j2N

wij ð12Þ

The nodal betweenness centrality116 quantify the role of a node
in facilitating communication between other node pairs in the
network. The nodal betweenness centrality of node i was defined
as:

bi ¼
1

ðn� 1Þðn� 2Þ ∑
j;k2G

j≠k;k≠i;i≠j

ρjkðiÞ
ρjk

ð13Þ

where ρjk is the number of shortest paths between node j and
node k, and ρjkðiÞ is the number of shortest paths between node j
and node k passing through node i.
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Functional subnetwork properties. From the perspective of the
functional subnetwork, brain regions were assigned to seven
different functional networks54 according to an official corre-
sponding table provided by the official website (http://www.
brainnetome.org/), and subcortical regions within BNA24651

were defined as the subcortical function network. Furthermore,
the properties of different functional networks were the average
properties of assigned regions.

Connection properties. Various measures of centrality enable the
identification of central brain hubs characterized by high-degree
connectivity. To reduce false-positive edges, one edge was zero if
its nonzero number was less than 75% at the group level117. Then,
one node of the group-averaged network was defined as the hub if
its nodal degree centrality or nodal betweenness centrality was
greater than the mean ± std of all nodes; otherwise, it was defined
as a nonhub. According to the different categories of two nodes,
the existing edges between them were classified into three types:
local (nonhub to nonhub), feeder (hub to nonhub) and rich-club
(hub to hub)16.

The brain networks have a pronounced tendency to form
functional modules, reflected by an abundance of connectivity
within each module and the relatively sparse connectivity between
modules. Based on the functional modular architecture consisting
of the 8 subnetworks, the edges of all participations were assigned
as two types: within-modular edge and between-modular edge.

The physical distance of streamline fibers was defined as the
average length of all streamline fibers between two regions,
removing the effects of brain size. Edge length in the group-
averaged network was the average of the lengths of corresponding
edges across individual participants. The threshold was calculated
as the average of all edge lengths to define two edge types: short
edge and long edge.

Age-related trajectory of WM network organization. To char-
acterize developmental trajectories of various properties of WM
network organization, a mixed effect model52 was applied to mine
the intrinsic longitudinal relationship between properties and age
in our study. For each measure, both linear and quadratic models
were constructed after controlling for total brain volume, center,
and sex.

The linear model was as follows:

yij ¼ β0 þ bi þ βage þ bage;i
� �

ageij þ βsexsexi

þ βtbvtbvij þ βcentrecentrei þ εij
ð14Þ

where yij is the network measures of participation i at the j time
point, βage is the fixed effect, bage;i is the random effect of
participation i, ageij is the acquisition age of participation i at the j
time point. Total brain volume (tbvij), center (centrei) and sex
(sexi) are considered as covariates. εij is the residual of
participation i at the j time point.

The quadratic model was as follows:

yij ¼ β0 þ bi þ βage2 þ bage2;i
� �

ageij
2 þ βage þ bage;i

� �
ageij

þ βsexsexi þ βtbvtbvij þ βcentrecentrei þ εij
ð15Þ

where βage2 is the fixed effect and bage2;i is the random effect of
participation i.

For sex difference, a linear model which included age-by-sex
interaction term was utilized as follows:

yij ¼ β0 þ bi þ βage þ bage;i
� �

ageij þ βsexsexi

þ βage�sex ageij � sexi
� �

þ βtbvtbvij þ βcentrecentrei þ εij

ð16Þ
Notably, the network strength was included as a covariate in

edge analysis to delineate intrinsic edge topology alteration21,47.
The Akaike information criterion53 was used to determine the
optimal model, with a lower value reflecting a trade-off between the
likelihood and simplicity of a model. The Markov Chain Monte
Carlo method estimated the standard error and 95% confidence
interval (CI) of age effect. In local and functional subnetwork level
models, nodal and functional subnetwork measures were z-score
standardized to obtain a standard slope for facilitating comparisons
of different measures. The p values of models were corrected for
multiple comparisons by the Bonferroni method.

Main gradients of the developmental slope. To explore how
developmental slope varied along various gradients, we extracted
the mean slope of each nodal property across all regional voxels
for posterior-to-anterior, medial-to-lateral or inferior-to-superior
slice including more than 500 voxels. Then we tested whether a
change was significantly different along gradients by comparing
slopes between two group slices separated by a midline of the
brain. Of note, medial-to-lateral slices were separated into the
lateral group and medial group in every hemisphere. The t-test
was used to verify its significance with p < 0.05.

Association between WM development and gene expression.
For the AHBA dataset, the preprocessing of anatomic and
genomic information was performed by referencing a recom-
mended pipeline55. Specifically, we generated preprocessed
structural data by FreeSurfer (https://surfer.nmr.mgh.harvard.
edu/fswiki/) for each donors. According to official scripts (http://
www.brainnetome.org/resource/), the BNA246 template was
projected on native fsaverage space. Finally, an averaged gene
expression profile of 10,027 genes covering 199 cortical regions
(excluding 47 cortical regions that had an insufficient number of
assigned samples) was produced.

PLS correlation56 was performed to mine the weighted linear
combinations (components) of gene expression profiles asso-
ciated with the spatial development slopes βage of the WM
connectome. Specifically, we utilized development slopes βage
from 199 brain regions that spatially matched with the gene
expression profile. For each PLS component, We calculated
Pearson’s correlation coefficient to assess the association between
the PLS score and development slopes βage. To correct for spatial
autocorrelation, we compared the empirically observed value with
spatially constrained null models generated by 10,000 permuta-
tions of surrogate maps of development slopes βage

57. Further-
more, we transformed the gene weight into a z-score value by
dividing the standard deviation of the corresponding weights
estimated from bootstrapping and ranked all genes. The
significant genes with a Bonferroni of 1% were identified for
the positive or negative gene list. Then, we performed gene
functional enrichment for the GO biological process pathway
search with Metascape58, focusing on selected high positive or
negative genes. The resulting enrichment pathways were retained
for significance at FDR < 0.05. Briefly, enriched terms were
filtered by calculating accumulative hypergeometric p values and
enrichment factors, and then hierarchically clustered into a tree
according to Kappa similarity among their gene memberships. A
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threshold value kappa score of 0.3 was applied to cast the tree into
term clusters.

Cell type-specific analysis. The selected genes were initially
assigned to 58 cell types derived from five studies focusing on
single-cell research using the human postnatal cortex9,59–62, and
these cell types were subsequently integrated into seven canonical
classes63. Specifically, the cell classes comprised of astrocytes,
endothelial cells, excitatory neurons, inhibitory neurons, micro-
glia, oligodendrocytes, and oligodendrocyte precursors. The
method avoided possible bias including acquisition methodology,
analysis, or threshold method63,118. For statistics of cell types, we
calculated overlapping numbers of the selected positive/negative
genes in each cell class. A null model was generated by 10,000
random resamples in genes within each cell type to test the sig-
nificance of the results. In addition, the genes involved in each
enriched term were subjected to the aforementioned analysis to
explore the specificity of the cell type.

Relationship to the cytoarchitecture of cortical organization.
To explore whether the developmental pattern of the WM con-
nectome aligns with the fundamental cytoarchitecture of cortical
organization, we focused on myelin content43 and the thicknesses
of L1-L641. For each cortical organization map, the vertex values
were assigned and averaged to regional values according to the
BNA246 template on fsaverage5 space. Then, we calculated
Spearman’s correlation coefficient between the developmental
slope of the nodal property and the extracted regional values of
each cortical organization map. For each laminar thickness, we
also calculated a partial correlation coefficient to explore laminar
specificity after controlling remaining laminar thickness. The
corresponding p value was corrected for spatial autocorrelation by
calculating the number of times that the correlation coefficients
derived from 10,000 spatially constrained null models were
greater than the observed correlation coefficient. In addition,
FreeSurfer (https://surfer.nmr.mgh.harvard.edu/fswiki/
FreeSurferWiki) was used to directly calculate the cortical
thickness of each individual and obtain the average cortical
thickness for subsequent validation of the cytoarchitecture results.

Validation analyses. We assessed the consistency of the results
with the head movement as an additional covariate. Briefly, we
computed the relative mean displacement as the measure of head
movement and integrated it into the mixed effect model to
delineate the developmental changes of global and nodal prop-
erties. The normalized gene weights were derived though PLS
correlation between βage of nodal efficiency and gene expression.
To assess the consistency of the results, we employed Pearson’s
correlation coefficient to compare models with and without the
inclusion of head motion. The corresponding p value was cor-
rected for spatial autocorrelation by calculating the number of
times that the correlation coefficients derived from 10,000 spa-
tially constrained null models were greater than the observed
correlation coefficient.

We validated the sensitivity of the result based on a distinct
template. A native brain parcellation derived from AAL9064 was
obtained by applying inverse transformation matrices. For each
participant, an FA ´ FN-weighted WM network was constructed.
Statistical analyses were utilized for mainly global and nodal
network properties to investigate the effects of age and sex
differences on the topological organization of the AAL90 WM
network.

We also proceeded to create networks weighted by FN, FA, and
1/MD employing the BNA246 template. These networks were
formulated to assess the results of diverse connection-weighted

approaches, complementing the principal findings of global and
nodal properties. Spearman’s correlation coefficients were
computed to quantify the association between the developmental
slopes of node properties across distinct weighted networks. The
corresponding p value was corrected for spatial autocorrelation by
determining the frequency with which correlation coefficients
from 10,000 spatially constrained null models exceeded the
observed correlation coefficient. To evaluate the robustness of the
tractography approach, following our previous methodological
evaluation study107, an FA ´ FN-weighted network derived by the
Camino toolbox (http://camino.cs.ucl.ac.uk/) and a probabilistic
tractography weighted network119 were constructed based on a
ball-and-stick model estimated from bedpostx results65. The gene
association and cell type-specific analysis were performed as for
the nodal efficiency βage.

We employed the ABAnnotate toolbox66,67, which takes into
account both gene coexpression and spatial autocorrelation, to
validate the enrichment results of spatial correlation between the
developmental slope βage of WM nodal efficiency and gene
expression profiles. Specially, we conducted gene category
enrichment analysis on GO categories for positively and
negatively correlated genes selected by PLS, where the weight of
genes served as the gene score. Then, we generated 10,000 spatially
autocorrelated maps57 of the developmental βage to estimate a
category-level null distribution of gene score. Finally, we inferred
the statistical p value on category enrichment by comparing
observed mean gene score to the null distribution. Multiple
comparison correction was applied using the FDR method.

To evaluate whether the heterogeneous spatial development
and transcriptomic architecture obtained from our study were
replicated in another independent cohort, the HCP-D 2.0 data
release was utilized for validation. We applied minimal
preprocessing pipelines120 according to imaging acquisition
details45,46. Following our previous methodological evaluation
study107, the Camino toolbox (http://camino.cs.ucl.ac.uk/) was
used to reconstruct fibers with a ball-and-stick model estimated
from bedpostx results65 and to generate an FA ´ FN-weighted
network with the BNA246 template. After demographic matching
and quality control during MRI preprocessing, we selected a
cross-sectional cohort composed of 179 typically developing
children (age range of 6–13 years, 76 males and 103 females) who
were unrelated to others in the HCP-D (Supplementary Table 2).
The network properties were calculated by GRETNA121 and the
general linear model was applied to analyse age-related changes.
The subsequent gene association analysis, cell type-specific
analysis and cortical organization correlation were adopted for
the CBD cohort. Pearson’s correlation coefficient was applied to
calculate the consistency of nodal efficiency βage between two
cohorts and to measure the consistency of normalized gene
weights between two cohorts. The corresponding p value was
corrected for spatial autocorrelation by calculating the number of
times that the correlation coefficients derived from 10,000 spa-
tially constrained null models were greater than the observed
correlation coefficient.

Statistics and reproducibility. Mixed effect model52 was per-
formed to obtain the statistical correlation between WM network
properties and age (n= 1033). For linear associations between the
spatial development slopes of WM nodal efficiency and other
brain phenotypes (gene expression profiles and cortical organi-
zation maps), we generated 10,000 surrogate maps of develop-
ment slopes57 to correct for spatial autocorrelation of MRI data.
All linear models were fitted for the original data as well as 10,000
corresponding surrogate maps. P-values were obtained by the
occupied null models (<5th, or >95th centile). Six analysis
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strategies were considered to verify the reproducibility, including
(i) head movement as an additional covariate (n= 1033); (ii)
defining brain nodes based on a distinct brain template
(n= 1033); (iii) using different connection-weighted approaches
(n= 1033); (iv) using another tractography approach (n= 1033);
(v) using another gene category enrichment analysis pipeline; and
(vi) using another independent dataset (HCP-D, n= 179). Spatial
development patterns of WM network properties, gene associa-
tion, and cell type-specific analysis were examined in these cases.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
The CBD data that support the findings of this study are available from the
corresponding author upon reasonable request. The HCP-D 2.0 release data that support
the findings of this study are publicly available on https://www.humanconnectome.org/
study/hcp-lifespan-development. The AHBA dataset are available on the Allen Brain
Atlas (https://human.brain-map.org/static/download). The processed transcriptomic
data in this study are available from the corresponding author upon reasonable request.
The source data underlying Figs. 1, 3, 4, 5, and 6 can be accessed at https://figshare.com/
articles/dataset/WM-connectome-development/24588585.

Code availability
The code for preprocessing of the AHBA dataset can be found at https://github.com/
BMHLab/AHBAprocessing. The gene enrichment analysis is performed at https://
metascape.org/gp/index.html#/main/step1. The spatial permutation testing is performed
based on BrainSpace (https://brainspace.readthedocs.io/en/latest/index.html). The
minimal preprocessing pipelines can be found at https://github.com/Washington-
University/HCPpipelines. The code relevant to this study can be accessed at https://
github.com/FelixFengCN/WM-connectome-development122.
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