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Single-cell chromatin accessibility and
transcriptomic characterization of Behcet’s disease
Wen Shi1,2, Jinguo Ye1, Zhuoxing Shi1, Caineng Pan1, Qikai Zhang1, Yuheng Lin1, Dan Liang 1✉, Yizhi Liu 1,2✉,

Xianchai Lin 1,2✉ & Yingfeng Zheng 1,2✉

Behect’s disease is a chronic vasculitis characterized by complex multi-organ immune

aberrations. However, a comprehensive understanding of the gene-regulatory profile of

peripheral autoimmunity and the diverse immune responses across distinct cell types in

Behcet’s disease (BD) is still lacking. Here, we present a multi-omic single-cell study of

424,817 cells in BD patients and non-BD individuals. This study maps chromatin accessibility

and gene expression in the same biological samples, unraveling vast cellular heterogeneity.

We identify widespread cell-type-specific, disease-associated active and pro-inflammatory

immunity in both transcript and epigenomic aspects. Notably, integrative multi-omic analysis

reveals putative TF regulators that might contribute to chromatin accessibility and gene

expression in BD. Moreover, we predicted gene-regulatory networks within nominated TF

activators, including AP-1, NF-kB, and ETS transcript factor families, which may regulate

cellular interaction and govern inflammation. Our study illustrates the epigenetic and tran-

scriptional landscape in BD peripheral blood and expands understanding of potential epige-

nomic immunopathology in this disease.
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Behcet’s disease (BD) is a systemic inflammatory disorder of
unknown etiology affecting blood vessels1. It commonly
manifests as inflammation of the intra-ocular structure, and

recurrent oral/genital ulceration. BD causes morbidity and mor-
tality, particularly in Asians2. Current treatments for BD are
aggressive systemic and topical glucocorticoids, with or without
immunosuppressive agents. However, these can lead to undesir-
able side effects, such as hyperglycemia, osteoporosis, and obesity,
related to prolonged drug usage3. Thus, there is a need to develop
new targeted therapies for BD. Painful skin lesions, recurrent
ulceration, and blindness result from the combination of genetic
susceptibility, environmental triggers, and dysregulated immune
responses involving T helper 17 (Th17) cells, monocytes, skin
CD8+ T cells and pro-inflammatory cytokines4–8. However, to
date, the knowledge of genetic contributors and pathogenic cells
to BD is still limited.

Over recent decades, progress in single-cell sequencing tech-
nologies has enabled profiling of the genetic transcriptomics of
peripheral blood mononuclear cells (PBMCs) and skin tissues
from BD patients4,8. Although previous studies have examined
the single-cell gene expression of BD, heterogeneity in the single-
cell epigenomics of PBMCs has not been profiled. Integrating the
single-cell assay for transposase-accessible chromatin sequencing
(scATAC-seq) and single-cell RNA-seq (scRNA-seq) enables the
identification of the potential disease-associated regulatory
program9–16.

In this study, we aimed to map the cellular landscape of
PBMCs in BD patients, with the goal of dissecting disease het-
erogeneity among patients and identify the underlying cellular
and molecular events. To accomplish this, we simultaneously
generated both transcriptomic and epigenomic data in BD
patients to identify the gene regulatory network. Our analyses
uncovered widespread gene expression and chromatin accessi-
bility changes in both BD patients and unaffected controls,
including hyperactivation signatures in T cells and monocytes.
Notably, we also nominated potential TF activators of chromatin
accessibility and gene expression in BD. Moreover, our multi-
omics analysis was effective at predicting disease regulatory net-
works, highlighting the predicted involvement of AP-1, NF-kB,
and ETS transcript factor families in BD pathophysiology.
Overall, our study provides insights into the understanding of the
peripheral immune pathogenesis of BD.

Results
High-resolution single-cell epigenomic and transcriptional
peripheral immune cell-type mapping of Behcet disease
patients. We performed droplet-based scRNA-seq and scATAC-
seq (10X Genomics) to map the immune landscape of PBMCs from
22 BD patients in scATAC-seq dataset, 23 BD patients in scRNA-
seq dataset and 8 non-BD individuals in both dataset (Fig. 1a,
Supplementary Data 1). After stringent quality control filtration, a
total of 152,704 cells of the scATAC-seq dataset and 272,113 cells of
the scRNA-seq dataset were retained for downstream analysis, with
an average of 8810 unique nuclear fragments and an average of 14.5
in TSS enrichment for scATAC-seq-profiled cells, and an average of
2042.9 UMIs for scRNA-seq-profiled cells (Fig. 1b, Supplementary
Fig. 1a–h). We did not detect any potential batch effects in our
datasets (Supplementary Fig. 1d–g). Therefore, no batch correction
method was applied in our further analysis. The quality control
thresholds of the scATAC-seq and scRNA-seq are described in the
Methods. The scATAC-seq dataset, aligned using dimension
reduction and graph-based clustering, yielded discrete cell clusters,
primarily representing T (CD4/CD8) cells, monocytes, dendritic
cells (DCs), T cells, natural killer (NK) cells, B lymphocytes, and
Hematopoietic stem and progenitor cell (HSPC) (Fig. 1c,

Supplementary Data 2). With scATAC-seq, we first manually
annotated based on chromatin accessibility at the promoter regions
of key lineage markers for six major immune cell lineages of the
PBMCs by comparing differentially accessible chromatin regions
(DARs): T cells (84,202 cells; 1–4, clusters 7–9); monocytes (29,624
cells; clusters 16–19); DCs (1,861 cells; clusters 11, 15); NKs (22,738
cells; clusters 5, 6); BCs (12,610 cells; clusters 10, 12, 13) and HSPC
(1669 cells; 14 clusters)17 (Fig. 1b–d). Open chromatin at known
major immune cell lineages specific genes validated our analysis.
T cells had high accessibility at cis-elements neighboring CD8A17

and IL7R8,17 (Fig. 1d, Supplementary Fig. 2a, c). NK cells had higher
accessibility at GNLY18. Monocytes showed higher accessibility
within S100A817 (Fig. 1d, Supplementary Fig. 2a, c). We found that
HSPC had higher accessibility at GATA217 (Fig. 1d, Supplementary
Fig. 2a, c). B cells had high accessibility at MS4A119 (Fig. 1d, Sup-
plementary Fig. 2a, c). DCs showed higher accessibility withinHLA-
DQA120 (Fig. 1d, Supplementary Fig. 2a, c). We also used
chromVAR21 to compute transcription factor (TF) motif deviation
in single cells by estimating the enrichment of TF binding motifs in
open chromatin regions and examined the enrichment of TF motifs
in immune cell types concerning diagnosis and identified NFKB1
TF motifs with increased enrichment with BD patients in mono-
cytes (cluster 18, Fig. 1e, Supplementary Fig. 2b, d). For example,
LEF1 was active in naive T cell lineage and myeloid cells shared the
activity of SPI1 factor motif but demonstrated unique activity of the
GATA2 factor in HSPC17,22 (Fig. 1e, Supplementary Fig. 2b, d).

Likewise, we detected similar cell types and annotated them
based on known marker genes using scRNA-seq: T cells (152,842
cells; clusters 1–3, 6, 7, 10, 11, 25); monocytes (53573 cells;
clusters 5, 9, 12, 19, 21, 26); DCs (3000 cells; clusters 13, 14, 20);
NKs (40875 cells; clusters 15, 17, 22); BCs (20971 cells; clusters 4,
8, 16, 18) and HSPC (852 cells; clusters 23, 24) (Fig. 1b, c, f). As
expected, many differentially expressed genes (DEGs) in the six
major immune cell types agreed with previous literature and our
scATAC-seq dataset, such as IL7R for T cells, GNLY for NKs,
S100A8 for monocytes, HLA-DQA1 for DC, MS4A1 for BC and
GATA2 for HSPC17,23 (Fig. 1f). Altogether, we mapped the high-
resolution epigenomic and transcriptional peripheral immune
landscape in BD at a single-cell resolution.

Multi-omic characterization of T cell heterogeneity in BD
blood. The high sensitivity of scATAC-seq and scRNA-seq
allowed us to further map these major immune cell types into
subtypes22,23. As in previous studies, we compared the DARs in
the scATAC-seq dataset and DEGs in the scRNA-seq dataset to
map T cell subsets17,22. We also used gene activity scores (GAS)
for cell type identification in the scATAC-seq dataset due to the
sparsity of single-cell cis-element information24. Specifically, we
identified T cell subsets into 15 subgroups according to the
expression of cell type marker GAS and genes (Fig. 2a, Supple-
mentary Fig. 3a, Supplementary Fig. 4a, b), including CD4
cytotoxic T cells (CD4 CTLs; CD4+GZMK+), CD4 naïve T cells
(CD4 Naïve; CD4+SELL++TCF7++), CD4 central memory
T cells (CD4 TCMs; CD4+SELL+TCF7+), CD4 T follicular helper
(CD4 TFH; CD4+ICOS+CXCR5+), CD4 T helper 1 cells (CD4
Th1; CD4+CXCR3+), CD4 T helper 2 cells (CD4 Th2;
CD4+CCR4+), CD4 T helper 17 cells (CD4 Th17; CD4+CCR6+

RORC+), CD4 regulatory T cells (CD4 Treg; CD4+FOXP3+),
CD8 mucosal-associated invariant T cells (CD8 MAIT;
CD8+CCR6+ RORC+), CD8 naïve T cells (CD8 Naïve;
CD8+SELL++TCF7++), CD8 central memory T cells (CD8
TCMs; CD8+SELL+TCF7+), CD8 effector memory T cells (CD8
TEMs; CD8+IFNG+GZMK+), CD8 exhausted T cells (CD8
TEXs; CD8+PDCD1+), CD8 regulatory T cells (CD8 Treg;
CD8+KIR3DL2 +KIR2DL2 +) and double negative T cells (DNT,
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CD3+CD4+CD8−) (Fig. 2b, Supplementary Fig. 3a, Supple-
mentary Fig. 4a, S4b)17,22,23,25,26. CD8 Tregs are rare cell types in
PBMCs. Recently, it has been found that they undergo clonally
expansion in some autoimmune disorders27. To further identify
the regulatory TF in CD8 Treg, we compared the differentially
accessible chromatin regions (DARs) and analyzed their enrich-
ment of key TFs. Compared to CD8 naïve T cells, TF

Eomesodermin (EOMES) were the top TFs enriched in CD8
Tregs26 (Supplementary Fig. 3b).

There has been a relative dearth of deep profiling of T cell
subsets from BD patients. To address this, we first examined how
BD impacted the composition of peripheral T cells in the
scATAC-seq dataset and scRNA-seq dataset (Fig. 2c, Supple-
mentary Fig. 5a, b). We saw similar trends in T cell subsets
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composition between the multi-omics dataset, including
decreased CD4 TFH, and CD4 TH2, as well as increased in
CD8 Naïve, CD8 Treg, and DNT in patients with BD (Fig. 2c).
DNT cells have been reported to be increased in BD patients,
which is consistent with our finding28. TFs tightly control cell fate
in immune cells and have been implicated in the pathogenesis of
autoimmune diseases, such as BATF in arthritis and PU.1 in
systemic lupus erythematosus29–33. We performed TF footprint
analysis to further clarify cell-type-specific trans-regulatory
elements in BD (Fig. 2d, Supplementary Data 3). We examined
the regulatory role of the Treg TF AP-1 family, such as JUNB and
FOSL2. JUNB and Fos-related antigen 2 (FOSL2) motif
variabilities in our scATAC-seq were increased and upregulated
in BD (Fig. 2d). This result suggests that the AP-1 family TFs
might have higher accessibility in BD, providing insight into how
the AP-1 family contributes to BD pathophysiology34,35. We
therefore identified the DEGs and DARs between BD and non-
BDs subjects in the scRNA-seq and scATAC-seq dataset (Fig. 2e,
Supplementary Fig. 5c, d, Supplementary Fig. 6a, Supplementary
Data 4). We also used muscat36 to validate our DEGs result
(Supplementary Fig. 7a, Supplementary Data 5). We next applied
CHIPseeker37 to find the nearest genes of the DARs and used the
DARs to overlap with DEGs (Supplementary Fig. 6b). We
observed that 14 genes were both upregulated in T cell subsets,
including DUSP238, JUNB39, IRF140, and DDIT439, suggesting
T cells might be in proinflammatory state in BD patients. CD541,
CD6942, NFKBIA43 were up-regulated in all the CD4 T cell
subsets, suggesting CD4 T cell subsets were both highly activated
in BD42 (Supplementary Fig. 5c). In contrast, CD744, IL2RG45,
IFITM146, IFITM246 were up-regulated in all the CD8 T cell
subsets (Supplementary Fig. 5d).

A Gene Ontology (GO) analysis of the DEGs showed that the
cellular response to cytokine stimulus was enriched in most T cell
lineages, suggesting the immune-activated states in BD patients
(Fig. 2f, Supplementary Data 6). In T cells, the GO analysis
showed that CD4 CTLs, CD8 Tex, and CD8 Treg were all
enriched in the TCR signaling, and costimulation by the CD28
family pathway (Fig. 2f). The IL-4 signaling pathway was among
the top enriched pathways in T helper cells, suggesting B cell-
induced IL-4 mediated hyper-interplay with T cells in BD47.
Th1 cells and Th17 cells were reported to take part in the BD
pathogenesis5,48,49 (Fig. 2f). We observed that Th1 cells were
involved in the NF-kB signaling, TNF signaling pathway. Th17
cells were involved in the response to the interferon-gamma
pathway with interferon signaling-related genes upregulated
(ISG15, IFITM1, IFITM2) (Supplementary Fig. 7b). We also shed
light on the significant number of rare T cell types, including
MAIT and DNT cells. DNT cells were involved in the TCR
signaling, T cell activation pathway, and HIF1 TF pathway
(Fig. 2f). MAIT cells from BD patients showed increased
enrichment for pathways associated with TNF signaling, NF-kB
signaling, VEGFA-VEGFR2 signaling, and cellular response to
cytokine stimulus (Fig. 2f). MAIT cells have been reported to
contribute to the pathogenesis of other forms of vasculitis8,50.
Overall, these analyses provide transcriptional and epigenomic

evidence that highly activated peripheral T cells may be associated
with BD, consistent with previous single-cell reports8.

Multi-omic characterization of NK and B cell heterogeneity in
BD blood. Despite studies that show NK cells are involved in the
dysregulated immune response in BD, the pathogenesis of NK cell
subsets in BD still needs to be explored further. As demonstrated
previously, peripheral NK cells were identified into three subsets
based on the GAS and mark genes: early NKs (NK1;
NCAM1highFCGR3AlowB3GAT1low), intermediate NKs (NK2,
NCAM1highFCGR3AlowB3GAT1low) and late NKs (NK3,
NCAM1highFCGR3AlowB3GAT1low)17 (Fig. 3a, b, Supplementary
Fig. 8a, b). While we did not notice a significant change in the
percentage of total NK cells (Supplementary Fig. 8c, d), we noted
significant transcriptional and epigenomic reconfiguration in all
the NK subsets driven by up-regulated of several canonical NK
cell activation genes (Supplementary Fig. 8e–g, Supplementary
data 7), including CD6951 as well as interferon-stimulated genes
(ISGs) IFITM2, IRF1, and ISG20 (Fig. 3c). NK1 also expressed
higher cytotoxic effector molecule-encoding genes GZMB,
GZMM, and GZMH (Fig. 3c).

To further elucidate the pathogenic pathways, we next
examined DEGs of NK cell subsets for GO analysis (Fig. 3d).
The top signaling pathways of NK1 in BD included the cytokine
signaling pathway, regulation of T cell activation, IL-18 signaling
pathway, CXCR4 pathway, costimulation by the CD28 family,
and VEGFA-VEGFR2 signaling pathway (Fig. 3d). The pathway
enrichment result implicates that NK1 cells in BD might be
involved in the pro-angiogenic process. T-cell activation, CD28
co-stimulation, T-cell receptor signaling pathway, IL-6 signaling
pathway, transcription regulation by RUNX1, and CD8 TCR
downstream pathway were up-regulated in NK2, while regulation
of the viral process, regulation of cell-cell adhesion, Th17 cell
differentiation, cytokine-mediated signaling pathway, TNF sig-
naling pathway, and FCGR3A-mediated phagocytosis were
upregulated in NK3 (Fig. 3d). Both NK cell subsets in BD were
enriched in the T cell activate and cytokine-related pathway with
increased cytotoxic activity and up-regulated TNF pathway. The
differences between non-BD suggest that NK cells in BD were in
proinflammatory state52. The above findings suggested that NK-
mediated immunity was activated and pro-inflammatory in BD
patients.

We next interrogated changes in the B cells of BD patients,
because B cells may play an eminent role in the pathogenesis53

(Fig. 3e, Supplementary Fig. 9a). Embedding of B cells alone was
manually identified into 4 subsets: naïve B cells (NB;
MS4A1+TCL1A+), memory B cells (MB, MS4A1+TCL1A+),
double negative B ells (DN2B; CD19+ITGAX+CR2−), and
plasma B cells (PB, CD38+)17 (Fig. 3f, Supplementary Fig. 9b).
As observed in the transcriptional data, all the B cell subsets
in BD highly expressed interferon-stimulated genes IRF140,
IFITM246, and antigen processing and presentation-related
molecules HLA-DQB154, and the cytokine IL2RG55, as well
as AP-1 family genes JUNB56, MAPK signaling, and
NF-kB signaling related genes DUSP138, NFKBIA43 (Fig. 3g,

Fig. 1 High-throughput single-cell epigenomic and transcriptional profiling of Behcet’s disease patients and health human peripheral blood cells.
a Schematic highlighting design of single-cell multi-omics profiling of PBMCs from BD patients (scATAC: n= 22; scRNA: n= 23) and non-Behect’s disease
patients (n= 8) in this study. Cells were then split and profiled using scATAC-seq and scRNA-seq for each condition. b UMAP projections of complete
scATAC-seq and scRNA-seq datasets between non-BD and BD patients with cells colored by unsupervised cell clusters. c Total number of six main
immune cell types profiled passing quality control filtering for scATAC and scRNA-seq. d Aggregate accessibility profiles for scATAC-seq six main cell type
at canonical cell-type marker genes. e UMAP projection of scATAC-seq peripheral blood profiles colored by chromVAR TF motif bias-corrected deviations
for the indicated factors. f Row-normalized single-cell gene expression heatmap of six main immune cell-type marker genes. All data are aligned and
annotated to hg38 reference genome.
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Supplementary Fig. 9c–f, Supplementary Data 7). MB expressed
higher RELA, BACH1, SPIB, JUN and JUND. DN2B showed
higher expression on ISG20, TNFRSF13C and BTG1 (Fig. 3g,
Supplementary Data 7). By overlapping the DARs and DEGs, the
activation marker CD69 was highly expressed in DN2B57, and the
antigen-presenting and activation marker CD83 was highly

expressed in MB and NB, suggesting a highly activated state of
B cells in BD patients58 (Supplementary Fig. 9e, f).

Next, we performed GO analysis on upregulated genes in BD
patients (Fig. 3h). The GO results showed that DN2B in BD
patients were enriched in positive regulation of T cell activation,
regulation of IL-2 production, activator protein 1 (AP-1)
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pathway, PD-1 signaling, and costimulation by the CD28
family59, while PB were enriched more in IL-1 signaling FCERI
mediated NF-kB activation, Dectin-1 signaling and cellular
response to hypoxia (Fig. 3h). Moreover, GO analysis suggested
that MB from BD patients were enriched in the AP-1 pathway,
IL-18 signaling, MAPK signaling, signaling by interleukins, and
response to the interferon-beta pathway (Fig. 3h). As for NB,
Antigen processing and presentation, major histocompatibility
complex (MHC) protein complex assembly, regulation of T cell
activation, response to the virus, and TCR signaling pathway were
up-regulated (Fig. 3h). Taken together, these findings indicated
common and distinct functions of B cell subsets among non-BDs
and BD patients and suggested an enhanced humoral immunity is
developed in BD patients.

Multi-omic characterization of myeloid cells heterogeneity in
BD blood. To increase cell-level resolution and dissect myeloid
cells, we first clustered DCs and identified 3 DC subtypes: type 1
classical dendritic cells (cDC1; HLA+CLEC9A+), type 2 classical
dendritic cells (cDC2; HLA+ITGAX+), and plasmacytoid DCs
(pDCs; HLA+IRF8+CLEC4C+)17,20 (Fig. 4a, Supplementary
Fig. 10a–c). We first examined how BD impacted the composition
of peripheral DCs in two datasets (Supplementary Fig. 10D,
S10E). We saw cDC2 significantly increased in the scRNA-seq
dataset (Supplementary Fig. 10d). Next, we analyzed the differ-
ence between BD and non-BD in transcription and epigenomic
profiling (Fig. 4b–e, Supplementary Fig. 10f, g, Supplementary
Data 5). Notably, cDC2 in BD patients showed significantly
higher chromatin accessibility on the IL-1B locus and CD83
locus, suggesting increased cytokine secretion and enhanced
antigen presentation in DCs (Fig. 4b, c). To further access the TF
that drove differences in cDC2, we conducted a TF footprint
analysis compared to BD and non-BD in cDCs (Fig. 4d, Sup-
plementary Data 1). The results showed that NFKB family TF
(RELB, NFKB1) showed high accessibility in BD patients.

Consistent with our epigenomic dataset, the cytokines and
chemokines CCL3L1, CCL3, CCL4L2, IL1B, and ISGs IFITM3,
IRF1, IFITM1, ISG20, as well as activation marker CD83 and NF-
kB signaling related genes (RELB) were up-regulated in cDC2
(Fig. 4e). Interestingly, HIF1A was also up-regulated in cDC2,
suggesting epigenetic reprogramming and metabolism changes in
cDC260 (Fig. 4e). Furthermore, cDC2 with high expression of
NFKBIA, JUNB, and MAP3K8 showed GO enrichment in TNF
signaling, regulation of T cell activation, interferon signaling, IL-
18 signaling, and AP-1 pathway based on GO analysis (Fig. 4e,
f)61,62. The GO analysis showed that the DEGs of cDC1 in BD
patients were enriched in the Dectin-1 signaling, gluconeogenesis,
interleukin-1 signaling, MAPK1/MAPK3 signaling, and signaling
by interleukins pathways. While the DEGs of pDC were enriched
in TCR signaling, glycolysis, and gluconeogenesis, Fc epsilon
receptor signaling (Fig. 4e, f). Our analysis of DCs showed that
DC subsets in BD patients varied greatly compared to those in
non-BD, suggesting enhanced DC function and further directed
T cells differentiation in BD patients63.

It has been reported that monocytes play vital roles in BD4,
however, the epigenomic changes of monocytes in BD have not
been well characterized. To address this, we sub-grouped
monocytes into 4 subclusters, which consisted of classical
monocytes based on the GAS and DEGs between each cluster.
The classical monocytes (CM) were identified based on the
expression of CD14+FCGR3A-, while the non-classical monocytes
(NCM) expressed more FCGR3A (Fig. 4g–i, Supplementary
Fig. 11a, b, Supplementary Data 8). Notably, cell subsets
proportions were altered in BD patients. BD patients had a large
proportion of monocytes that highly expressed cytokines and
chemokines IL1B, CXCL8, CCL4L2, and CCL3 with
CD14+S100A12+FCGR3A-, which we identified as activated
classical monocytes (ActCM)43. We also identified previously
reported C1Q+ monocytes with a high expression on ISG
IFITM2, and pro-inflammatory genes TNF, IL1B, CXCL8,
CCL4L2, CCL3, as well as FCGR3A, RHOC, which we identified
as activated non-classical monocytes (ActNCM)4,43,64 (Fig. 4g–i).
Comparing the relative cell proportions in BD and non-BD
groups, we observed a similar trend to what was previously
reported in single-cell profiling4, a significant expansion in
ActCM and ActNCM, and a notable decrease in NCM in the
scATAC-seq dataset, while the proportion of CM was comparable
between BD and non-BD groups (Fig. 4j, Supplementary Fig. 11c,
Supplementary Data 2). Although we did not notice significant
changes in ActNCM in the scRNA-seq dataset, we still observed a
significant increase in ActCM (Supplementary Fig. 11c).

Furthermore, within these subpopulations, we conducted GO
analysis (Fig. 4k). Both ActCM and ActNCM were enriched in
cytokine signaling in the immune system pathway (Fig. 4k,
Supplementary Data 6). GO enrichment analysis of upregulated
genes in ActCM highlighted strong signatures for IL-18 signaling,
NF-kB signaling, regulation of myeloid cell differentiation, TNF
signaling, Toll-like receptor signaling, and positive regulation of
cell death pathway. Relative to other sub-population, the GO
analysis showed ActNCM were enriched for signaling by
interleukins, positive regulation of cytokine production, regula-
tion of T cell activation, regulation of cell-cell adhesion, the
VEGFA-VEGFR2 signaling pathway, and regulation of tumor
necrosis factor production (Fig. 4k).

We next performed TF deviation analysis on monocyte subsets,
we noticed monocyte subsets exhibited deviated variations in
different TF family members from homeostasis to the activated
effector state (Supplementary Fig. 11d). For example, both
ActCM and ActNCM were associated with high levels of activity
of TF involved in NF-kB signaling signatures and myeloid
differentiation, including REL, RELA, NFKB1, and NFKB264,65

(Supplementary Fig. 11d). Interestingly, ActCM had increased
enrichment in TFs that represent activation and maturation
stages, such as AP-1 family members, FOS, and JUN56,64,66. In
addition, CM was also enriched in the activation of AP-1 family
TFs (Fig. 4l). Meanwhile, ActNCM showed high activity of TFs
involved in haematopoetic commitment and survival of mono-
cytes, including NR4A1 and NR4A264,67 (Fig. 4l, Supplementary

Fig. 2 scATAC-seq and scRNA-seq analysis of the changes in T cell subsets in BD. a UMAP projections of T cell subsets of scATAC-seq dataset.
b Heatmap visualization of log-normalized gene activity scores of subpopulation-specific genes in T cell subsets. Selected genes are indicated.
c Differences in the proportions of CD4Tfh, CD4Th2, CD8 Navie, CD8 Treg and DNT cells among non-BD (n= 8) and BD groups (n= 22). The p values
were calculated using two-sided Wilcoxon rank-sum test. The horizontal lines denote median. d Comparison of aggregate TF footprints for JUNB and
FOSL2 in CD4Treg cells from non-BD and BD. The p value of the TF footprint was compared by two-sided Wilcoxon rank-sum test. e UpSet plot showing
the integrated comparative analysis of upregulated DEGs in T cells between non-BD and BD groups. Upregulated DEGs: upregulated in BD, downregulated
in non-BD. The count shows the number of DEGs. f Representative GO terms and KEGG pathways enriched in the nearest genes of upregulated DARs of T
cell subsets in the BD/non-BD comparison group. The p values were calculated by hypergeometric test. All data are aligned and annotated to hg38
reference genome.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05420-x

6 COMMUNICATIONS BIOLOGY |          (2023) 6:1048 | https://doi.org/10.1038/s42003-023-05420-x | www.nature.com/commsbio

www.nature.com/commsbio


Fig. 11d, e, Supplementary Data 1). Collectively, myeloid subsets
maintained chromatin reprogramming and transcription changes
that promote a rapid inflammatory response in BD.

Multi-omic integration mapping enables cellular annotation
and analysis. We reasoned that integrating data from scATAC-

seq and scRNA-seq datasets may enable the determination of
gene-regulatory networks (GRNs) by data integration, facilitating
the interpretation of the key regulatory processes underlying the
pathogenesis of BD. Based on the sub-clustering and manual
cellular annotation we described above, we identified 29 immune
cell subsets in 20,000 cells (Fig. 5a). We also automated annotated
cell types using clustifyr68 package based on Hao et al.23 to
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validate our manual annotation based on known marker genes
(Supplementary Fig. 12a, b). Next, we interrogated the BD and
non-BD datasets from epigenomic and transcriptomic data and
utilized the current frameworks supporting the integration of
scATAC-seq and scRNA-seq data, relying on identifying mutual
nearest neighbors cells – cells, which represent shared biological
states in a common lower-dimensional space - to then find
representative cells from one dataset in the other (Supplementary
Fig. 13a–c). The whole process was parallelized and separately
aligned using the ArchR24 and Seurat69,70 pipelines by separating
cells into smaller groups. This procedure enabled us to accurately
integrate the transcriptomic data from the scRNA-seq dataset
with the chromatin accessibility data from the scATAC-seq
dataset by mapping the GAS and gene expression to generate an
integration matrix. As expected, the GAS and gene expression
were matched, which allowed us to distinguish the 29 immune
cell types (Fig. 5b, Supplementary Fig. 13d).

Dissecting the molecular mechanisms behind autoimmune
disease complex phenotypes identified by genome-wide associa-
tion studies (GWAS) requires pinpointing disease-relevant cell
types. However, nearly 90% of causal genetic variants lie in
noncoding regions31. In addition, much work has shown that the
resolution of intersecting GWAS signals with bulk data is
impeded by cell-type heterogeneity71–73. We wondered if we
could use our single-cell data to better dissect the cell-type-
specific effects of genetic variations underlying complex human
autoimmune disease traits. To address these issues, we adopted
the g-chromVAR74 method on our global single-cell chromatin
data to identify trait-cell type associations in a peripheral immune
cell subsets-dependent manner (Fig. 5c).

We used a publicly available database for autoimmune and
non-immune disorders from a previous study31 and calculated
the enrichment of disease-related SNPs in 29 peripheral immune
cell types using the g-chromVAR31,74. The majority of the
autoimmune associations were strongly enriched for a corre-
sponding trait association. For example, BD was significantly
enriched in CD4 CTL, CD8TEM, DNT, and CD8TCM cells75,76,
while type 1 diabetes was most strongly enriched in Th17 cells
(Fig. 5c)77. Within the open chromatin region of our broad cell
subsets, g-chromVAR enrichment revealed significant T cell
subsets, reinforcing the previous study22,75,76. T cells with
cytotoxicity have been reported to contribute to BD pathogenesis
in both skin and circulation8. Additional trends of T cells
enrichment are also observed here for type 1 diabetes and asthma,
although no statistically significant. Most of these non-
autoimmune disease GWAS were not apparent in the immune
cell peaks, demonstrating GWAS enrichment was consistent with
our expectations. Although not the focus of our current study, we
observed that our generated PBMC chromatin data could provide
cellular-specific enrichment of human autoimmune disease
heritability.

We compiled a list of 66 index SNPs from Farh et al.31

representing GWAS hits for BD. We then identified all the SNPs

in scATAC peaks and focused on their nearest genes. Further-
more, we calculated peak-to-gene connections for these gene
locus using ArchR (Fig. 5d, Supplementary Fig. 13e–g). We
noticed the rs20198574378, that confers the risk of BD was in the
KLRC4-KLRK1 enhancer region, which was opened in CD8 T cell
subsets and NK cells subsets79. This enhancer was highly
accessible in NK and CD8 T subsets, but not in T cells, B cells
or monocytes, demonstrating NK and CD8 T specificity. In
KLRC4-KLRK1 enhancer region showed statistically increasingly
strong peak-to-gene linkages in non-BDs compared to BD
patients (Fig. 5d, Supplementary Fig. 13g). There are no
differences in the expression of KLRC4-KLRK1 in NK and T
cell subsets in the scRNA-seq dataset (Supplementary Data 4, 7,
9). However, we did not notice other SNP loci showed stronger
predictive linkages between BD and non-BDs. The low peak
accessibility and gene expression in the BD state illustrates
chromatin dynamic regulation in the KLRC4-KLRK1 locus. Since
Killer cell lectin-like receptor subfamily (KLRC) regulates NK and
CD8T function79–81, it is possible that this SNP contribute to the
pathogenesis of BD by dysregulating KLRC4-KLRK1 in NK and
CD8 T function. Therefore, our multi-omic integration analysis
could provide predictive disease mechanisms that involve
alterations in BD chromatin and gene regulatory regions.

Multi-omic integration analysis identifies candidate TF reg-
ulators of DORC activity. The modulation of gene expression by
changes in chromatin accessibility is crucial to understating the
pathogenesis of autoimmune disease. To address this, we have
created well-integrated multi-omic data and used FigR82 to
deduce key transcriptional regulatory networks that are required
for BD pathogenesis. We first used our scATAC-seq and scRNA-
seq data for ChromVAR enrichment of TF motifs among pre-
determined cis-regulatory elements, as well as the correlation of
TF deviation score with the overall chromatin accessibility level
for gene activity scores of TF genes, to infer likely positive TF
regulators24 (Fig. 6a). We noted that in our dataset, ETS family
TFs such as SPIB and SPI1 (also known as PU.1) ranked as the
top two TFs related to IFN stimulation and MHC class II gene
expression83,84 (Fig. 6a). In addition, AP-1 family TFs JUNB and
FOS, and NF-kB family TFs NKFB1 and RELB, also showed high
activity in our multi-omic dataset.

To connect distal cis-regulatory elements to genes and infer a
GRN, we first utilized our scATAC-seq and scRNA-seq data. We
next defined domains of regulatory chromatin (DORCs). We
used a computational approach (n= 150,000 cells per assay),
FigR framework, to determine DORC within a fixed window
(100 kb) around the transcription start site of each gene
(Fig. 6b–d). In this way, we identified a total of 23,627 unique
cis-regulatory associations genome-wide, showing significant
chromatin accessibility peaks with gene expression (permutation
p <=0.05). We defined 202 regions with an exceptionally large
(>7) number of significant peak-gene associations as DORCs,
identified as those exceeding an inflection point (Fig. 6b,

Fig. 3 scATAC-seq and scRNA-seq analysis of the changes in NK cell and B cell subsets in BD. a UMAP projections of NK cell subsets of scATAC-seq
dataset. b UMAP projection colored by gene activity scores for the annotated lineage-defining genes of scATAC-seq dataset. The minimum and maximum
gene activity scores are shown in each panel. c UpSet plot showing the integrated comparative analysis of upregulated DEGs in NK cells between non-BD
and BD groups. Upregulated DEGs: upregulated in BD, downregulated in non-BD. The count showing the number of DEGs. d Representative GO terms and
KEGG pathways enriched in the upregulated DEGs of NK cell subsets in the BD/non-BD comparison group. The p values were calculated by
hypergeometric test. e UMAP projections of B cell subsets of scATAC-seq dataset. f UMAP projection colored by gene activity scores for the annotated
lineage-defining genes of scATAC-seq dataset. The minimum and maximum gene activity scores are shown in each panel. g UpSet plot showing the
integrated comparative analysis of upregulated DEGs in NK cells between non-BD and BD groups. h Representative GO terms and KEGG pathways
enriched in the upregulated DEGs of B cell subsets in the BD/non-BD comparison group. The p values were calculated by hypergeometric test. All data are
aligned and annotated to hg38 reference genome.
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Supplementary Data 10). It has previously been reported that
DORCs are highly cell-type specific85. We noted that the top
genes were SEMA7A, PIK3R2, HLA-DQB1, and IL10, which
included many well-known mediators of immunological response
associated with innate and adaptive immune response pathways
(Supplementary Fig. 14a). For example, the top GO enrichment
pathways were regulation of T cell activation, B cell receptor

signaling pathway, costimulation by the CD28 family, cytokine
signaling, and TCR signaling pathway. Notably, we also observed
that the VEGF signaling pathway and positive regulation of
leukocyte adhesion to vascular endothelial cells were also on top
of the GO analysis, suggesting the possible pathogenesis of
vasculitis in BD patients (Supplementary Fig. 14a). Although the
top-ranked gene was SEMA7A, we did not observe a significant
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difference between BD and non-BD (Supplementary Fig. 14B).
However, we noted that HLA-DQB1 was highly expressed in the
BD group compared to non-BD (Supplementary Fig. 14B). Next,
we calculated the correlation of a given DORC gene to TF
expression and further queried putative TF regulators for a given
DORC (Fig. 6c, d). We identified known activators of HLA-
DQB1, including the CCAAT/enhancer-binding protein (CEBP)
family TF members: CEBPA, NF-kB family TF members: NFKB2,
and RELB (Fig. 6d)86. Importantly, RELB has been reported to be
a key activator in DC maturation87.

Based on the above analysis, we inferred that NF-kB family
TFs, AP-1 family TFs, and ETS family TFs might work as key
pro-inflammatory factors in BD. Leveraging DORCs and the TFs
that regulate them, we constructed a GRN that underlies the
peripheral blood immunity of BD, relating each TF to each
DORC (Fig. 6e, Supplementary Data 11). Consistent with
previous reports, AP-1 family TFs are central components of
regulatory factors for IL-10 expression88. Using a computational
method, we demonstrated the ability to identify DORCs and
GRN to determine disease-specific chromatin accessibility profiles
relevant to autoimmunity.

Discussion
BD is a complex immunogenic and systemic disease for which the
pathogenic cell type and pathway have not yet been identified,
leading to a lack of targeted treatment for this disease1,2. Studies
of autoimmunity in BD pathogenesis have been particularly
limited by mouse models that do not have equivalent clinical
phenotypes89. Leveraging scATAC-seq and scRNA-seq to accu-
rately map chromatin accessibility and gene transcription and
predict underlying TF regulators and GRN within BD blood
samples, provides a unique and physiological approach to eluci-
date the autoimmunity landscape in this complex disease.

Here, we analyzed the chromatin and transcript landscape
underlying human peripheral blood BD heterogeneity by deli-
neating the repertoire of accessible cis-elements and genes in a
multi-omic manner. Through our single-cell atlas of peripheral
blood and multi-model analysis approach, our work revealed: (1)
single-cell epigenomic and transcriptomic profiles of peripheral
blood in BD patients; (2) widespread activation of peripheral
autoimmunity profiles in BD patients; (3) putative TF activators
that drive the changes chromatin accessibility in BD patients; and
(4) potential GRN of BD-associated regulatory interactions
within putative TF regulators. Importantly, we described the
single-cell regulatory peripheral immunity atlas of BD patients,
which provides insights into the chromatin level of blood auto-
immunity landscape of BD.

Previous single-cell studies on BD included scRNA-seq and
scTCR-seq but did not involve scATAC-seq4,8. Both single-cell

studies that described the peripheral immunity of the BD have
reported enhanced interferon signaling, which also was noted in
our data. C1q+ monocytes have been reported to expand in the
blood of BD patients by activated IFN-signaling4. CD4+ Treg
cells have also been reported to increase in the affected skin tissue
of BD patients8. Although we did not notice a significant
expansion of CD4+Treg cells in our data, we noticed CD8+Treg
cells and Act NCM have significantly higher proportions com-
pared to non-BD. Moreover, we did not notice the frequency of
cytotoxicity CD8+ T cell expanded. However, our computational
analysis predicted that the GWAS enrichment of open chromatin
analysis linked the probable causal BD variants to specific blood
cytotoxic CD8+ T cell subsets. It has been previously reported
that circulating CD8+ T cell might share a clonal origin with
skin-filtrating CD8 T cells and acquire tissue-residential features
leading skin lesions8. CD8+ Treg cells expressing inhibitory killer
cell immunoglobulin-like receptors (KIRs) have been described as
increased in the blood and inflamed tissues of patients with a
variety of autoimmune disorders and reported to elevate in
COVID-19 patients27. The elevated levels of CD8+ Tregs were
also related to COVID-19 vasculitis27. Although the expansion of
CD8+Treg in BD may act as a negative feedback mechanism to
ameliorate inflammation in peripheral blood, this indicates that
CD8+Tregs represent an important element in peripheral toler-
ance and BD pathophysiology. In total, we provided a more
comprehensive blood immune cell landscape of BD.

Our analysis enabled identification of BD-associated SNPs that
lie in the regulatory regions of cytotoxicity subsets. Furthermore,
we observed that the predictive peak-to-gene linkages near the
rs201985743 loci within the KLRC4-KLRK1 region showed sig-
nificantly stronger linkages in non-BDs compared to BD. Killer
cell lectin-like receptor subfamily member 4 (KLRC4, belonging
to the NKG2 receptor family known to play an important role in
regulating NK and T cell functions81,90, has previously been
linked to BD91. The interactions between peaks and genes may
indicate physical interaction of the regulatory region affecting its
target genes in NK and CD8+ T92–94. The differential interaction
between the KLRC4-KLRK1 locus in NK cells and CD8+ T cells
between non-BD and BD groups may suggest gene expression
effects of the causal variant93. However, the molecular cause of
NK and CD8 T dysregulation is still unknown. This approach can
allow us to predict gene and cellular targets in BD and nominate
the most disease-relevant cell types and meriting functional
validation.

Importantly, we also generalized multi-model datasets assaying
chromatin accessibility and gene expression to infer possible TF
activators and their potential GRN that might drive disease-
associated phenotypes. This method has been utilized in antici-
pating in cells from diverse stimuli, cellular differentiation, and

Fig. 4 scATAC-seq and scRNA-seq analysis of the changes in DC and Monocytes subsets in BD. a UMAP projections of DC cell subsets of scATAC-seq
dataset. b Genome browser tracks showing single-cell chromatin accessibility of cDC2 cells in the IL1B loci. c Genome browser tracks show single-cell
chromatin accessibility of cDC2 cells in the CD83 loci. d Comparison of aggregate TF footprints for RELB and NFKB1 in cDC2 cells from non-BD and BD. The
p value of the TF footprint was compared by two-sided Wilcoxon rank-sum test. e UpSet plot showing the integrated comparative analysis of upregulated
DEGs in DC subsets between non-BD and BD groups. Upregulated DEGs: upregulated in BD, downregulated in non-BD. The count showing the number of
DEGs. f Representative GO terms and KEGG pathways enriched in the upregulated DEGs of DC cell subsets in the BD/non-BD comparison group. The p
values were calculated by hypergeometric test. g UMAP projections of monocyte subsets of scATAC-seq dataset. h UMAP projection colored by gene
activity scores for the annotated lineage-defining genes of scATAC-seq dataset. The minimum and maximum gene activity scores are shown in each panel.
i Dot plots of gene expression of the marker genes of monocyte subsets in scRNA-seq dataset. The dot size indicates the percentage of the cells in each
cluster in which the gene of interest. The standardized gene expression level was indicated by color intensity. j Differences in the proportions of monocyte
subsets among non-BD (n= 8) and BD groups (n= 22). The p values were calculated using two-sided Wilcoxon rank-sum test. The horizontal lines denote
median. k Representative GO terms and KEGG pathways enriched in the marker genes of the ActCM and ActNCM. The p values were calculated by
hypergeometric test. l TF footprints with motifs in the indicated scATAC-seq monocyte subsets. The p value of the TF footprint was compared by one-way
ANOVA. All data are aligned and annotated to hg38 reference genome.
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even in disease states, providing additional insights into the
regulatory mechanisms underlying gene priming. PU.1, AP-1,
and NF-kB TFs were predicted and nominated as putative
TFs that induced peripheral inflammation of BD, These TFs
have been reported to be essential transcription factors
regulating multiple inflammatory pathways and contributing
to autoimmunity31.

While the causative molecular mechanisms of BD remain
elusive, our work offers insights into elucidating the nature of
gene regulation in BD, especially regarding the comprehensive
single-cell multi-omic landscape of epigenetic and transcriptional
patterns. The dataset presented here is a valuable resource for
understanding the regulatory relationship in human auto-
immunity, and our analysis makes discoveries in chromatin

1

2

3

4

56

789
10

11

12

13

14 15
16

17

18
19

20

21

22

23

24

25

26

27

28

29

30

31

1

2

3

4

56

789
10

11

12

13

14 15
16

17

18
19

20

21

22

23

24

25

26

27

28

29

30

31

1

2

3

4

56

789
10

11

12

13

14 15
16

17

18
19

20

21

22

23

24

25

26

27

28

29

30

31

1

2

3

4

56

789
10

11

12

13

14 15
16

17

18
19

20

21

22

23

24

25

26

27

28

29

30

31

1

2

3

4

56

789
10

11

12

13

14 15
16

17

18
19

20

21

22

23

24

25

26

27

28

29

30

31

1

2

3

4

56

789
10

11

12

13

14 15
16

17

18
19

20

21

22

23

24

25

26

27

28

29

30

31

1

2

3

4

56

789
10

11

12

13

14 15
16

17

18
19

20

21

22

23

24

25

26

27

28

29

30

31

1

2

3

4

56

789
10

11

12

13

14 15
16

17

18
19

20

21

22

23

24

25

26

27

28

29

30

31

1

2

3

4

56

789
10

11

12

13

14 15
16

17

18
19

20

21

22

23

24

25

26

27

28

29

30

31

1

2

3

4

56

789
10

11

12

13

14 15
16

17

18
19

20

21

22

23

24

25

26

27

28

29

30

31

1

2

3

4

56

789
10

11

12

13

14 15
16

17

18
19

20

21

22

23

24

25

26

27

28

29

30

31

1

2

3

4

56

789
10

11

12

13

14 15
16

17

18
19

20

21

22

23

24

25

26

27

28

29

30

31

1

2

3

4

56

789
10

11

12

13

14 15
16

17

18
19

20

21

22

23

24

25

26

27

28

29

30

31

1

2

3

4

56

789
10

11

12

13

14 15
16

17

18
19

20

21

22

23

24

25

26

27

28

29

30

31

1

2

3

4

56

789
10

11

12

13

14 15
16

17

18
19

20

21

22

23

24

25

26

27

28

29

30

31

1

2

3

4

56

789
10

11

12

13

14 15
16

17

18
19

20

21

22

23

24

25

26

27

28

29

30

31

1

2

3

4

56

789
10

11

12

13

14 15
16

17

18
19

20

21

22

23

24

25

26

27

28

29

30

31

1−ActCM

2−ActNCM

3−CD4CTL

4−CD4Naive

5−CD4TCM

6−CD4TFH

7−CD4Th1

8−CD4Th2

9−CD4Th17

10−CD4Treg

11−CD8MAIT

12−CD8Naive

13−CD8TCM

14−CD8TEM

15−CD8Tex

16−CD8TEX

17−CD8Treg

18−cDC1

19−cDC2

20−CM

21−DN2B

22−DNT

23−HSPC

24−MB

25−NB

26−NCM

27−NK1

28−NK2

29−NK3

30−PB

31−pDC

1

2

3

4

5

67
8910 11

12

13

14

15
1617

181920

21

22

23

24

25

26
27

28

29

30

1

2

3

4

5

67
8910 11

12

13

14

15
1617

181920

21

22

23

24

25

26
27

28

29

30

1

2

3

4

5

67
8910 11

12

13

14

15
1617

181920

21

22

23

24

25

26
27

28

29

30

1

2

3

4

5

67
8910 11

12

13

14

15
1617

181920

21

22

23

24

25

26
27

28

29

30

1

2

3

4

5

67
8910 11

12

13

14

15
1617

181920

21

22

23

24

25

26
27

28

29

30

1

2

3

4

5

67
8910 11

12

13

14

15
1617

181920

21

22

23

24

25

26
27

28

29

30

1

2

3

4

5

67
8910 11

12

13

14

15
1617

181920

21

22

23

24

25

26
27

28

29

30

1

2

3

4

5

67
8910 11

12

13

14

15
1617

181920

21

22

23

24

25

26
27

28

29

30

1

2

3

4

5

67
8910 11

12

13

14

15
1617

181920

21

22

23

24

25

26
27

28

29

30

1

2

3

4

5

67
8910 11

12

13

14

15
1617

181920

21

22

23

24

25

26
27

28

29

30

1

2

3

4

5

67
8910 11

12

13

14

15
1617

181920

21

22

23

24

25

26
27

28

29

30

1

2

3

4

5

67
8910 11

12

13

14

15
1617

181920

21

22

23

24

25

26
27

28

29

30

1

2

3

4

5

67
8910 11

12

13

14

15
1617

181920

21

22

23

24

25

26
27

28

29

30

1

2

3

4

5

67
8910 11

12

13

14

15
1617

181920

21

22

23

24

25

26
27

28

29

30

1

2

3

4

5

67
8910 11

12

13

14

15
1617

181920

21

22

23

24

25

26
27

28

29

30

1

2

3

4

5

67
8910 11

12

13

14

15
1617

181920

21

22

23

24

25

26
27

28

29

30

1

2

3

4

5

67
8910 11

12

13

14

15
1617

181920

21

22

23

24

25

26
27

28

29

30

1
2

3

4

5

6

7
89

10

11

12

13

14

15

16
17
18

19

20

21
22

23

24

25

2627
28

29

30

1
2

3

4

5

6

7
89

10

11

12

13

14

15

16
17
18

19

20

21
22

23

24

25

2627
28

29

30

1
2

3

4

5

6

7
89

10

11

12

13

14

15

16
17
18

19

20

21
22

23

24

25

2627
28

29

30

1
2

3

4

5

6

7
89

10

11

12

13

14

15

16
17
18

19

20

21
22

23

24

25

2627
28

29

30

1
2

3

4

5

6

7
89

10

11

12

13

14

15

16
17
18

19

20

21
22

23

24

25

2627
28

29

30

1
2

3

4

5

6

7
89

10

11

12

13

14

15

16
17
18

19

20

21
22

23

24

25

2627
28

29

30

1
2

3

4

5

6

7
89

10

11

12

13

14

15

16
17
18

19

20

21
22

23

24

25

2627
28

29

30

1
2

3

4

5

6

7
89

10

11

12

13

14

15

16
17
18

19

20

21
22

23

24

25

2627
28

29

30

1
2

3

4

5

6

7
89

10

11

12

13

14

15

16
17
18

19

20

21
22

23

24

25

2627
28

29

30

1
2

3

4

5

6

7
89

10

11

12

13

14

15

16
17
18

19

20

21
22

23

24

25

2627
28

29

30

1
2

3

4

5

6

7
89

10

11

12

13

14

15

16
17
18

19

20

21
22

23

24

25

2627
28

29

30

1
2

3

4

5

6

7
89

10

11

12

13

14

15

16
17
18

19

20

21
22

23

24

25

2627
28

29

30

1
2

3

4

5

6

7
89

10

11

12

13

14

15

16
17
18

19

20

21
22

23

24

25

2627
28

29

30

1
2

3

4

5

6

7
89

10

11

12

13

14

15

16
17
18

19

20

21
22

23

24

25

2627
28

29

30

1
2

3

4

5

6

7
89

10

11

12

13

14

15

16
17
18

19

20

21
22

23

24

25

2627
28

29

30

1
2

3

4

5

6

7
89

10

11

12

13

14

15

16
17
18

19

20

21
22

23

24

25

2627
28

29

30

1
2

3

4

5

6

7
89

10

11

12

13

14

15

16
17
18

19

20

21
22

23

24

25

2627
28

29

30

GATA2
XBP1
CD38
PRF1

TBX21
GZMB

EOMES
KLRD1
NCAM1

FCGR3A
CCR7

IL7R
CD3E

FOXP3
CD8A

CD4
CXCR5
CXCR3

CCR6
KLRB1
RORC

IFNG
PTPN13

CCR4
CD14

PDCD1
CD1C

MS4A1
CLEC10A

CD24
CD19

CLEC4C
IKZF2

KIR3DL2

Percent Expressed
0
25
50
75
100

-1
0
1
2

Average Expression

Ac
tC

M
Ac

tN
C

M
C

D
4C

TL
C

D
4N

ai
ve

C
D

4T
C

M
C

D
4T

FH
C

D
4T

h1
C

D
4T

h2
C

D
4T

h1
7

C
D

4T
re

g
C

D
8M

AI
T

C
D

8N
ai

ve
C

D
8T

C
M

C
D

8T
EM

C
D

8T
ex

C
D

8T
re

g
cD

C
1

cD
C

2
C

M
D

N
2B

D
N

T
H

SP
C

M
B

N
B

N
C

M
N

K1
N

K2
N

K3 PB pD
C -2

-1
0
1
2

Average Expression

Percent Expressed
25
50
75

Ac
tC

M
Ac

tN
C

M
C

D
4C

TL
C

D
4N

ai
ve

C
D

4T
C

M
C

D
4T

FH
C

D
4T

h1
C

D
4T

h2
C

D
4T

h1
7

C
D

4T
re

g
C

D
8M

AI
T

C
D

8N
ai

ve
C

D
8T

C
M

C
D

8T
EM

C
D

8T
ex

C
D

8T
re

g
cD

C
1

cD
C

2
C

M
D

N
2B

D
N

T
H

SP
C

M
B

N
B

N
C

M
N

K1
N

K2
N

K3 PB pD
C

GATA2
XBP1
CD38
PRF1

TBX21
GZMB

EOMES
KLRD1
NCAM1

FCGR3A
CCR7

IL7R
CD3E

FOXP3
CD8A

CD4
CXCR5
CXCR3

CCR6
KLRB1
RORC

IFNG
PTPN13

CCR4
CD14

PDCD1
CD1C

MS4A1
CLEC10A

CD24
CD19

CLEC4C
IKZF2

KIR3DL2

cD
C

1
H

SPC
cD

C
2

ActC
M

C
M

ActN
C

M
N

C
M

N
K1

N
K2

N
B

D
N

2B
M

B
PB pD

C
N

K3
C

D
4C

TL
C

D
8TEM

D
N

T
C

D
8M

AIT
C

D
8TC

M
C

D
8TEX

C
D

8Treg
C

D
4TC

M
C

D
4N

aive
C

D
8N

aive
C

D
4TFH

C
D

4Th2
C

D
4Treg

C
D

4Th1
C

D
4Th17

Behcets disease
Type 1 diabetes
Asthma
Alopecia areata
Juvenile idiopathic arthritis
HDL cholesterol
Multiple sclerosis
Renal function related traits BUN
Chronic kidney disease
Ankylosing spondylitis
Red blood cell traits
Restless legs syndrome
Allergy
Kawasaki disease
Systemic sclerosis
Crohns disease
Rheumatoid arthritis
Creatinine levels
Ulcerative colitis
Vitiligo
Type 2 diabetes
C reactive protein
Liver enzyme levels gamma glutamyl transferase
Platelet counts
Primary biliary cirrhosis
Primary sclerosing cholangitis
Autoimmune thyroiditis
Urate levels
Progressive supranuclear palsy
Atopic dermatitis
Psoriasis
Celiac disease
Systemic lupus erythematosus

*

*

* * *

*

*

*

*

*

KLRC4−KLRK1

10380000 10400000 10420000 10440000 10460000

C
ov

er
ag

e
(N

or
m

. A
TA

C
 S

ig
na

l R
an

ge
 (0

−0
.2

) b
y 

R
ea

ds
In

TS
S)

0.5
0.6
0.7
0.8
0.9

value

chr12:10360145−10460146
ActCM
ActNCM
CD4CTL
CD4Naive
CD4TCM
CD4TFH
CD4Th1
CD4Th2
CD4Th17
CD4Treg
CD8MAIT
CD8Naive
CD8TCM
CD8TEM
CD8Tex
CD8Treg
cDC1
cDC2
CM
DN2B
DNT
HSPC
MB
NB
NCM
NK1
NK2
NK3
PB
pDC

BD

nonBD

rs201985743

a

b

c d

−2 0 2 4

scRNA-seq

scATAC-seq

scRNA-seq scATAC-seq

Intergration

pe
ak

-to
-g

en
e 

lin
ka

ge
s

z-score

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05420-x ARTICLE

COMMUNICATIONS BIOLOGY |          (2023) 6:1048 | https://doi.org/10.1038/s42003-023-05420-x | www.nature.com/commsbio 11

www.nature.com/commsbio
www.nature.com/commsbio


accessibility and gene expression using single-cell multi-omic
data. Finally, we represent peripheral immune responses in BD
and enhance our understanding of epigenomic pathological
immune responses in BD.

Methods
Human subjects. The study was approved by the Ethics Com-
mittee of Zhongshan Ophthalmic Center (Guangzhou, China,
2019KYPJ114), and followed the relevant ethical regulations for
human research participants according to the Declaration of
Helsinki. Written informed consent was obtained from all par-
ticipating individuals, who were recruited from Zhongshan
Ophthalmic Center. Exclusion criteria for the study included
comorbid conditions such as cancer, immunocompromising
disorders, hypertension, diabetes, and steroid use. The non-BD
group consisted of eight individuals, 4 men and 4 women, with an
average age of 46.8 years (Supplementary Data 1). The BD patient
cohort (Supplementary Data 1) comprised 13 men and 10
women, with an average age of 33.3 years, diagnosed based on the
revised diagnostic criteria established by the 2013 International
Criteria for BD95.

Cell isolation. To isolate peripheral blood mononuclear cells
(PBMCs), peripheral venous blood samples were taken from non-
BD individuals or BD patients and treated with a Ficoll-Hypaque
density solution and heparin. The mixture was then centrifuged
for 30 min. The single-cell suspensions were stained with Trypan
blue to assess viability and quantity. Only those samples with cell
viability over 90% were selected for subsequent experiments. For
each sample that contained over 1 × 107 viable cells, a portion of
PBMCs was extracted for scRNA-seq analysis while reserving
another fraction for scATAC-seq assays.

scATAC-seq processing. The single-cell nuclei were isolated,
washed and counted following the manufacturer’s protocols. To
obtain the desired final concentration based on the number of
cells, an appropriate volume of Diluted Nuclei Buffer (10x
Genomics; PN-2000153) was utilized to resuspend nuclei. The
nuclei concentration was then determined using a Countess II FL
Automated Cell Counter. Isolated nuclei were promptly used to
create 10x single-cell ATAC libraries at Berry Genomics Co., Ltd.
(Beijing, China). Each library was uniquely barcoded and quan-
tified by RT-qPCR before being loaded onto an Illumina Novaseq
6000 with a loading concentration of 3.5 pmol/L in pair-end
mode. Sequencing was performed until 90% saturation or an
average of 30,000 unique reads per cell were acquired. The pro-
tocols for sample processing, library preparation, and instrument
and sequencing settings on the 10x Chromium were adhered to as
described in https://support.10xgenomics.com/single-cell-atac.
Raw sequencing data were demultiplexed to fastq format using
‘cellranger-atac-mkfastq’ (10x Genomics, v.1.0.0). Subsequently,
the scATAC-seq data reads were aligned to the GRCh38 (hg38)
reference genome and quantified using the ‘cellranger-atac count’
function (10x Genomics, v.1.0.0).

scATAC-seq quality control. To generate Arrow files, ArchR
v0.9.524 was utilized to analyze the accessible read fragments of
each sample, following the default settings. To ensure high signal
and sequencing quality, cells with less than 2500 unique frag-
ments and TSS enrichments below 9 were filtered out. Doublets
were inferred and eliminated using ArchR with default parameter,
while cells that mapped to blacklist regions based on the
ENCODE project reference were also excluded.

scATAC-seq dimensionality reduction and clustering. To
reduce dimensionality, we employed a layered approach to reduce
dimensionality using techniques such as latent semantic indexing
(LSI) and singular value decomposition (SVD). The single-cell
accessibility profiles were clustered utilizing Seurat’s shared
nearest neighbor (SNN) 21 graph clustering with a default reso-
lution of 0.8. We then reclustered using ‘FindClusters’ at a
resolution of 0.8 to improve the identification of small clusters.
Finally, we utilized uniform manifold approximation and pro-
jection (UMAP) to visualize all data in two-dimensional space.
We did not detect potential batch effects in our dataset. There-
fore, no batch correction method was applied in our further
analysis.

scATAC–seq gene activity scores. To calculate gene activity
scores, we utilized ArchR17 v.0.9.5 with default parameters, cor-
relating accessibility at the gene body, promoter, and distal reg-
ulatory elements with gene expression. The MAGIC96 imputed
weight method was then applied to the resulting gene activity
scores to reduce noise due to the sparsity of scATAC-seq data.

scATAC–seq pseudobulk replicate generation and peak calling.
To enable differential comparisons of clusters, cell types, and
clinical states, we created non-overlapping pseudobulk replicates
from groups of cells using the ‘addGroupCoverages’ function, by
varying the arguments. These pseudobulk replicates were then
employed to create the peak matrix using ‘addReproduci-
blePeakSet’ function. To identify peaks, we utilized MACS297 tool
for peak calling. Finally, we utilized the pseudobulk peak set for
downstream analysis.

scATAC–seq genomic regions annotation. In the differential
analysis, we utilized the ChIPseeker37 package’s “annotatePeak”
function with default arguments to annotate the nearest genes in
the peak region.

scATAC motif enrichment and motif deviation analysis. Motif
enrichment and motif deviation analyses were conducted on the
pseudobulk peak set. We employed the Catalog of Inferred
Sequence Binding Preferences (CIS-BP) motif (from
ChromVAR)24,98, JASPAR2020 motif99 and HOMER100 to per-
form peak annotation. Furthermore, we utilized the ArchR
implementation to calculate the chromVAR deviation scores for
these motifs.

Fig. 5 Integrative multiomic analysis in human PBMCs of BD patients and non-BD individuals. a Schematic for multiomic integration strategy for
processing the scRNA-seq and scATAC-seq dataset. Following integration and label transfer. Dots represent individual cells, and colors indicate immune
cell types (labeled on the right). b Dot plots of gene activity scores (left) and gene expression (right) of the marker genes in scATAC-seq and scRNA-seq
dataset. The dot size indicates the percentage of the cells in each cluster in which the gene of interest. The standardized gene activity score level (left) and
gene expression level (right) were indicated by color intensity. c Enrichment for autoimmune disease-associated SNPs performed by g-ChromVAR. Color
indicates enrichment score. The adjusted p values were calculated using Mann–Whitney U test and Benjamini–Hochberg test. d Cis-regulatory architecture
at the following GWAS loci and cell types in PBMCs: KLRC4-KLRK1. Only connections originating in the loci with peak-to-gene accessibility above 0.4 are
shown. All data are aligned and annotated to hg38 reference genome.
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Fig. 6 Identification TF regulators and gene regulatory network in the peripheral blood of BD patients and non-BD individuals. a Volcano plot of
positive TF regulators using gene expression of the TF and inferred gene activity score. b Top hits based on the number of significant gene-peak correlation
across all cell types. Genes with >7 linkages are defined as domains of regulatory chromatin (DORCs). c Scatterplot showing all DOC-to-TF associations,
colored by the signed regulation score. d. Candidate TF regulators of HLA-DQB1. Highlighted points are TFs with abs(regulation score) >=1 (−log10 scale),
with all other TFs shown in gray. e TF-DORC network visualization for candidate TF positive regulators-implicated DORCs (green nodes) and their
associated TFs (red nodes). Edges are scaled and colored by the signed regulation score. Highlighted points in red are TFs with abs(regulation score) >=1
(−log10 scale). All data are aligned and annotated to hg38 reference genome.
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scATAC–seq TF Foot-print analysis. To conduct motif footprint
analysis, we measured Tn5 insertions in genome-wide motifs,
normalized by subtracting the Tn5 bias from the footprinting
signal. For each peak set, we employed CIS-BP motifs98 (from
chromVAR motifs human_pwms_v1) to calculate motif positions.
Normalization of these footprints involved using mean
values ± 200–250 from the motif center, after which we plotted
the mean and standard deviation for each footprint pseudo-
replicate. Comparison of the TF footprint between groups was
conducted using the Wilcoxon rank sum test or one-way
ANOVA followed by Tukey’s multiple comparison test. A p-
value less than 0.05 was considered statistically significant.

scATAC-seq peak to gene linkage analysis. We utilized the
‘addPeak2GeneLinks’ function in ArchR to predict peak-to-gene
links, setting the ‘corCutOff’ parameter to 0.4 and ‘reducedDims’
to the dimensionality reduction. The resulting ‘GRanges’ object
was utilized for visualization.

Autoimmune SNPs analysis. Pre-computed fine-mapped
autoimmune-disease-associated SNPs were downloaded from
Farh et al.31. We used the g-chromVAR74 algorithm to identify
enrichment of disease variants in each cell type. In brief, the
summary statistics we downloaded were converted to hg38
coordinates using the UCSC liftover tool (v377) and formatted for
g-chromVAR74. The methodology of g-chromVAR was previously
described in detail74. Briefly, g-chromVAR weights chromatin
accessibility features by fine-mapped GWAS variants posterior
probabilities and calculates the enrichment for each cell type
feature intensity. We first binarized the scATAC-seq dataset
matrix with one column per cell type. We then followed the
recommended guidelines for GWAS enrichment using ‘compu-
teWeightedDeviations’ with default parameters. We then applied
the Mann–Whitney U test and the Benjamini-Hochberg proce-
dure for multiple-testing correction to compute enrichment p
values101.

scRNA-seq processing. All the samples were processed with the
Chromium Single Cell Library, Gel Bead, and Multiplex Kit, and
Chip Kit (10x Genomics) to barcode and convert the libraries on
the 10x Genomics chromium platform. The Single-cell RNA
libraries were prepared using the Chromium Single Cell 5 v2
Reagent (10x Genomics, 1000263) kit, following the manu-
facturer’s instructions. For sequencing, the scRNA-seq libraries
were sequenced on Illumina NovaSeq6000 in pair-end mode, and
their quality was checked using FastQC software. Raw data was
processed and aligned o the GRCh39 reference by the cellranger
software with default parameters (https://support.10xgenomics.
com, version 3.1.0) for each sample.

To demultiplex and barcode the sequences obtained from the
10x Genomics single-cell RNA-seq platform, we employed the
‘cellranger-count’ function in the cellranger Software Suite (10x
Genomics). To aggregate all the samples, we used ‘cellranger-
count’ function.

scRNA-seq quality control. For quality control, we filtered the
low-quality cells with greater than 11% of mitochondrial genes
and fewer than 200 or more than 3000 detected genes using
Seurat V3. We further filtered the cell populations identified as
red blood cells and platelets that expressed HBB, HBA1, PPBP,
and PF4 genes17.

scRNA-seq dimensionality reduction and clustering. Down-
stream analysis of scRNA-seq dataset was performed using Seurat
v369 as previously described17.To account for technical noise, we

choose the top 5000 most variable genes calculated by ‘Find-
VariableFeatures’ function were used for normalization and
scaled. We performed principal component analysis (PCA) on the
highly variable genes. The first 30 principal components were
further analyzed. We then performed cell clustering based on
KNN graphs using the ‘FindNeighnors’ and the ‘FindClusters’
with resolution set as 0.8 in Seurat. We did not use any batch
correct method. We further performed the UMAP analysis, a
dimensionality-reducing visualization tool, was used to embed the
dataset into two dimensions. We did not detect potential batch
effects in our dataset. Therefore, no batch correction method was
applied in our further analysis.

scRNA–seq differential analysis. For scRNA-seq differential
expression analysis, we used the “FindAllMarkers” function from
the Seurat package with default parameters. Wilcox rank-sum test
was used. The DEGs with logFC >= 0.25 were shown. A p value
of less than 0.05 was considered statistically significant. To vali-
date our results of differential analysis between BD and nonBDs,
we also used the Muscat R package36. We followed the Muscat
tutorial, and used the ‘aggregateData’ function to aggregate our
scRNA count assay by cell clusters and samples. The R package
limma102 was to make a contrast matrix for BD and nonBDs.
Once we have assembled the data, we used the ‘pbDS’ function
with parameters set as default. In line with the Seurat method,
DEGs with logFC >= 0.25 were shown. A p value of less than
0.05 was considered statistically significant. The R package
GeneOverlap103 was utilized to identify (1) the number of over-
lapping DEGs from muscat method and Seurat method, and (2)
the statistical significance of this overlap based on list size and
total number from both methods.

scRNA–seq cellular annotation. To validate our manual anno-
tation, we first downloaded the PBMC multimodal single-cell
dataset23 as a reference and used the R package clustifyR68 to
perform cellular annotation. We chose the ‘celltype. l2’ from the
reference as our label and calculated the average expression of the
assay of the reference as input reference data. Then we followed
the tutorial of clustifyR website with the parameter set as default.

Multiomics data processing. To integrate scRNA-seq and
scATAC-seq dataset, we followed the pipeline outlined on
ArchR24, Seurat69 and Signac70 websites. First, ArchR24 was used
to split the complete dataset into smaller subsets of cells, enabling
separate alignments and reducing computational RAM. We then
used Seurat’s canonical correlation analysis (CCA) to integrate
the epigenetic and transcriptomic data. No additional batch
correction methods were implemented. For this integration, the
log-normalized and scaled scATAC-seq gene score matrix was
aligned with the scRNA-seq gene expression matrix. By directly
aligning cells from scATAC-seq with cells from scRNA-seq, the
union of the 2,000 most variable genes in each modality as input
for Seurat’s “FindTransferAnchors” function and “TransferData”
function, using default parameters. To find the nearest neighbor
cell in the other modality for each profiled scRNA-seq and
scATAC-seq cell, nearest-neighbor search was conducted in the
joint CCA L2 space. These modality-spanning nearest-neighbor
cell matches from all gestational timepoints were then combined
to obtain dataset-wide cell matching.

Gene-regulatory network workflow. We used FigR to infer
transcriptional regulators of target genes and construct GRN. We
first used the single-cell peaks matrix from scATAC-seq and the
count matrix from scRNA-seq (NscATAC-seq = 150,000 cells,
NscRNA-seq = 150,000 cells, cells were sampled from the dataset)
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and used the “runGenePeakcorr” with hg38 genome to determine
cis-regulatory associations. Next, we filtered the correlations that
p > 0.05 and defined DORC genes as those with more than seven
significant peak-gene associations. We used the “runFigRGRN”
function with scRNA-seq matrix and DORC data to generate GRN
and selected TFs using ggplot2 to visualize the data.

Statistics and reproducibility. Statistical analysis of the fre-
quencies of immune cell subpopulations between groups was
performed using two-sided pairwise Wilcoxon test with Bonfer-
roni’s post-hoc correction with GraphPad Prism 8.0. Two-sided p
values of less than 0.05, were considered statistically significant.
All the statistical details for the statistical tests can be found in the
figure legends as well as in the Method Details section. In esti-
mating the GO biological process and pathway, p values were
derived by a hypergeometric test with the default parameters in
the Metascape webtool104. Each figure legend includes the details
of the size of biological replicates and the assays. Values of p <=
0.05 were considered statistically significant. p values are denoted
as *p <=0.05, **p <=0.01, ***p <=0.001, ****p <=0.0001 in
the figures. The statistical tests employed are referred to in the
respective figure legends.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
The scRNA-seq, scATAC-seq and bulk RNA-seq data analyzed in the article are available
from the corresponding author upon request under the Project Accession No.
PRJCA004696 and the GSA Accession No. HRA004778 in https://ngdc.cncb.ac.cn/gsa-
human/. Source data underlying Figs. 1c, 2c, 4j data are provided in Supplementary
Data 2; Source data underlying Fig. 2e data is in Supplementary Data 4; Source data
underlying Figs. 3c, g, h, 4e, Supplementary Figs. 8f, 9c, 10g, data are in Supplementary
Data 7; Source data underlying Figs. 3d, 4f, k data are in Supplementary Data 6; Fig. 4i
data is in Supplementary Data 8; Source data underlying Figs. 2d, 4d, l are in
Supplementary Data 3; Source data underlying Supplementary Fig. 7a is in
Supplementary Data 5; Source data underlying Fig. 6b is in Supplementary Data 10;
Source data underlying Fig. 6e is in Supplementary Data 11.

Code availability
All custom code used in this work is desposited in Zenodo https://doi.org/10.5281/
zenodo.8348340105.
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