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Stress-induced brain responses are associated with
BMI in women
Anne Kühnel 1,2,3✉, Jonas Hagenberg 2,3,4, Janine Knauer-Arloth 2,4, Maik Ködel2, Michael Czisch5,

Philipp G. Sämann5, BeCOME working group*, Elisabeth B. Binder 2,6✉ & Nils B. Kroemer 1,6,7

Overweight and obesity are associated with altered stress reactivity and increased inflam-

mation. However, it is not known whether stress-induced changes in brain function scale with

BMI and if such associations are driven by peripheral cytokines. Here, we investigate mul-

timodal stress responses in a large transdiagnostic sample using predictive modeling based

on spatio-temporal profiles of stress-induced changes in activation and functional con-

nectivity. BMI is associated with increased brain responses as well as greater negative affect

after stress and individual response profiles are associated with BMI in females (pperm <

0.001), but not males. Although stress-induced changes reflecting BMI are associated with

baseline cortisol, there is no robust association with peripheral cytokines. To conclude,

alterations in body weight and energy metabolism might scale acute brain responses to stress

more strongly in females compared to males, echoing observational studies. Our findings

highlight sex-dependent associations of stress with differences in endocrine markers, largely

independent of peripheral inflammation.
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Stress is an everyday occurrence, but prolonged exposure to
stress increases the risk for a number of negative health
outcomes, including for metabolic and cardiovascular

disease1. Chronic stress has been associated with a heightened
risk for obesity2 which is also associated with cardiovascular
events3–5 as well as dysregulations of energy metabolism6 and the
immune system7. Obesity is also related to altered functioning of
the hypothalamus-pituitary axis (HPA)8 as indicated by, for
example, reduced baseline HPA activity levels9,10 and possibly
stronger acute endocrine stress reactivity11. Consequently, this
possible bidirectional link between stress and obesity may be of
high relevance for the pathophysiology of stress-related disorders.

Although chronic stress is a well-known risk factor for obesity,
it has not been conclusively resolved whether there are replicable
differences in the acute stress response with obesity. To date,
most studies have focused on altered endocrine stress responses
in obesity. While there is evidence that acute cortisol responses to
stress are higher in obesity11, such associations are inconsistent
across studies12–14,. Likewise, higher body mass index (BMI) is
consistently associated with a blunted stress-induced cardiovas-
cular response15,16. BMI-dependent differences in subjective
responses to acute stress are less well characterized, although one
potential link between stress and increased food intake is com-
pensatory eating in response to negative emotions17. Notably,
sex-dependent associations of stress reactivity and obesity are an
important mechanism to better understand sex differences in the
prevalence of obesity18,19 and its relation to mental20 as well as
metabolic disorders21,22. First, there are sex differences in stress
responses as females have shown increased subjective but blunted
endocrine responses23,24. Likewise, neural stress responses differ
between males and females25–27, including associations between
stress-induced brain responses and subjective stress
experiences28,29. Second, sex hormones regulate endocrine stress
responses30 and energy metabolism20, substantiating potential sex
differences in the interplay between stress and BMI. Taken
together, there is preliminary evidence for changes in acute stress
reactivity in overweight and obesity, but little is known about
neural changes or potential sex differences in humans.

In addition to changes in endocrine and cardiovascular sys-
tems, overweight and obesity are also characterized by increased
inflammation31–33. Baseline levels of cytokines, such as macro-
phage migration inhibitory factor (MIF) and interleukin 6 (IL-6),
were associated with stress-induced cortisol responses34,35,
highlighting the interdependence of the immune and endocrine
system in orchestrating stress responses36. This interdependence
is further highlighted as increased inflammation induced by
vaccination37, in depression38, and obesity39,40 has been linked to
changes in functional connectivity (FC) in brain networks that
are also implicated in stress reactivity41. Mirroring sex differences
in stress reactivity and obesity, the immune system markedly
differs between males and females42. Obesity is strongly asso-
ciated with increased inflammation in females43,44 and sex hor-
mones have been proposed to explain the sex-dependent
interplay of obesity, stress reactivity, and the immune system30,45.
To conclude, obesity is linked to inflammation in a potentially
sex-dependent manner and interactions with the endocrine and
the immune system may tune acute stress responses, potentially
mediating the effects of obesity on stress.

Despite the recent progress in delineating the link between the
immune system and responses to stress, it is not yet understood
by which mechanism obesity may contribute to altered stress
reactivity. Here, we investigated the modulating effects of BMI on
subjective, autonomous, endocrine, and neural stress reactivity.
To this end, we first investigated stress-induced changes in brain
responses (i.e., activation changes). Moreover, obesity has been
robustly related to alterations in FC46. We have previously related

stress-induced dynamic FC trajectories within a putative stress
network with negative affectivity, a risk factor for mood and
anxiety disorders that are often comorbid with obesity41. There-
fore, we derived dynamic FC and activation trajectories and used
cross-validated elastic nets to evaluate robust associations of these
imaging features with interindividual differences in BMI. We then
evaluated whether BMI-associated increases in baseline cortisol or
inflammation markers contributed to altered neural stress reac-
tivity in obesity. By unraveling sex-specific associations of BMI
with acute stress reactivity, we shed new light on the interrelation
of stress and obesity in females.

Results
Higher stress-induced negative affect in high BMI participants.
As reported in Kühnel et al.41, the task elicited a robust multi-
level stress response (Fig. 1). This stress response was indicated by
increases in heart rate (during stress: unstandardized estimate
(b)= 6.7, t(159)= 13.0, p < 0.001), negative affect (after stress
(T6): b= 7.7, t(183)=−12.6, p < 0.001) and decreases in positive
affect (after stress (T6): b=−2.3, t(183)=−8.0, p < 0.001).
Cortisol increased in response to stress (T6 after stress, ~16 min
after stress onset) in participants not showing an increase in
cortisol to the blood drawing procedure (b= 0.4, t(178)= 2.6,
p= 0.011). After stress, heart rate recovered but not to baseline
levels (after stress during recovery: b= 0.88, t(159)= 2.1,
p= 0.034). Moreover, after a 30-min break, negative affect (T8:
b=−1.3, t(183)=−4.7, p < 0.001), but not positive affect (T8:
b=−1.1, t(183)=−2.5, p= 0.014), had recovered. On the neural
level, the task led to robust stress-induced increases in activation
in the visual and parietal cortex as well as decreases in posterior
cingulate cortex (PCC), angular gyrus, insula (posterior and
anterior), supplementary motor area (SMA) and dorsomedial
prefrontal cortex41,47,48.

BMI is related to stress reactivity and cytokine concentrations.
Next, we evaluated the effect of sex and BMI on stress reactivity
and cytokine levels. On the subjective level, a multivariate
regression (MV) including changes in negative and positive affect
at both timepoints after stress induction revealed that a higher
BMI was associated with greater stress-induced changes in affect
(pMV= 0.019). Specifically, a higher BMI was related to more
negative affect after the task (b= 1.48, t(182)= 2.00, p= 0.047,
Nfemales= 120, Fig. 2) and after the 30-min rest period (b= 1.18,
t(182)= 2.35, p= 0.019), relative to the baseline. This association
was significant in females at the later time point (T6: b= 1.7,
t(115)= 1.84, p= 0.069; T8: b= 1.3, t(115)= 2.28, p= 0.025) but
not in males (T6: b=−1.1, t(66)=−1.20, p= 0.24; T8: b= 0.6,
t(66)= 0.76, p= 0.44; Fig. 2b), but the interaction between sex
and BMI did not reach significance (T6: t(182)=−1.68,
p= 0.095; T8: t(182)=−0.44, p= 0.66). In contrast, higher BMI
was not associated with stress-induced changes in heart rate, or
cortisol concentrations (ps > 0.10, Fig. 2a, Table S4) and sub-
jective, cardiovascular, and endocrine stress responses did not
differ between males and females (ps > 0.15; Fig. 2a, Table S2).

In line with a link between altered stress reactivity and
increased inflammation in overweight and obesity, a higher BMI
was associated with increased peripheral cytokine levels (pMV=
0.006), including increased high sensitivity C-reactive protein
(hsCRP), interleukin (IL)-1 receptor antagonist (IL-1RA), tumor
necrosis factor (TNF-alpha), IL-16, and soluble IL-6 receptor
(sIL-6R) among others (full list of partial correlations with
p < 0.05: Fig. S2). Cytokine levels were more strongly associated
with BMI in females compared to males (BMI × Sex pMV=
0.018). In contrast, baseline cortisol (measured in plasma samples
at the beginning of an independent session ~8 am) was lower in
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participants with high BMI (rho(142)=−0.17, p= 0.015) and
did not differ between sexes (BMI × Sex t(142)= 0.46, p= 0.64,
rhofemale(83)=−0.27, p= 0.003; rhomale(53)=−0.15, p= 0.22).

Similar to negative affect, higher BMI was associated with
stronger stress-induced decreases of BOLD responses in the
posterior insula (L: pFWE < 0.001, k= 293, R: pFWE= 0.041,
k= 143) and a midbrain cluster including the substantia nigra
(pFWE < 0.001, k= 390) as well as increased BOLD responses in the
precuneus/superior parietal lobe (pFWE= 0.025, k= 145, Fig. 3, for
unthresholded maps, see https://neurovault.org/collections/
NABGNECT/). Notably, within the pre-defined stress-related
network, females showed a more negative correlation with BMI
in the hippocampus (Sex × BMI: tmax= 4.26, pSVC.Hippocampus=
0.008; pSVC.StressNetwork= 0.088). Moreover, BMI-associated
changes in stress responses across ROIs (Shen atlas49) calculated
separately for males and females were not spatially correlated
(r(266)= 0.05, p= 0.38, Fig. S5). To evaluate potential sex effects,
we conducted post hoc regression analyses (including BMI × Sex
interactions as well as separately for males and females) on average
beta values extracted from ROIs49 overlapping the posterior insula
and substantia nigra. While the interaction of sex and BMI did not
reach significance (posterior insula R: t(183)=−1.77, p= 0.071,
SN: t(183)=−0.94, p= 0.36), associations were numerically
higher in females (Fig. 3b, for details see SI).

Stress-induced trajectories of brain activation are related to
BMI in females. To associate stress-induced changes in brain
responses with BMI and derive individual predictions for unseen
data, we used cross-validated predictive modelling with elastic

nets. This prediction captures the variance explained by spatio-
temporal profiles of stress-induced changes in brain activation
and FC, which we have previously shown to recover negative
affectivity beyond conventional analyses41. The model success-
fully captured BMI based on activation (ΔR2= 0.07, pperm=
0.0032, Fig. 4a) and including FC did not improve prediction (for
predictive accuracies see Fig. 4b, observed (yellow) vs. permuted
error bars). Of note, the BMI predicted by the elastic net model
covered a smaller range than the observed BMI, as predicting
values close to the mean is less penalized, leading to shrinkage50

while the relative information between participants is largely
unaffected. BMI was predicted by higher activation of the anterior
hippocampus, ventromedial prefrontal cortex, and dorsal anterior
cingulate cortex (dACC) as well as lower activation of the pos-
terior insula and posterior hippocampus mirroring whole-brain
associations (Fig. 4c and overlaid on the corresponding ROI 4e,
selected features are weights ≠ 0). Notably, features from the
posterior insula, hippocampus and dACC contributed most to the
prediction as evaluated by excluding the corresponding feature in
the prediction (Fig. 4d). Crucially, the elastic net only performed
better than chance in females (females: r(118)= 0.26, p= 0.005;
males: r(68)=−0.05, p= 0.66, Sex × BMI: t(186)= 2.7 p= 0.03,
Fig. 4a) and re-training the model only in females further
improved the accuracy (ΔR2= 0.11; pperm= 0.002, compared to a
model including only confounding variables, Fig. 4f), although
features were similar (Fig. S4). Moreover, using models trained on
females to predict BMI in males was not successful (and vice
versa), indicating that neural stress responses reflective of BMI
differ between sexes.

Fig. 1 The stress task induced a similar stress response on the endocrine, subjective, and cardiovascular level in females and males. a Stress-induced
increases (n= 189), relative to T2, (T6: b= 7.7, t(183)=−12.6, p < 0.001) in negative affect recover below baseline levels after stress (T8: b=−1.3,
t(183)=−4.7, p < 0.001). At the same time, positive affect decreases (T6: b=−2.3, t(183)=−8.0, p < 0.001) but does not fully recover (T8: b=−1.1,
t(183)=−2.5, p= 0.014). b Stress induces increases in heart rate (n= 165, b= 6.7, t(159)= 13, p < 0.001). During PostStress, heart rate decreases again
(b=−5.8, t(159)=−12.4, p < 0.001) but does not fully recover (b= 0.9, t(159) = 2.1, p= 0.033). c Stress induces a cortisol response (n= 186) in
participants not already reacting to the placement of an intravenous catheter (“non-responder”) compared to the pre-task cortisol measurement (T2).
Cortisol levels recover close to baseline levels after the 30-min break. Thin lines depict individual cortisol trajectories; thick lines show group averages. The
shaded area shows the timing of the stress task. d Changes in cortisol (N= 186) directly after the task (T6 – T2) and after the 30-min rest (T8 – T2) do not
differ between males and females. Values in a, b, and d show residualized (age, sex, IV-cortisol response, diagnosis status) averages and confidence
intervals (95% CI) for males and females separately. Source data are provided in the Supplementary Data 1.
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Baseline cortisol, but not cytokines, are associated with elastic-
net predicted BMI. We hypothesized that sex-dependent asso-
ciations between BMI and cytokines might explain the sex-
dependent associations between BMI and stress responses. To this
end, we evaluated if BMI-associated cytokines were correlated
with the BMI predicted by the multivariate elastic net model
versus the residual BMI not predicted by stress-induced brain
responses. We reasoned that associations of cytokines with pre-
dicted BMI would indicate shared variance, whereas associations
with residual BMI would indicate that variance attributable to
cytokines is not captured by the predictive model based on stress-
induced changes in brain function. Cytokines related with BMI
(Fig. 5a: multiple regression estimates for the effect of sex, cyto-
kine concentration and their interaction on BMI) were only
associated with the residual BMI and not the predicted BMI

(Fig. 5a), suggesting that such differences in inflammation do not
account for BMI-associated differences in stress-induced brain
responses. In contrast to cytokines, reduced baseline cortisol
levels were associated with a higher model-predicted BMI in a
multiple regression model (BMI: b=−0.31, t(142)=−2.30,
p= 0.023; BMI × Sex: t(142)= 1.73, p= 0.086, regression esti-
mates Fig. 5a, scatterplot Fig. 5b).

Discussion
Stress has been related to an increased risk for overweight and
obesity, and differences in BMI are associated with altered acute
stress reactivity. However, the contribution of increased periph-
eral inflammation and changes in the HPA axis with higher BMI
are not yet well understood. Here, we demonstrate that a higher

Fig. 2 Stress-induced increases in negative affect are larger in participants with a high body mass index (BMI). a Estimates for the effects of sex, BMI,
and their interaction from regression models of multi-level stress responses (subjective response: n= 189 participants, cardio-vascular response: n= 165
participants, and cortisol response: n= 186 participants). Estimates are t-values from linear multiple regressions adjusted for linear effects of age, presence
of a psychiatric diagnosis, and cortisol response to intravenous catheter placement. Green asterisks indicate significant results (p < 0.05). b Scatterplots
showing associations of n= 186 participants between BMI and stress-induced negative affect after the task (both sexes: b= 1.48, t(182)= 2.00,
p= 0.047) and after the following 30-min rest (both sexes: b= 1.18, t(182)= 2.35, p= 0.019) separated for males and females to depict potential sex
differences. Associations with BMI were significant in n= 120 females (T8), but not in n= 69 males. While models account for covariates, the data is
shown unadjusted in the scatterplots. ΔCort T6 = Cortisol increase after the end of the task (T6) compared to baseline (T0). Shaded areas depict 95%
confidence intervals of the association of unadjusted data. ΔCort T8 = Cortisol increase after rest (T8) compared to baseline (T0). ΔHR PostStress =
Difference in heart rate between task-blocks in the PostStress and PreStress condition, ΔHR Stress = Difference in heart rate between task-block in the
PostStress and PreStress condition, ΔNeg T6 = Difference in state negative affect directly after the task (T6) compared to before the task (T3), ΔPos T6 =
Difference in state positive affect directly after the task (T6) compared to before the task (T3). Source data are provided in the Supplementary Data 1.
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BMI was reflected in distinct activation trajectories across stress
phases derived from the posterior insula, the dACC, and the
hippocampus (anterior and posterior) within a pre-defined net-
work. Accordingly, participants with a higher BMI showed
stronger stress-induced brain responses in the posterior insula
that were primarily driven by observed alterations in females.
Additionally, whole-brain analyses revealed stronger stress-
induced responses in the substantia nigra and the parietal

cortex of participants with higher BMI, suggesting that a more
extensive stress-associated network is affected. Notably, associa-
tions of BMI with stress-induced changes were not spatially
correlated in males and females, pointing to sex-specific asso-
ciations (see the corresponding maps on neurovault (https://
neurovault.org/collections/NABGNECT/) that can be used in
future studies). Crucially, different levels of peripheral cytokines
did not account for altered stress reactivity in the brain as they

Fig. 3 Stress-induced deactivations in the posterior insula and substantia nigra are stronger with increasing BMI. a Whole-brain regression analyses
(n= 190) show associations between body mass index (BMI) and stress-induced (Stress – PreStress) activation changes. Higher BMI is associated with
increased (warm colors) stress-induced activation in the superior parietal lobe/precuneus and decreased (cool colors) activation in the substantia nigra
and posterior insula. Voxel-threshold for display: p < 0.001, t > 3.13. b Extracted beta estimates (average across the region of interest, ROI) from
corresponding ROIs defined in the Shen atlas49 are negatively associated with BMI. Regression weights and significance values are derived from separate
multiple regressions for n= 120 females and n= 70 males (accounting for confounds and data is shown unadjusted for the visualization). Shaded areas
show 95% confidence intervals for the associations of unadjusted data. Associations with BMI are only significant in females. BMI = body mass index, L =
left, R = right. Source data are provided in the Supplementary Data 1.
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Fig. 4 Block-wise changes in activation across the task are related to body mass index (BMI) in females. a An elastic net model based on activation
changes during the task predicts BMI. Predicted and observed values of BMI in n= 190 participants were significantly correlated across the complete sample
(r(188)= 0.33, pperm < 0.001). This association was driven by n= 120 females (r(118)= 0.26, p= 0.005), but was not seen in n= 70 men (r(68)=−0.05,
p= 0.66). Prediction models included covariates (age, sex, diagnosis, pre-task cortisol, and log-transformed average framewise displacement), but for
visualization, data is unadjusted. b The model based on stress-induced activation trajectories (yellow) predicted BMI beyond a baseline model based on
confounding variables. The observed R2 (yellow) from all n= 190 participants is higher than the 95% percentiles (errorbars) of the model with true
confounds but permuted features (repeated 10,000 times). In contrast, models based on functional connectivity (FC trajectories), or a combination of FC
and activation trajectories did not perform better than the baseline model including confounds (i.e., observed R2 within 95% percentile range indicated by the
errorbars). Overlapping bars show the average model performance of the observed model (yellow) or the baseline models with permuted features (violet).
Error bars depict 95% percentiles derived from permuting (10,000 resamples) the outcome together with the confounding variables to evaluate the
contribution of the activation features beyond the confounds. c Standardized weights from the prediction model including stress-induced changes in
activation. Depicted weights were retained in ≥80% of outer cross-validation folds. d Importance of each feature set (i.e., all timepoints of one region) for
the prediction of BMI. The ΔR2 reflects how much predictive accuracy is lost when leaving out all timepoints of the feature. e Standardized weights predicting
BMI across the complete sample in the model including averaged activations for PreStress, Stress, and PostStress. f Activation changes (and changes in
activation and FC combined) only predict BMI in n= 120 females, but not males, beyond a baseline model including confounds when training separate
models. Error bars depict 95% percentiles derived from permuting the outcome together with confounds to evaluate the contribution of features beyond
confounds. vmPFC = ventromedial prefrontal cortex, Put = Putamen, PCC = posterior cingulate cortex, Hyp = Hypothalamus, HippP = posterior
hippocampus, HippM = medial hippocampus, HippA = anterior hippocampus, dACC = dorsal anterior cingulate cortex, Cau = caudate, Amy = amygdala.
Source data are provided in the Supplementary Data 1.
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were uncorrelated with predicted BMI, in contrast to associations
with baseline cortisol. To summarize, our results provide initial
evidence that acute stress reactivity is more strongly associated
with BMI in females compared to males and that these altered
responses are more strongly linked to changes in the endocrine,
not the immune system.

Across sexes, a higher BMI was related to lower stress-induced
activation in the posterior insula, substantia nigra, and posterior
hippocampus as well as higher activation in the anterior hippo-
campus and dACC. Both the hippocampus47,51,52 and the
dACC53–55 have been repeatedly associated with stress and
emotion regulation. An increased weight for hippocampus
activity during stress predicting BMI suggests altered regulation
of the HPA axis as brain responses of the hippocampus have been
associated with stress-induced cortisol responses47,51. Likewise,
hippocampal activation while viewing aversive pictures was

negatively associated with a baseline cortisol index56. Notably, we
also observed a negative correlation of baseline cortisol with BMI.
Increased dACC activation with a higher BMI might be related to
an increased recruitment of the salience network in response to
stress57 and associations during Stress and PostStress might
correspond with heighted performance monitoring58. Relatedly,
lower activation of the posterior insula with a higher BMI during
stress in whole-brain and ROI analyses might be related to
reduced integration of interoceptive signals and a focus on
exteroception59–64. The posterior insula has been implicated in
the processing of negative social feedback65 and sex differences27

as well as associations with negative affectivity41 have been
reported, which has a shared genetic basis with obesity and
changes in the immune system66. Whole-brain analyses also
showed correlations of BMI with stress-induced activation in the
substantia nigra, which might correspond with interindividual

Fig. 5 Peripheral levels of cytokines do not account for associations with predicted body mass index (BMI) based on stress-induced brain response
patterns. a Multiple regression coefficients for the associations between sex, normalized cytokine concentration, and their interaction with participant’s
BMI, the BMI predicted by stress-induced brain responses, and the residual BMI in n= 148 independent participants. Only baseline (morning) cortisol
concentration was related to the observed as well as the predicted BMI. White asterisks indicate significant predictors. All regressions models include age,
psychiatric diagnosis, and medication status as additional covariates. b Scatterplots for the association between baseline cortisol and BMI (observed,
predicted, and residual), split by sex in n= 89 females and n= 59 males. Associations were numerically stronger and significant in females
(rho(83)=−0.27, p= 0.003), compared with males (rho(53)=−0.15, p= 0.22), but the interaction between sex and cortisol was not significant
(t(142)= 0.46, p= 0.64). Correlation values are partial correlations corrected confounds, but data is shown unadjusted in the scatterplots. Shaded areas
show 95% confidence intervals of unadjusted associations. hsCRP = high sensitivity CRP, IL-1RA = interleukin 1 receptor antagonist, VEGF-A = vascular
endothelial growth factor A, ICAM-1 = intracellular adhesion molecule 1, MCP-1 = chemokine (C-C motif) ligand 2, MIP-1beta = chemokine (C-C motif)
ligand 4, MDC = chemokine (C-C motif) ligand 22, TNF-alpha = tumor necrosis factor alpha, IL-16 = interleukin 16, SAA = serum amyloid A,
sIL-6R = soluble IL-6 = receptor. Source data are provided in the Supplementary Data 1.
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differences in stress-induced dopamine signaling67. To conclude,
our results point to an exaggerated stress response with higher
BMI in regions implicated in interoceptive and exteroceptive
(salience) processing, including regulation of the HPA axis.

Of note, BMI-associated stress-induced activation trajectories
were only observed in females. Accordingly, females also showed
stronger associations between BMI and activation in the posterior
insula, the subjective stress experience, and baseline cortisol. Since
overweight and obesity are more prevalent in women18,68, our
evidence for sex-specific associations are highly relevant. Notably,
increased food intake in response to stress is more often reported
by women69–72. As women also show distinct neural, subjective29,
and endocrine stress responses23 as well as different associations
between hippocampal activity and subjective stress experience28,
it is conceivable that females are more sensitive to altered stress
reactivity associated with an increase in BMI. In turn, these sex
differences may promote stress-related eating thereby further
affecting stress reactivity. This interpretation is supported by
negative affective responses to the stressor being related to
compensatory food intake73, which is also associated with altered
endocrine stress reactivity74,75. Functioning of the HPA axis is
affected by sex hormones20,30 which potentially explains sex- or
even menstrual cycle-dependent differences76. Notwithstanding,
longitudinal studies are necessary to substantiate a potential
vicious cycle. Therefore, our results emphasize the role of acute
and chronic stress in obesity and overeating particularly in
females.

Altered stress-induced brain responses with high BMI might be
related to changes in the endocrine and the immune system as
well as their interactions11,33. Stress-induced cortisol responses
were not related to BMI, contrasting earlier studies31,77,78,
although recent evidence has been inconclusive12–14. One possi-
ble explanation is that not BMI per se, but visceral adiposity is
differentially related to HPA-axis functioning11 since our sample
included predominantly overweight females that characteristically
have less visceral fat compared to males79. In line with previous
studies9,10, a high BMI was associated with lower baseline cortisol
levels, especially in females. Critically, lower baseline cortisol
levels were also associated with predicted BMI, pointing to shared
variance with stress-induced changes in activation that reflect
greater adiposity, at least in female participants. Since the HPA
axis serves as a negative feedback loop, higher baseline cortisol
levels are associated with lower stress-induced endocrine48,80, but
also subjective48,81, cardiovascular48, and neural stress
responses48,82. Accordingly, lower baseline cortisol might reflect
an increased potential to react to stress which would be in line
with the observed role of the hippocampus. Likewise, exogenous
administration of corticosteroids has been associated with chan-
ges in brain regions regulating ingestive behavior, which includes
the hippocampus, insula, hypothalamus, and the mesocortico-
limbic dopamine system83,84. In contrast to baseline cortisol, the
model-predicted BMI was independent of changes in peripheral
cytokines, although a higher BMI was associated with increases in
peripheral cytokines as expected32,33 and this association was
stronger in females, comparable to results of neural stress
responses. Taken together, our results point to an altered set point
of the HPA axis with higher BMI that may mediate altered neural
stress reactivity, whereas obesity-related inflammation35,85,86

potentially has independent effects.
Despite the notable strengths of our study, it has several lim-

itations that call for additional research. First, the sample size is
comparatively large for a task-based neuroimaging study, but
slightly imbalanced with two thirds of the sample being female,
reflecting the differential incidence of mood and anxiety disorders
in the population87,88. Although the sample covers a broad range
of BMI (17.7–41.9 kg²/m) in females, the range was more

restricted in males (18.9–33.1 kg2/m). Rerunning analyses with
weighted resampling for males to better approximate the female
group showed that the associations of BMI with the stress-
induced changes in affect changed only slightly (Fig. S6) while sex
differences in association with BMI were diminished for cortisol,
but not for model-predicted BMI (for details, see SI, Fig. S7). Still,
since negative effects of a heightened BMI on the immune system
or energy metabolism are conceivably larger in obesity (i.e.,
BMI > 30 kg/m²)89–91, a replication of sex-specific effects in a
larger and more balanced sample is necessary. Second, we only
assessed peripheral inflammation markers, although central
inflammation might have distinct mechanisms affecting BMI and
stress reactivity92. Third, we did not account for effects of the
menstrual cycle or the use of hormonal contraception in females,
although stress reactivity is strongly affected by the current
hormonal state93,94. Our study had no exclusion criteria regard-
ing the hormonal state (i.e., contraception or cycle phase) of the
participants, but we recorded use of hormonal contraception and
the last day of their period when applicable. There were no
associations of BMI with use of hormonal contraception or the
current cycle day. Hence, longitudinal studies including mea-
surements of sex hormone concentrations are necessary to better
understand endocrine modulation95. Moreover, other lifestyle
factors (e.g., smoking or alcohol consumption) might affect
associations between BMI and cytokine levels. Fourth, while
sessions all started at the same time to limit circadian effects on
stress reactivity, we did not standardize the metabolic state of
participants, although glucose levels have been shown to affect
stress reactivity96 and energy metabolism is often altered with
higher BMI. Fifth, our results are cross-sectional so we cannot
draw conclusions about causal relationships between stress
reactivity, overweight and obesity, and associated changes in
endocrine or immune systems. Sixth, we only investigated asso-
ciations with self-reported sex, which was congruent with the sex
determined by genotyping in our sample, and a broader scope
(e.g., including more diverse samples) could be beneficial.

To summarize, we show that BMI is related to stress-induced
activation trajectories of the insula, hippocampus, and dACC in
females but not in males. In line with predictive modeling of
brain responses, participants with high BMI showed stronger
stress-induced changes in negative affect and lower baseline
cortisol levels. This may indicate a changed set point of the HPA
axis in participants with high BMI, which might contribute to
altered stress reactivity, pointing to associations with other stress-
related disorders (e.g., depression) that show overlapping genetic
factors66. To conclude, our results show an important role of
altered HPA axis function and acute stress reactivity with higher
BMI. Moreover, the observed sex-specific patterns of BMI-
associated changes in stress responses in the brain emphasize the
need to routinely evaluate such mechanisms separately for males
and females97,98 to improve the treatment of conditions that are
linked to altered stress reactivity. If validated, such sex-dependent
mechanisms of altered stress reactivity may contribute to sex
differences in obesity as well as stress-related eating more broadly.

Methods
Participants. For the analyses reported here, we used a subsample
of 192 participants (120 females, Mage= 35.0 years ± 12.3 years)
from the Biological Classification of Mental Disorders (BeCOME)
study (ClinicalTrials.gov: NCT0398408499) that completed a
psychosocial fMRI stress task and with available BMI data. All
participants provided written informed consent at a first inclusion
visit, after detailed information was provided by a study physi-
cian. The study was approved by the ethics committee of the
Ludwig Maximilian University, in Munich, Germany, under the
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reference number 350–14 and all ethical regulations relevant to
human participant research were followed. The sample covered a
broad range of BMI (MinBMI= 17.7, MaxBMI= 41.9, MBMI=
23.7, SDBMI= 4.0 kg/m2), particularly in females: (females:
range= [17.7–41.9], MBMI= 23.4, SDBMI= 4.6 kg/m2, males:
range= [18.9–33.1], MBMI= 24, SDBMI= 2.8 kg/m2). In addition,
all participants completed a standardized diagnostic interview100

and n= 82 (42%) fulfilled the criteria for at least one mood or
anxiety disorder (ICD-10 code F3-F4, excluding specific phobias,
Table S1) within the last 12 months. Of those, n= 7 reported
present medication for their symptoms. Moreover, for 148 par-
ticipants (N= 89 females), levels of peripheral immune marker
and cortisol concentrations were available. To maximize the
sample size for the analysis of each stress marker and the pre-
dictive modeling101, we excluded participants with missing or
low-quality data for each analysis separately. Specifically, saliva
samples of four participants had insufficient biological material.
For one participant, the subjective stress experience was not
assessed after the stress task. Moreover, data quality of heart rate
recordings was not sufficient for peak detection (visual inspection
before further analysis) in 25 participants as previously
reported41.

Experimental procedure. On the first study day, participants
arrived at approximately 8 am. Before the start of the experi-
ments, a blood sample was taken to assess baseline cortisol and
cytokines. On the second study day and in the second fMRI
session, the stress task (Fig. S1) was included99. To assess the
cortisol response throughout the task, four saliva samples were
taken using Salivettes (Sarstedt AG & Co., Nümbrecht, Germany).
Additionally, we assessed the serum cortisol response using blood
samples in a subset of participants. The first sample was taken
upon arrival (T1) which was followed by the placement of an
intravenous catheter (IV) in a subsample (n= 31, 16%) of par-
ticipants. The second sample (T2) captured a potential cortisol
response to the placement of the catheter and was taken
approximately 20 min later, directly before entering the scanner.
The fMRI session started with an emotional face-matching task
(~12 min), followed by a baseline resting-state measurement.
Before the start of the stress task (T3), participants rated their
current affective state by answering the Befindensskalierung nach
Kategorien und Eigenschaftsworten (BSKE102; SI) via the intercom
and a serum sample was taken in the subsample with an IV. We
used a psycho-social stress paradigm that was adapted from the
Montreal imaging stress task51. In this task, participants have to
perform arithmetic tasks under time pressure and with negative
performance feedback47,48,99 that is given after each trial and
additionally verbally between task blocks. These tasks typically
correspond to mild laboratory stressors with 47–65% cortisol
responders103. It starts with 5 control task blocks (60 s each)
interleaved with rest blocks (40 s) of the PreStress phase where the
arithmetic problems are shown with sufficient time and without
negative feedback. This was followed by the Stress phase in which
the 5 task blocks (again 60 s) are presented with time pressure
and negative feedback inducing psycho-social stress. The task
ends with a PostStress phase that is analogous to PreStress to
assess stress recovery. The total time of the task is about 25 min.
Throughout the fMRI session, we measured heart rate (HR) using
photoplethysmography. In the subgroup with additional serum
cortisol assessments, two further samples were taken (T4 and T5).
After completion of the task, participants rated their current
affective state again using the BSKE. Thereafter, another saliva
sample was taken (T6) and participants were moved outside of
the scanner for a 30 min rest period with an additional serum
sample (T7) in the subgroup with an IV. To assess stress-induced

changes in resting-state functional connectivity104,105, this was
followed by another 6-minute resting-state scan. To conclude the
session, participants rated their affective state and gave a last
saliva sample for cortisol assessment (T8).

Heart rate measurement: Physiological recording and pre-
processing. As described in Kühnel et al.48, we measured heart
rate using photoplethysmography. Data was acquired with an MR
compatible pulse oximeter (Nonin Medical Inc., Plymouth MN,
USA) attached to the pulp of the left ring finger. PPG data,
sampled at 5 kHz, was amplified using a MR compatible multi-
channel BrainVision ExG AUX Box coupled with a BrainVision
ExG MR Amplifier (Brain Products GmbH, Gilching, Germany)
and recorded with BrainVision Recorder software 1.0. After
down-sampling to 100 Hz, RR-intervals were detected using the
Physionet Cardiovascular Signal toolbox106. Success of detection
of beat positions was evaluated by visual inspection. Measure-
ments with insufficient data-quality leading to failed detection of
beat positions were excluded (n= 25). Success of beat detection
was rated by visually inspecting the detected beat positions.
Crucially, the person rating the data was unaware of the patient
status of each participant.

Assessment of subjective stress experience (BSKE scales). The
BSKE (Befindlichkeitsskalierung durch Kategorien und Eigen-
schaftswörter, Janke, 1994) scales are a short version of the more
extensive “Eigenschaftswörterliste” (EWL107, a scale developed to
assess the current emotional state across positive and negative
dimensions. This reduced scale consists of 15 items (emotions/
states) relevant for anxiety that have been previously used to
assess stress reactivity47,48,108 and comparable to the PANAS or
state anxiety questionnaire that are also used in stress
research109,110 assess different emotions and feelings that might
be affected by stress such as agitation, anxiety, anger, or sensi-
tivity. Participants were asked to rate their current state/feeling (“I
feel…”) on 6-point scale ranging from 1 (“not at all/gar nicht”) to
6 (“very strongly/sehr stark”). We calculated sum scores including
the items activity, wakefulness, self-certainty, focus, and relaxed
state of mind for positive affect and including the items internal
and external agitation, anxiety, sadness, anger, dysphoria, sensi-
tivity as well as three items assessing somatic changes for negative
affect.

Assessment of endocrine and cytokine concentrations. After
collection, all saliva samples were centrifuged and stored at -80° C
until further processing. Salivary cortisol concentrations were
measured with electro-chemiluminescence-assay (ECLIA) kit
(Cobas®, Roche Diagnostics GmbH, Mannheim, Germany).
Samples (IDs) were randomized across different batches, but all
samples from one participants were processed in the same batch.
The detection limit was 1090 pg/mL. The %CV (coefficient of
variation) in saliva samples with varying concentrations was
between 2.5% and 6.1% for intra-assay variability and between
3.6% und 11.8% for inter-assay variability. Four participants had
to be excluded due to insufficient saliva volume at T6.

For a subset of the BeCOME study (n= 198) cytokine assays
were measured together with samples from a second in-house
study111. Blood was collected in Sarstedt plasma tubes at 8.15am
in a fasted state and frozen at −80 °C after centrifugation and
aliquotating to measure cytokine levels and basal cortisol. The
V-PLEX Human Biomarker 54-Plex Kit (Meso Scale Diagnostics,
Rockville, USA) was used to measure immune markers in plasma.
MSD plates were analyzed on the MSD MESO QucikPlex SQ 120
imager (MSD). Additionally, the following markers were
measured with enzyme-linked immunosorbent assay (ELISA):
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high-sensitivity C-reactive protein (Tecan Group Ltd., Männe-
dorf, Switzerland, Cat # EU59151), cortisol (Tecan Group Ltd.,
Männedorf, Switzerland, Cat # RE52061), interleukin 6 (Thermo
Fisher Scientific, Waltham, USA, Cat # BMS213HS), interleukin
6 soluble receptor (Thermo Fisher Scientific, Waltham, USA, Cat
# BMS214) and interleukin 13 (Thermo Fisher Scientific,
Waltham, USA, Cat # BMS231-3). All assays were performed
according to the manufacturer’s instructions. Cytokines measured
with the V-PLEX Biomarker Kit with more than 16% missing
values were excluded, resulting in 42 cytokines (Fig. S2) for
further analysis. For the markers measured with ELISA, values
below the detection limit were set to zero. Likewise, values above
the detection limit to the assay were set to the upper limit. All
remaining markers were quantile-normalized so values were first
ranked and then mapped to the quantiles of a standard normal
distribution using custom code. Next, data was batch-corrected
for the biobank storage position with linear regression in R
version 4.0.2. A linear model was fit for each cytokine to regress
out the batch variable and resulting residuals were used for
further analysis. Missing values were imputed 100 times with the
R package mice 3.13.0, using age, self-reported sex, biobank
storage position, Beck Depression Inventory112, BMI and the
study as covariates. For further analysis, the median imputation
values were used, as the cytokines included for further analysis
(i.e., related to BMI) had at most 2 imputed values (Fig. S3). Of
note, baseline plasma cortisol, measured on a different day than
the stress task was correlated (r= 0.37, p < 0.001, Fig. S3) with the
first salivary cortisol measurement before the stress task (but after
other components of the experimental session).

fMRI data acquisition and preprocessing. We acquired MRI
data using a 3 T scanner (GE Discovery MR750). The stress task
consisted of 755 T2*-weighted echo-planar images (EPI, inter-
leaved acquisition TR= 2 s, TE= 40 ms, 64 × 64 matrix, field of
view= 200 × 200 mm2, voxel size= 3.5 × 3.5 × 3 mm3). Both
resting states consisted of 155 EPIs (TR= 2.5 s, TE= 30 ms,
96 × 96 matrix, field of view= 240 × 240mm2, voxel
size= 3.5 × 3.5 × 3 mm3) each. Preprocessing was performed in
MATLAB 2018a and SPMv12 as previously reported41,48. First,
fMRI volumes were corrected for slice-timing. Then, to correct
for head motion, fMRI data was realigned to the first image and
six movement parameters were derived for later noise correction.
For spatial normalization, a high-resolution T2*-weighted image
was first segmented using the unified segmentation approach113.
Derived grey and white matter segments were then used for
normalization to the MNI-template by applying DARTEL113.
Last, data was spatially smoothed with a 6 × 6 × 6 mm3 full-width
at half-maximum Gaussian kernel. To perform physiological
noise correction, we used aCompCor114. To this end, we
extracted timeseries of the normalized but unsmoothed functional
data of all voxels from white matter and cerebro-spinal fluid
segments (probability maps thresholded at p > 0.90). We then
performed PCA and used the first five components of each seg-
ment as physiological noise covariates.

Concatenation of resting-state and task timeseries. To assess
task-induced functional connectivity changes referenced to a
resting-state baseline we concatenated timeseries data from the
psycho-social stress task and the two, flanking resting-states.
Timeseries were linearly detrended (we did not include a quad-
ratic trend to prevent excluding potential task effects with the
same pattern induced by the task structure with non-stress phases
flanking the acute stress), despiked, and denoised for each mea-
surement separately so that the average gray scale values of each
measurement was 0. To concatenate the task timeseries with the

resting states, we matched the average gray scale values of the
flanking resting-states with the average gray scale value of the rest
baseline phases (fixation cross) during the PreStress condition for
each region of interest. To this end, we calculated the average gray
scale value (i.e., the measured raw intensity of the fMRI images)
after detrending and denoising for each region of interest of the
rest baseline phases (fixation cross) during the PreStress condition
and then subtracted this offset from the complete task timeseries,
so that the average intensity value during the rest baseline phases
during PreStress was 0 and matched the average intensity values
of the flanking resting-states.

Stress response to the psycho-social stress task
Endocrine response. To assess the endocrine response to the stress
task, we calculated the change in cortisol concentration between
T2 and T6. To account for potential responses of the HPA axis to
the placement of the IV48, we included a dummy-coded nuisance
regressor in all analyses that classified participants as pre-task
cortisol responders when the concentration at T1 compared to
baseline (T0) exceeded 2.5 nmol/l48,115.

Autonomous response. To assess the autonomous stress
response48, we calculated the change in average HR during
arithmetic blocks in the Stress or PostStress phase compared to
PreStress. After preprocessing raw PPG data and performing beat
detection using the Physionet Cardiovascular Signal toolbox106,
we derived the average HR of each task or rest block with the
RHRV package116 for R. This included further preprocessing to
exclude implausible interbeat intervals (IBI; exclusion of IBIs
<0.3 s or >2.4 s and with excessive deviations from the previous,
following, or running average of 50 beats). The threshold for
excessive deviations was updated dynamically with the initial
threshold set at 13% change from IBI to IBI117.

Affective response. To assess the subjective stress response, we
calculated the change in positive (activity, wakefulness, self-cer-
tainty, focus, and relaxed state of mind) and negative (internal
and external agitation, anxiety, sadness, anger, dysphoria, sensi-
tivity as well as three items assessing somatic changes) sum scores
form the respective items directly after the task (T6) and after the
30-min rest interval (T8)47,48.

Neural response. To assess the average neural response to stress
across the whole brain, we built a first-level model as previously
reported48. In this model, three regressors modeled the five
arithmetic blocks (60 s each) of the PreStress, Stress and PostStress
condition, respectively. To account for motor responses, the
model additionally included one regressor modeling individual
motor responses. Moreover, the verbal feedback during the Stress
phase was captured in another regressor. To account for noise
components, the models included the six movement parameters,
their temporal derivatives, and the aCompCor components
(physiological noise components (5 each) from white matter and
cerebro-spinal fluid). Data were high-pass filtered with a cut-off
of 256 s. To assess the neural stress response and stress recovery
we estimated the first-level contrasts of interest, Stress – PreStress,
and PostStress – PreStress, for each participant separately.

Associations of stress responses with BMI. Across all stress
responses (i.e., subjective, endocrine, autonomous, and neural),
we used multiple regression (voxel-wise for neural stress
responses) analyses to assess associations with BMI. All analyses
additionally included age (associations with BMI, see Table S3),
sex (dummy-coded, females as reference), pre-task cortisol, and
diagnosis status (fulfilling the criteria for a F3 or F4 diagnosis
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within the last 12 months41) as confounding variables. Moreover,
we explored sex-specific associations of BMI with stress responses
by including an interaction term. Analyses of neural stress
responses (whole-brain regressions and elastic nets) additionally
included average log-transformed framewise displacement118 as a
covariate since BMI has been associated with increased move-
ment during scanning119.

Elastic net modeling of BMI based on dynamic neural trajec-
tories. Next, we evaluated robust associations between the BMI
and stress-induced changes in activation and FC within a network
defined a priori as being related to stress reactivity and negative
affectivity41. Negative affectivity is a risk factor for depression and
frequently comorbid with obesity especially in women120,121. To
this end, we used a recently published pipeline that captures
dynamic trajectories of activation and FC changes between pre-
defined regions of interest (ROI41). We then use cross-validated
elastic nets to evaluate the generalizability of the associations to
unseen data (i.e., held out folds). With these models, we also
determine which features of stress-induced changes in brain
function best reflect (“predict”) BMI in unseen data. This method
provides a multivariate model that statistically predicts BMI based
on all features (“predicted BMI”) and this prediction can subse-
quently be related to baseline cytokine and cortisol levels for
mechanistic inferences. Briefly, average timeseries (unsmoothed)
were extracted from the preprocessed task and resting states in 21
ROIs49 of a stress-related network including the left and right
amygdala, hypothalamus, caudate, putamen, anterior, medial, and
posterior hippocampus, anterior and posterior insula, and one
region for the posterior cingulate, dorsal anterior cingulate, and
ventromedial prefrontal cortex. After denoising (detrending,
despiking, and residualization with the same regressors as in the
whole-brain analyses) and concatenation of the timeseries, hier-
archical models for each edge41,122,123 were used to estimate
block-wise changes in activation in 21 ROIs and their FC across,
21*20/2 edges. Each model then included the timeseries of one
region (ROI1) as dependent variable and the timeseries of the
other (ROI2) as independent variable. Moreover, they included
separate regressors for each of the 15 task blocks and their
interaction with the predicting ROI timeseries to capture FC
changes. Additionally, we accounted for changes in activation
corresponding to motor responses or verbal feedback by includ-
ing the two corresponding convolved regressors from the first-
level models. Predictors for interaction terms were centered. In all
models, the predictors capturing changes in activation and FC
were entered as random effects by participant, so that group-level
and regularized individual-level estimates were calculated124–126.
Next, individual estimates for changes in activation or FC were
extracted from each model and aggregated either across regions
(activation: combining bilateral regions) or four previously
reported subnetworks showing similar stress response trajectories
across the task (connectivity41): leading to feature sets including
68 (connectivity), 180 (activation), and 248 (activation + con-
nectivity) features. To quantify changes in activation across task
blocks, we extracted block-wise estimates from the same linear
mixed-effects models we used for the dynamic changes in func-
tional connectivity. Crucially, these models include regressors
capturing task-induced changes in activation elicited by task
structure (i.e., one regressor for each task block, one regressor for
the motor response, and one regressor for the verbal feedback).
Since we only estimated the upper triangle of the connectivity
matrix, each region of interest was the target region in a different
number of models (ranging from 20 to 1). For prediction we used
an average across the 210 models based on their anatomical
region and combined across all models predicting the same

region and subsequently across left and right ROIs leading to
12 × 15 predictors (trajectories across time for all regions) for the
prediction of interindividual differences.

Last, we used those block-wise features to predict BMI of held-
out folds with elastic net (lasso, preset alpha= 0.5, Matlab2020a)
and nested 10-fold cross-validation. As in Kühnel et al.41, we used
elastic net since it performs well if the number of features is
relatively high and they are correlated127. Confounding variables
were included in baseline prediction models, and we evaluated the
incremental variance explained by fMRI features. Statistical
significance was determined using permutation tests (iterations=
10,000; outcome was shuffled with confounders to keep their
correlation).

Contribution of peripheral inflammation. To determine the
contribution of peripheral cytokine levels to changes in stress-
induced brain responses associated with a higher BMI, we first
selected cytokines that were partially correlated with BMI (see
confounds). As we used this step only to select cytokines for
further analysis, we did not correct for multiple testing and used
an uncorrected p < 0.05. Next, we evaluated whether each of the
selected cytokines was associated with either the BMI predicted
by the brain response when the data was held-out or the residual
BMI capturing variance not related to the brain response. If a
cytokine is correlated with the predicted BMI, this would indicate
that both the stress-induced brain response and cytokine con-
centration explain shared variance in BMI. In contrast, if it is
solely associated with the residual BMI, the cytokine and the
stress-induced brain response explain independent variance in
BMI. To this end, we used separate multiple regression models for
each target cytokine predicting either the predicted BMI or the
residual BMI and including the cytokine and the interaction
between sex and the cytokine as covariates (as well as the
confounds).

Resampling of male BMI values to match distributions. To
evaluate whether differences between males and females in
associations of BMI with cytokines or stress markers can be
explained by the difference in the subsamples, we now performed
a bootstrapping (1,000 resamples of the data) analysis. In this
analysis, observations with very high or low BMIs in males
received a higher weight (i.e., where drawn with a higher prob-
ability). By adjusting the weights in the male subsample, the mean
and standard deviation of males approximated the female dis-
tribution. For the relationship of BMI and the negative subjective
stress response, we observe only a slight change in the association
with BMI in males when mean and standard deviation were
matched with the female subgroup (Fig. S5). In contrast, the
association of BMI with baseline cortisol in males approached the
association in females if distributions became more similar
(Fig. S6). However, this was not the case for the association of
cortisol with the predicted BMI as the output of the cross-
validated elastic net model. This suggests that although the cor-
relations between BMI and cortisol were not sex specific, they are
primarily related to differential alterations in the neural stress
response in females potentially pointing to different mechanisms.

Statistics and reproducibility. We used linear multiple regres-
sion models in R to estimate stress effects (i.e., intercept) and
associations with BMI, sex, and their interaction across the sub-
jective, cardio-vascular, and cortisol stress response. Likewise, we
performed voxel-wise linear multiple regression for the whole-
brain analyses. We used partial correlations to determine which
cytokines were related to BMI, before again using linear multiple
regression models to associate immune markers, sex, and their
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interaction with observed BMI and the model predicted BMI.
Performance of the elastic net models predicting BMI based on
brain responses (i.e., activation and FC) to stress, was evaluated
using permutation tests. Here, we permuted the outcome together
with baseline covariates (e.g., age, diagnosis status, previous
cortisol response, movement) 10,000 times to derive a null dis-
tribution of the coefficient of determination (R2) and compared
the observed R2. We repeated this procedure for an elastic net
model across all 190 individuals and separately for the 120
females and 70 males.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
Statistical maps showing for the correlations of BMI with stress-induced activation (Stress-
PreStress) for the sample and males and females separately are publically available on
neurovault (https://neurovault.org/collections/NABGNECT/). A reporting summary for
this Article is available as a Supplementary Information file and source data for all figures
is available as supplementary data. The raw individual data that support the findings of
this study are available from the corresponding author upon reasonable request.

Code availability
No customized code is necessary to analyze the provided data and MATLAB code used
to preprocess the data will be provided upon reasonable request. Predictive modeling was
implemented in Matlab 2020a using first linear mixed models (fitlme) and elastic net
linear models (lasso). Statistical analyses (linear models and (partial) correlations) were
performed in Rv4.0.2128. We used SPM12 for whole-brain fMRI analyses, the voxel
threshold was set at puncorrected < 0.001. Clusters were considered significant with a
cluster-corrected threshold of pcluster.FWE < 0.05. Imaging results were visualized using
Mango image processing software (Lancaster, Martinez;www.ric.uthscsa.edu/mango).
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