
ARTICLE

Cortical temporal integration can account for limits
of temporal perception: investigations in the
binaural system
Ravinderjit Singh 1 & Hari M. Bharadwaj 1,2,3✉

The auditory system has exquisite temporal coding in the periphery which is transformed into

a rate-based code in central auditory structures, like auditory cortex. However, the cortex is

still able to synchronize, albeit at lower modulation rates, to acoustic fluctuations. The per-

ceptual significance of this cortical synchronization is unknown. We estimated physiological

synchronization limits of cortex (in humans with electroencephalography) and brainstem

neurons (in chinchillas) to dynamic binaural cues using a novel system-identification tech-

nique, along with parallel perceptual measurements. We find that cortex can synchronize to

dynamic binaural cues up to approximately 10 Hz, which aligns well with our measured limits

of perceiving dynamic spatial information and utilizing dynamic binaural cues for spatial

unmasking, i.e. measures of binaural sluggishness. We also find that the tracking limit for

frequency modulation (FM) is similar to the limit for spatial tracking, demonstrating that this

sluggish tracking is a more general perceptual limit that can be accounted for by cortical

temporal integration limits.
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Neural encoding of auditory temporal information occurs
at various scales across the nervous system. Temporal
information is encoded with microsecond precision in the

auditory periphery and is progressively transformed into a rate-
based code1. The relationship between neural temporal coding
limits at various levels of the pathway and human temporal
perception is poorly understood. Although temporal information
in the ascending auditory pathway is progressively transformed to
a rate-based code, cortical neurons can also synchronize to
auditory cues, albeit at lower frequencies than subcortical
structures1–3. The impact of this cortical synchronization on
perception is poorly understood. Studies have found cortical syn-
chronization to be useful in explaining perception of time-reversed
animal vocalizations, encoding of stimulus onset, representation of
auditory objects, and the coding of amplitude modulations
(AMs)4–9. For instance, as the modulation rates (frequencies) of
sounds are increased, the elicited percept changes from that of
being able to perceptually follow discrete events (i.e., the individual
peaks and troughs of the modulation), to a flutter, and then to a
pitch. Indeed, correlates of these qualitative changes in the percept
of AM can be found in the temporal synchronization capabilities of
different cortical regions2,3,9. To better understand the relationship

between neural temporal coding limits and perception, here, we
studied the binaural auditory system, which shows both exquisite
sensitivity to microsecond binaural temporal cues, and seemingly
paradoxical “sluggishness” to dynamic variations in the same
cues in certain behavioral tasks10. In particular, we studied how
cortical temporal processing related to perception of dynamic
binaural cues. Specifically, we characterize the cortical temporal
integration window for dynamic binaural cues in humans using
EEG and investigate how well that physiological window can
explain human perception of dynamic binaural cues. Our inability
to spatially track fast binaural modulations (BM) has been
called “binaural sluggishness” in the literature, because it was
thought that this sluggishness phenomenon may be unique to the
binaural system. Instead, here, we explore the possibility that cor-
tical synchronization capabilities may place common neurophy-
siological constraints leading to sluggish processing of a range
of auditory cues, including monaural AM and frequency modula-
tions (FM).

In this investigation, BMs are applied to two binaural cues
based on the temporal fine structure in sounds, namely interaural
time delay (ITD) and interaural correlation (IAC). ITD is the
difference between the arrival times of corresponding compo-
nents of a sound in the two ears, and is useful for sound later-
alizarion; IAC is the correlation between sounds reaching the two
ears, and can directly influence the perceived spatial extent/width
of a sound. Both ITD and IAC can be useful cues for listening
in noisy environments11–13. How binaural cues, e.g. ITD and
IAC, are processed when they are dynamic, is currently not well
understood. Single-unit data from the brainstem shows that cells
can encode BMs in ITD and IAC in the 100s of Hz14–17. Single-
unit data from primary auditory cortex (A1) shows neurons can
synchronize to binaural beats, a dynamic interaural phase dif-
ference (IPD), up to a median synchronization rate of about
20 Hz18,19. Behaviorally, humans can detect BMs in the 100s of
Hz15,20,21; however, studies probing the use of binaural cues to
perform a spatial task, e.g. spatial unmasking, have found that
humans only benefit from low-rate BMs, below 10 Hz10,22–25.
These binaural unmasking studies led to the notion of ‘binaural
sluggishness’ in the literature as the binaural system seemed
particularly slow in comparison to human ability to detect
monaural cues. However, a broader view of the literature suggests
a dichotomy where tasks that rely on the percept being spatialized
in nature appear slow, while simple detection of binaural fluctua-
tions can be more than an order of magnitude faster. Indeed,
dynamic spatial percepts have been anecdotally reported to become
a flutter at frequencies above approximately 7–10 Hz15,16,21. Thus,
BMs seem to have analogous temporal perceptual limits as AMs, in
that both demonstrate a qualitative switch around 7–10 Hz, Fig. 1;
with BMs, the percept switches from spatialized to a mere flutter,
and with AMs, the percept switches from being able to “ride” the
AM (or perceive individual peaks and troughs discretely), to also
perceiving a flutter. This dichotomy (fast and slow) in the behavior
is accompanied by evidence of fast temporal processing in the
brainstem and slower temporal processing in the cortex. However,
the slower temporal processing found in cortex thus far, particu-
larly primary auditory cortex (median synchronization limits of
20 Hz), is not as slow as spatial perception observed in human
behavior18,19; however, in this comparison, it should be acknowl-
edged that human perceptual limits are being compared to non-
human physiology.

We evaluate how cortical binaural synchronization in humans
explains human dynamic binaural perception. A temporal ana-
lysis window is quantified using EEG with a novel binaural sys-
tems identification technique which modulates IAC or ITD with
a maximum length sequence (m-seq). Using the same system
identification technique, we also estimate brainstem binaural

Fig. 1 Overview of experiments, methods, and hypotheses. a This figure
depicts the similarity in temporal switches in perception that occur between
binaural modulation (BM), amplitude modulation (AM), and frequency
modulation (FM). In red, the measures taken in this work are depicted and
laid out in the table shown in (b).
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synchronization limits in chinchillas to both corroborate previous
brainstem measurements and to validate our novel approach
against prior single-unit data obtained using conventional
approaches. We conduct three behavioral experiments (1) to
characterize detection limits for BMs, (2) estimate the frequency
limits at which the perceptual switch from dynamic spatial to a
non-spatial flutter occurs, and finally (3) to quantify the per-
ceptual dynamics of binaural unmasking; we then compare the
behavioral frequency functions to synchronization limits of cortex
and brainstem. To complement our binaural measures, we also
measured subjects’ ability to monaurally detect a phase difference
between two spectrally distant FMs, which requires being able to
temporally follow the individual cycles of the FMs to test whether
the ability to temporally track BMs (i.e. spatial tracking) ceases at
similar modulation rates as for other auditory cues. Our results
reveal a neural source with a latency of ~ 100 ms that synchro-
nizes to BMs slower than 10 Hz, and can quantitatively account
for the sluggish dynamics seen in spatial unmasking. We also find
that BM and FM stimuli can be perceptually tracked out to
similar modulation frequencies (~10 Hz). These results suggest
the temporal response properties of later ( ~ 100 ms latency) areas
of cortex may constrain our ability to perceptually track various
dynamic auditory cues. This is also notable in that we have
developed an EEG measure that measures cortical temporal
coding ability which appears to have a direct relationship with
temporal perception.

Results and discussion
Novel systems identification approach to measure temporal
coding of binaural modulations. In the present study, we
employed a novel approach to characterize neural coding of
binaural modulations. Neuroscience in general, and auditory
neuroscience in particular has a rich history of characterizing
temporal coding. Indeed, temporal modulation transfer functions
(tMTFs) have been measured from various levels of the auditory
system for spectral, amplitude, and binaural modulations2,14,16.
The conventional approach involves playing sinusoidal modula-
tions (i.e., a single frequency in the modulation domain), and
measuring neural phase locking as a function of the modulation
frequency. This approach is time consuming, as many frequencies
need to be measured individually. Moreover, given the highly
non-linear and adaptive nature of the central auditory neural
response, the results from a discrete single-frequency sampling
approach may miss interesting characteristics that are unique to
the broadband nature of real-word stimuli. To mirror the com-
plex broadband modulation profile encountered in the environ-
ment, we applied a broadband binaural modulation using a
modified maximum length sequence or m-sequence (m-seq).
Throughout, we refer to this modified stimulus as the “extended
m-seq” (em-seq) (Fig. 2). This approach allows us to simulta-
neously measure the coding across all modulation frequencies of
interest with one ongoing stimulus, and provides a substantial
improvement in experimental efficiency compared to traditional
tMTF measurements. The different experiments conducted, and
hypotheses tested, are outlined in Fig. 1.

Source binaural temporal response function shows cortical
tracking of binaural cues extends up to 10 Hz. Our measure-
ment using a extended m-seq (em-seq) and subsequent PCA
analysis to obtain a “source binaural temporal response function”
(sBTRF) is explained in detail in the methods section. The sBTRF
for IAC and ITD is shown in Fig. 3. The sBTRF reflects how the
dominant underlying cortical sources responds to dynamic
binaural stimuli. The PCA weights are depicted in the topomaps
in Fig. 3. Considering auditory cortex has tangential dipoles that

project to the top of the scalp, the topographic distribution we
find for the sBTRF for IAC and ITD is consistent with arising
from auditory cortex26,27. Neuroimaging data in humans and
data from animals support the notion that perceived auditory
space is computed in auditory regions in the temporal lobe, but
beyond primary auditory cortex28–31. Consistent with this, the
dominant group delay (or latency) estimated from the sBTRF was
~100 ms for both IAC and ITD. Studies on the encoding of
dynamic binaural cues in cortex have mainly focused on neurons
in the primary auditory cortex and have reported median
synchronization limits of ~20 Hz18,19; the 20 Hz limit is much
faster than what is observed in human behavior. The magnitude
response of the sBTRF for IAC (Fig. 3) loses 6 dB or half its
amplitude by 5 Hz and the mean response falls into the noise
floor at ~9 Hz, while for ITD (Fig. 3), the amplitude peaks
around 4.5 Hz and falls into the noise floor at ~9 Hz as well.
This slower frequency limit estimated from the sBTRF further
corroborates the notion that the dominant contributors may
be sources that are hierarchically downstream to the primary
auditory cortex.

The sBTRF shapes for IAC and ITD have an interesting
relationship in that the shape of the ITD sBTRF roughly matches
the derivative of the IAC sBTRF (Fig. 3). This relationship can be
explained in the context of a two-channel population code model
for sound location31–33. With IAC, it is likely all cortical binaural
cells (in both channels) respond to IAC the same way, exhibiting
a smaller response at a low IAC and a larger response at high
IAC. In contrast, with ITD, two-channel models considered in the
literature posit that one channel would respond more favorably to
sound locations on one lateral side vs the other31–33. Therefore
with the ITD em-seq (which bounced between two azimuths),
one channel may be much more active for one azimuth and the
other more active for the other azimuth leading to a derivative-
like response compared to the response seen for IAC. Fig. 3 show
results from single-unit measurements in chinchillas, demon-
strating that the approach utilizing an em-seq can also be readily
adapted to spiking data. We estimated binaural brainstem
responses from a coincidence analysis on measurements from
the auditory nerve recordings in chinchillas. Previous studies
have shown that brainstem response properties can be reliably
predicted from nerve responses using this approach14. A drop of
6 dB in power was used as the synchronization limit to be
consistent with previous literature14,16. Our brainstem estimates
indicate synchronization up to 100s of Hz, in line with previous
measurements14–16.

Spatial and frequency tracking limits align with cortical
tracking of spatial cues. Results from behavioral experiments are
shown in Fig. 4. Detection thresholds for BMs were measured
using a binaural oscillating-correlation (OSCOR) stimulus, where
the IAC was varied sinusoidally at different BM rates. Results
revealed that humans can detect BMs as fast as 100s of Hz,
consistent with our ability to temporally encode fast BMs in the
brainstem. Importantly, being able to detect BMs does not mean
that the listener is making use of fluctuations in perceived later-
alization for all rates. One could be simply discriminating a
dynamic BM from a static sound just as one can discriminate
a 500 Hz AM from a sound with no modulation by perceiving a
buzz rather than 500 discrete modulations. It should be noted
that experiments were primarily conducted with noise stimuli
that were bandlimited between 0.2–1.5 kHz to match the range of
frequencies over which humans have high sensitivity to ITDs34,
perhaps constrained by the limits of neural phase locking35.
However, we found OSCOR detection in this band-limited range
was much below what we know subcortical structures are capable
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of endcoding, see Fig. 4. Therefore, we repeated this experiment
in one subject with white noise due to physiological data indi-
cating cells with higher center frequencies can encode the fast
OSCORs14. We found detection of the OSCOR was improved
with the white noise, see Fig. 4 and Supplementary Fig. 3. Indeed,
one possibility is that fine-structure-based binaural cues may be
detected for higher (beyond 1.5 kHz) carriers but that these cues
don’t inform spatial perception. One reason for this could be due
to the human head size. ITDs from higher carrier frequencies
become ambiguous if the wavelength is smaller than the head
width which would make fine structure cues less informative for
determining spatial location at higher carrier frequencies35.
However computing correlation is not affected by head size, so
IAC may actually be affected only by fine structure processing
ability which likely extends beyond 1.5 kHz. It has been anec-
dotally reported that the perception of BMs switches from being
spatial to a flutter between 6 and 10 Hz15,16,21. We formally
measured this in one participant and found the switch from
spatial to flutter occurred at 9.3 Hz in that participant which is
consistent with previous anecdotal reports.

In contrast to detection experiments, binaural unmasking
experiments rely on subjects’ ability to use brief periods of
perceived spatial separation (i.e., differences in lateralization/
location) between target and masking sounds to derive masking
release22. Indeed, the results of our experiment measuring the
dynamics of binaural unmasking reveals the sluggish nature of
spatial processing; the binaural masking release (measured as dB

improvement in target detection) continues to grow even as the
duration of the spatial separation is increased in the range of
tenths of a second, Fig. 4. Strikingly, when we used the
physiologically measured sBTRF for IAC as the temporal
integration window, the predicted masking release shows
excellent correspondence to the behavioral data, with the mean-
squared error (MSE) of the fit being as small as 0.6 dB2 (this low
MSE is despite excluding the end points, i.e., 0 and the asymptotic
value at 1.6 seconds which were constrained to match the
measurements). Therefore, the sluggishness in binaural percep-
tion is well explained by the physiological properties of cortical
processing, specifically that of a cortical source that is measurable
using EEG with a group delay of ~100 ms. Data from primary
auditory cortex has shown median synchronization limits to
binaural cues to be 20 Hz18,19 which is faster than our measure
here that fits the behavior, suggesting this sluggishness arises in a
hierarchically later cortical source (consistent with the longer
100 ms latency) and not primary auditory cortex. Finally, to test
whether a monaural percept can also exhibit sluggishness, we
measured the ability to detect a phase difference between FMs at
the same rate imposed on spectrally distant carriers. This task was
chosen because it relies on subjects’ ability to perceive discrete
variations in the modulation and temporally track it (i.e., being
able to “ride” the peaks and troughs) to detect the phase
difference. This is analogous to being able to track the changing
lateralization or spatial location with BM stimuli. We hypothe-
sized that similar to BMs, FMs would show the same tracking

Fig. 2 Novel binaural systems indentification approach utilizing m-seqs to measure binaural temporal coding. a depicts how the m-seq is transformed
into the extended m-seq by increasing the duration of each point in the m-seq. This alters the frequency response of the m-seq to be sinc shaped instead of
white, but that is useful in focusing the characterization energy in the range the system of interest is active. b depicts the paradigm used to obtain system
responses. The extended m-seq modulated either the IAC or ITD of the noise stimulus and the neural measure, either spikes or voltage potentials (EEG),
were cross correlated with the extended m-seq to obtain an estimate of the system response.
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limits. Indeed, we observed that FMs can be temporally tracked
up to about 10 Hz, similar to our BM results, Fig. 4.

Conclusions. In summary, the sBTRF measured for IAC and ITD
provides a neural correlate for the sluggish perception of auditory
space. Furthermore, the latency of the dominant source con-
tributing to the sBTRFs suggests the perceptual limits arise from
auditory cortical regions downstream of the primary auditory
cortex. Previous investigations focusing on the brainstem and

midbrain processing have not produced any candidate correlates
for this spatial sluggishness14–17,36,37. Cortical single-unit mea-
surement in A1 have revealed lower limits of temporal coding than
the brainstem, but not low enough to account for the behavioral
estimates of sluggish spatial perception in humans18,19. The shape
of the sBTRF measured here yielded sluggishness estimates that
were a very close match to the spatial sluggishness seen in binaural
unmasking. Our results also make it clear that the processing of
binaural cues is not uniquely sluggish, and that monaural temporal

Fig. 3 Cortical tracking of IAC and ITD extends out to ~10 Hz. In a–d, the solid line is the mean response and shading represents the 95% confidence
interval calculated using the standard error computed from jacknifing (n= 9 independent samples). a, b Shows the source binaural temporal response
function (sBTRF) for IAC and ITD as well as the topomap for the sBTRF. c, d Shows the frequency response of the sBTRF for IAC and ITD. The data was
high-passed at 1 Hz. The group delay (GD) confidence interval is ± the standard error of the estimate computed by jacknifing. e Shows a plot of the ITD
sBTRF as well as the derivative of the IAC sBTRF with the amplitudes normalized between 1 and −1. f Shows the roll off frequency and group delay for the
brainstem responses simulated from ANF coincidence.
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perception also exhibits sluggishness when the behavioral tasks are
set up to probe analogous aspects of temporal tracking. This sug-
gests that “binaural sluggishness”may be somewhat of a misnomer.
Indeed, with AM, fluctuations can be followed only up to about
10 Hz if individual acoustic events are to be discretely perceived;
then at higher rates, an acoustic flutter is heard (similar to the
binaural flutter), and then finally a pitch9. Correlates of these
qualitative changes in AM perception can be found in the temporal
coding properties of different regions along the auditory
pathway3,9. Here, we demonstrated that a similar 10 Hz limit also
exists in the tracking of FMs. Indeed, given that hierarchical cortical
processing occurs via highly conserved columnar circuits38, and
that cortical neurons generally exhibit tuning to a range of different
acoustic cues at the single-unit level, it is reasonable to expect that
the temporal coding properties of cortical neurons would constrain
the processing of many different cues similarly. In this view, the

sluggishness in tracking a moving sound (spatial sluggishness)
would be no different than the sluggishness in tracking discrete
amplitude or frequency fluctuations. Rather, cortical processing
limits may impose a general sluggishness in the processing of a
range of auditory cues. Our results also suggest that although the
temporal integration window progressively expands as we ascend
the auditory pathway (progressive temporal to rate transforma-
tion), the temporal synchronization properties of higher stages of
cortical processing can still directly relate to certain aspects of
perception. The perceptual significance of this low frequency
temporal processing is understudied, and could be important for
our understanding of the mechanisms supporting the perception of
complex acoustic scenes. Our em-seq approach to evaluate how
well cortex can track a particular auditory cue can be readily
extended to other acoustic cues, such as AM, to investigate cortical
temporal coding more broadly. Finally, to the extent that temporal

Fig. 4 Cortical temporal coding limits of binaural cues align with spatial tracking of biaural cues, spatial unamsking dyanmics, and FM modulation
tracking. a demonstrates how the physiology fit was obtained and is based on procedures from Culling and Summerfield22. The window size in the figure is
the duration of time in the experiment that fully correlated noise was played with the target anticorrelated tone being in the middle of that window (see
Methods section). b shows results from all experiments using the OSCOR stimulus. OSCOR white (n= 1) is the OSCOR stimulus with the noise having a
white spectrum (instead of the noise being band-limited to 0.2–1.5 kHz, n= 9 and bars show ± standard error across subjects) and OSCOR MOL is the
result of the method of limits experiment with the OSCOR stimulus, n= 1. c shows the results for a binaural unmasking paradigm as well as how well the
IAC sBTRF window fits the behavioral data (n= 9 for behavior, bars show ± standard error across subjects). The window size is the same window size as in
a, d shows the results from our FM phase difference detection experiment (n= 15, bars show ± standard error across subjects). Box plots to visualize the
full distribution of data for b, c and d can be found in Supplementary Fig. 6.
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response properties of higher-order areas relate to perception of
dynamic scenes, individual differences in physiology measured
using the em-seq approach may also be useful for predicting
individual listening outcomes in complex everyday environments.
Future investigations evaluating how cortical temporal coding
ability measured via EEG with an em-seq relates to speech-in-noise
processing, aging, and other phenomenon could produce inter-
esting lines of investigation to better understand the significance of
cortical temporal processing.

Methods
We conducted six experiments, illustrated in Fig. 1, to investigate
how temporal processing in cortex relates to binaural perception
and to evaluate whether a common sluggishness phenomenon
can be found across the processing of many auditory cues. Two
experiments involved electrophysiological measurements using
our novel binaural systems identification approach to quantify the
temporal coding properties of brainstem and cortex for binaural
modulations. Four experiments were behavioral studies in
humans designed to probe the temporal limits of different
binaural perceptual abilities, and to test whether physiologically
measured limits can predict perception.

Human Participants. Nine participants (2 female) with an
average age of 25 (18-34) were recruited from the greater
Lafayette area through posted flyers and advertisements. Audio-
grams were measured using calibrated Sennheiser HDA 300
headphones by employing a modified Hughson-Westlake proce-
dure. All subjects had hearing thresholds better than 25 dB HL in
both ears at octave frequencies between 250 and 8 kHz. All
subjects provided informed consent, and all measurements were
made in accordance with protocols approved by the Internal
Review Board, and the Human Research Protection Program at
Purdue University.

EEG recording. Digital stimuli were designed with custom scripts
in Matlab (The MathWorks Inc., Natick, MA) at a sampling rate of
48828.125 Hz, and converted to analog voltage signals using an
RZ6 audio processor (Tucker-Davis Technologies, Alachua, Flor-
ida). The voltage signals were converted to sounds and delivered to
the ears via ER2 insert earphones (Etymotic Research, Elk Grove
Village, IL) coupled to foam ear tips. There was a random jitter
between 0-200 ms added to each interstimulus interval to reduce
any potential periodic noise sources that could be in phase with our
stimulus. EEG measurements were made with a 32-channel system
(Biosemi Active II system, Biosemi, Amsterdam, Netherlands).
EEG data was sampled at 4096 Hz and filtered between 1–40 Hz,
and then downsampled to 2048 Hz. EEG data were re-referenced to
the average of all electrodes. Ocular artifacts were removed using
the signal-space projection approach39. Projections were manually
applied for each participant based on the topographic pattern of the
noise-space weights which were manually chosen to correspond to
the expected pattern of blink and saccade artifacts. EEG data were
collected as stimuli were played passively with participants
watching a muted video of their choosing with subtitles. To remove
movement artifacts, trials that had peak to peak deflections greater
than 200 μV were then rejected.

Auditory nerve responses to simulate binaural processing.
Auditory nerve responses were collected in chinchillas. Male
chinchillas (N= 5) weighing 400–650 grams under 2 years of age
were used in accordance with protocols approved by the Purdue
Animal Care and Use Committee. Binaural processing was
simulated by playing the stimulus intended for each ear separately
and recording from the same nerve fiber, and then performing a

coincidence analysis. Coincident spikes (within 50 μs bins) across
the “left” and “right” spike train was treated as amounting to a
binaural spike. Previous work has shown that this coincidence
analysis approach can reliably estimate the response properties of
binaural cells in the midbrain14. All procedures laid out in this
section were approved by the Purdue University Animal Care and
Use Committee.

Anesthesia was induced with xylazine (1–2 mg/kg s.c.) and
ketamine (60-65 mg/kg, s.c.). Anesthesia was maintained with
ketamine (20-40 mg/kg, i.m.) and diazepam (1–2 mg/kg, i.m.)
through intramuscular injections every 2 h as indicated by the
presence of reflexes for the duration of the experiment (10–16 h).
A heating blanket and rectal thermometer were used to regulate
and monitor body temperature throughout the experiment. The
skin and muscles overlying the skull were reflected to expose the
bony ear canals and bullae. Hollow ear bars were placed close to
the tympanic membrane. The AN bundle was exposed at its
exit from the internal acoustic meatus via a posterior-fossa
craniotomy and aspiration cerebellotomy. Acoustic stimuli were
presented monaurally through an ear bar using Etymotic ER2 and
calibrated using a probe microphone placed within a few mm of
the tympanic membrane (Bruel and Kjaer 4182). Glass pipettes
with impedance ranging between 60-90 MΩ were advanced into
the auditory nerve using a hydraulic microdrive. Recordings were
amplified, band-pass-filtered and stored on a PC. Spikes were
identified using a time-amplitude window discriminator, and
spike times were stored with 10 μs resolution.

Single fibers were isolated by monitoring the spike recording
via an oscilloscope and listening for spikes while noise pips were
played. After isolating a fiber, its tuning curve was measured
using an automated procedure that played a series of tone pips
and measured the minimum level required to evoke 1 more spike
than a subsequent 50 ms silent period40. Units where we were
unable to measure at least 20 repetitions of the left and right
stimulus were excluded from analysis.

Novel binaural systems identification using maximum length
sequences. Systems identification approaches are widely used in
Neuroscience41,42. In audition, systems identification approaches
are useful for determining the frequency responses of a system,
both at single-neuron and population levels43,44. Binaural systems
identification has been used to study the temporal coding limits of
the binaural system primarily through temporal modulation
transfer functions (tMTF) computed from calculating phase lock-
ing to individual frequencies of binaural modulation14–16,18,19.
However, the approach of constructing a tMTF from responses to
individual frequencies is experimentally inefficient. Also central
neural responses can be sensitive to the input statistics of a sti-
mulus, so an approach that better mimics the broadband nature of
real-world stimuli may capture interesting characteristics that a
discrete single-frequency sampling approach may miss45,46. Here
we use a novel binaural systems identification technique where we
modulate a binaural cue using a maximum length sequence (m-
seq) allowing us to evaluate a continuous range of frequencies using
a single stimulus.

Maximum length sequences (m-seqs) have been used to map
the receptive fields of visual neurons, identify the cues used in
visual tracking, obtain auditory brainstem responses, and
characterize room acoustics47–51. An m-seq is a signal that only
takes one of two discrete values (e.g., +1 or −1). It is a
pseudorandom sequence constructed through a series of feed-
back shift registers of n bits, giving the full sequence a length of
2n− 1. An m-seq has a flat spectrum, similar to white noise, but
has a lower crest factor in that its values are bounded on both
ends, making it attractive for systems identification. By using the
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m-seq as the input to a system and then cross-correlating it with
the output of the system, an estimate of the impulse response
can be obtained. For more details on the m-seq, we suggest the
following sources47–50.

The m-seq has a nearly white spectrum; however auditory
responses to binaural modulation, especially in cortex are
expected to be slow. Indeed, previously measures from the
primary auditory cortex of rabbits and macaques suggest that
responses roll off around 20 Hz18,19. Thus, if we played the m-seq
as it is conventionally constructed, its energy would be spread out
up to fs/2, which is over 20 kHz in this case, because our sampling
rate (fs) is 48828.125 Hz. This is orders of magnitude wider that
than expected frequency response range of the system resulting in
much of the stimulus energy for system characterization being
spent without eliciting a measurable response component, leaving
only a small fraction to characterize the system in the region that
it is active (e.g., below 20 Hz). Therefore we modified the m-seq
to an extended m-seq (em-seq) to have a sinc-function-shaped
spectrum instead of a white spectrum, so that most of the
characterization energy of the m-seq is in the region of interest
for the system being characterized. The sinc-function shape will
modulate the measured system response; however, the em-seq
can be designed so that it’s frequency response is mostly flat in
the region the underlying system is active. The procedure to
construct the em-seq is explained next.

The em-seq is constructed by elongating the duration of each
point in the conventional m-seq to create an extended m-seq, i.e.,
em-seq. In the conventional construction, each point in the m-seq
is 1/fs in duration where fs is the sampling rate. By elongating the
duration of each sample to T, the em-seq spectrum instead of
being flat, takes a sinc-function shape, with only minimal energy
above f= 1/T, but approximately flat (losing <4 dB) between
f= 0, and f= 1/2T. For example, if characterizing a system that is
expected to be active up to 40 Hz, elongating each point to a
duration of 12.5 ms would be appropriate because then the
resulting sinc spectrum will be fairly flat up to 40 Hz and lose
energy quickly between 40–80 Hz. The frequency at which
the main lobe of the em-seq spectrum loses nearly all power will
be denoted as the cutoff frequency (COF; e.g., 80 Hz in the
previous example). The frequency up to which the em-seq
spectrum is approximately flat (i.e., loses ~4 dB in power) will
be denoted as f4dB, which is 40 Hz in the previously given
example. Given the properties of a sinc function, COF= 2*f4dB.
A COF or f4dB is set by choosing the elongation duration
applied to the conventional m-seq to obtain the em-seq. When
choosing the f4dB, the idea is to have most if not all of the
system’s energy that is being characterized to be below this
number. However, if the system has energy beyond f4dB, that
will be captured because the em-seq still has energy above f4dB.
However, the system has a higher chance of being shaped by the
spectrum of the em-seq itself. To best capture the true response
of the system, it is important to establish noise floors that help
determine where the system is characterizable and where the
measurement is just noise. We describe our approach to do this
with EEG data and spiking data later in this paper. Lastly, the
number of bits for the em-seq is a parameter that will need to be
chosen, as is the case with a conventional m-seq. The minimum
requirement is that the total length of the em-seq needs to be
longer than the expected impulse response.

Two different em-seqs were used for characterizing brainstem
(via ANF coincidence) and cortical responses (via EEG) given
that the two systems were expected to reflect very different
temporal coding abilities. The brainstem em-seq was a 9 bit
m-seq with T= 2 ms, so f4dB was 250 Hz. A minority of units
were measured with the elongation parameter set at 1 ms in
duration, i.e., f4dB: 500 Hz; the data from these units indicated that

f4dB of 250 Hz was sufficient. The brainstem em-seq was 1.026 s in
duration and was presented 6 times. The cortical em-seq was 8
bits with each point being elongated to 50 ms, giving a f4dB of
10 Hz. The 50 ms duration for each em-seq point was chosen
after piloting using f4dB of 20 Hz suggested cortical phase locking
limits to binaural modulations measured with EEG were below
10 Hz. Also from our results (see Fig. 3), it is clear that the em-seq
we choose was adequate. At 6 Hz for the IAC response, the
magnitude has dropped by 1/3 or roughly 10 dB, but the em-seq
used here has dropped only by ~1.5 dB (see Supplementary
Fig. 5), so the response is losing its energy much faster than the
em-seq. If the response had energy beyond f4dB, we would
capture that because the response likely would not fall into the
noise floor and continue beyond f4dB as the em-seq has energy
beyond f4dB. However, if the measured response has substantial
energy beyond the chosen f4dB, that would be an indication to
modify the em-seq to have a larger f4dB. The total duration of
the cortical em-seq was 12.75 s, and we aimed to collect 300
trials for BMs applied to ITD and IAC. The interstimulus
interval was 1 s plus a random jitter between 0 and 200 ms. One
participant did not complete all trials for the ITD em-seq, and
one participant did not complete all trials for the IAC em-seq
due to availability constraints.

Figure 2 depicts the paradigm used in this study. An em-seq
modulated either the ITD or IAC of a broadband noise stimulus.
The noise stimulus used for single-unit data had a bandwidth of
0.01–20 kHz and 0.2–1.5 kHz for the cortical stimulus. The
bandwidth for the cortical stimulus was narrower since humans
do not appear to use fine structure binaural cues for spatial
perception beyond ~1.5 kHz34. An amplitude modulation (AM)
was imposed at the highest frequency the em-seq can characterize
(so 500 Hz for the brainstem em-seq and 20 Hz for the cortical;
matching the fastest rate at which the em-seq was allowed to
switch states) to mask any phase discontinuities introduced by
jumping between two ITD or IAC values. This does not affect our
analysis because the em-seq would have lost most of its power at
this frequency. The modulation by the em-seq was binaural, so
the em-seq binaural modulation could only be heard with both
earphones in place. Listening with just one earphone would lead
to perceiving just 20-Hz amplitude modulated noise. The m-seq
for IAC bounced between an IAC of 1 and −1, and for ITD
bounced between 0 and 500 μs for EEG data collection. For
single-unit data, the ITD bounced between 0 and 1 / (2*CF),
where CF is the characteristic frequency of the unit being
measured. This was chosen based on the observation that ITD
tuning curves of brainstem single neurons exhibit a trough at an
ITD that is a phase of pi from the CF of the unit52, and because
we would expect greatest probability of coincidence between left
and right auditory nerve responses for an ITD of 0, and minimum
coincidence at a ITD corresponding to a phase difference of
pi at CF.

Em-seq analysis. The em-seq used for analysis will be termed the
recovery em-seq (rem-seq). The rem-seq always goes between 1
and −1, so with IAC, the em-seq played as the stimulus and the
rem-seq are the same. For ITD, however, the em-seq bounces
between two different ITD values, but for analysis the rem-seq
goes between 1 and −1. This choice of rem-seq avoids introdu-
cing an artificial DC value into the analysis, and an overall scaling
that would not affect the frequency shape of the system response,
thus making it well-suited to characterize how the system can
track modulations. After a response is cross-correlated with the
rem-seq, it is unitless; therefore, many of our responses are
unitless. However, since we are primarily interested in the shape
of the responses, having unitless respones is fine.
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For the single-unit data, the spikes were treated as Dirac delta
functions (i.e., single-sample impulses indicating that a spike
occurred in a narrow time bin of the peristimulus time
histogram) and cross-correlated with the rem-seq to extract
the binaural impulse response, i.e. binaural temporal response
function. Noise floor estimates were constructed by randomizing
the inter-spike intervals (ISIs) and making the first spike time be
drawn from a unifrom distribution between 0 and the actual first
spike time for that trial, and then doing the same cross correlation
analysis on the jumbled spike train which has the same ISI
distribution. See Supplementary Fig. 1 for examples of system
functions obtained from single units utilizing this approach.

For the EEG data, the response in each channel was cross-
correlated with the binaural rem-seq giving a multi-channel
binaural temporal response function (mcBTRF) for each
participant. The mcBTRF is then averaged across participants.
In the mcBTRF, the response can be seen in several channels with
different magnitudes and with different polarities. This is
expected considering that the response from any given neural
source will contribute voltage fluctuations in different EEG
channels with different amplitudes and polarities depending on
the geometrical configuration of the source relative to the sensors.
To extract the dominant source and its spatial topography, we
used principal component analysis (PCA) on the mcBTRF. The
PCA implementation from sci-kit learn in Python was utilized.
PCA was done in the time range of 0 to 500 ms and only the first
principal component was taken as the source binaural temporal
response function, sBTRF. The IAC sBTRF explained 94% of the
variance of the mcBTRF, and the ITD sBTRF explained 70% of
the variance. The PCA operation on the mcBTRF can be thought
of as a spatial filter that generates a linear combination of the 32
channels such that the combination (i.e., the sBTRF) accounts for
most of the variance in the mcBTRF. The scalp topographic map
of the PCA weights to get the sBTRF can provide information
about physical location of the dominant source tracking the
binaural modulations. To estimate the variance of the sBTRF, we
used a jacknifing (leave-one-out) procedure. The frequency
response of the sBTRF was computed using the freqz function
from the scipy library in python. The group delay of the SBTRF
was computed by taking the slope of a fitted line of the
unwrapped phase between 2.5 and 6 Hz. We choose 2.5 an 6 Hz
because the sBTRF had high SNR in that region for both ITD and
IAC. Noise floors for the EEG data were constructed by
multiplying a randomly chosen half of the trials by −1 and then
carrying out the same analysis as used to obtain the mcBTRFs.
Ten noise-floor estimates were generated for each participant for
each channel. The PCA weights from the actual mcBTRF were
used on the noise-floor estimates to obtain the noise-floor
estimates for the sBTRFs. See Supplementary Fig. 2 for a visual
depiction for going from the 32-channel evoked response to
the sBTRF.

Psychoacoustic experiments. We performed four psychoa-
coustic experiments, laid out in Fig. 1. All stimuli were gener-
ated using custom MATLAB scripts and delivered through the
acoustic apparatus described previously. The FM tracking psy-
choacoustic experiment was done through our online platform
that has previously been validated to yield average absolute
thresholds that are comparable to lab-based data53. For
every task, participants were first given a brief demo to
understand the task. For all binaural tasks, we modulated IAC
dynamically instead of ITD. The reason we studied dyanmic
IAC and not dynamic ITD behaviorally is because with dyanmic
ITD, it is easy to introduce monaural artifacts. In fact, it is
mathematically impossible to have a purely dynamic ITD. It is

quite easy for an unintended amplitude modulation to be
introduced monaurally. Also, in part for the reason just dis-
cussed, much of the liteature to this point has studied dynamic
IAC instead of ITD, so to compare and put in context with
previous work, using dynamic IAC measures made sense.
Recent work has used dynamic ITD stimuli, but they also note
the spectral fluctuations that become audible monaurally at
higher modulation frequencies16.

Perceptual limits for detecting binaural modulations. To
measure human ability to detect binaural modulations, we used
the method of constant stimuli with the oscillating-correlation
(OSCOR) stimulus. The OSCOR stimulus consists of noise tokens
with sinusoidally varying IAC, and has been used previously in
both behavioral and physiological studies14,15,20. Each trial was
3-interval 3-alternatives-forced-choice with the target interval
containing the OSCOR stimulus and the other two intervals
containing interaurally uncorrelated noise (IAC= 0). We eval-
uated performance at octave frequencies between 5–320 Hz with
20 trials at each frequency. The OSCOR stimulus was band-
limited between 0.2–1.5 kHz because of data suggesting fine-
structure-based binaural cues may not be useful beyond
1.5 kHz34. However, we repeated this experiment in one subject
with white noise due to physiological data indicating cells with
higher center frequencies can encode the fast OSCORs14. Indeed,
one possibility is that fine-structure-based binaural cues may be
detected for higher (beyond 1.5 kHz) carriers but that these cues
don’t inform spatial perception. The results of the measurement
in the one participant with OSCOR applied to bandlimited
(0.2–1.5 kHz) and to white noise (extending up to half the
sampling rate) are shown in Supplementary Fig. 3. Because we
wanted to simply demonstrate the white noise OSCOR has higher
detection limit than the bandlimited OSCOR, we measured this in
only one participant rather than several.

Limits for perceiving dynamic space. Several studies have
anecdotally reported that with the OSCOR stimulus and other
dynamic binaural stimuli, the perception of the stimulus appears
to change from a spatialized image (i.e., moving in space) to a
flutter around 6–10 Hz15,16,21. We hypothesized that this switch
would align with cortical temporal coding limits. Accordingly, we
formally measured this switch in 1 participant using the method
of limits with the OSCOR stimulus to formally measure this often
anecdotally reported measure in the literature. There were 10
ascending and descending trials that started randomly between
3–6 Hz or 16–19 Hz respectively. The participant pushed a button
indicating whether the perception of the stimulus had changed or
not (either spatial to flutter or flutter to spatial) in each trial. If the
perception had not changed, the frequency was increased
(ascending trials) or decreased (descending trials) by 1 Hz until
the change was noted.

Perceptual dynamics of spatial unmasking & comparison to
physiology. The third behavioral task probed dynamic binaural
unmasking, and was based on a previously published paradigm22.
In this task the noise is uncorrelated (IAC= 0) except for a
window of time in the middle of the stimulus where the noise
becomes completely correlated (IAC= 1), see Fig. 4. While the
noise is completely correlated, an anti-correlated (IAC=−1)
850 Hz tone, 20 ms in duration, is played coincidentally with
correlated noise. The difference in IAC between the tone and the
noise (i.e., the “N0Sπ” configuration of the mixture) can be used
to improve detection of the tone, i.e. a spatial unmasking effect.
We varied the duration of the completely correlated period of the
noise and measured detection thresholds for the tone using an
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adaptive 2-up-1-down paradigm. The window durations we
evaluated were 0, 50, 75, 100, 125, 150, 200, 400, 800, and 1600
ms. One participat quit during the last window duration, which
was 800 ms, due to exhaustion, so that one data point was thrown
out. Culling and Summerfield22 used this task to estimate the
underlying binaural temporal analysis window by comparing the
unmasking function (dB masking release vs. window duration
function) with levels of unmasking that different window shapes
would predict. Here, we measured the binaural temporal window
physiologically using EEG. Thus, instead of fitting arbitrary
window shapes, we analyze how well the physiologically mea-
sured temporal window, the sBTRF, quantitatively explains the
entire behaviorally measured unmasking function. This was done
in two steps. First, the sBTRF (normalized and shifted to sum to 1
and take non-negative values) was convolved with the back-
ground noise, and the maximum “internal” IAC of the noise is
estimated in the window of overlap with the tone. Then a binaural
masking level difference (BMLD), or detection improvement
relative to a window duration of 0 is estimated from the known
relationship between static IAC and BMLD54, which is is cap-
tured in Equation (1) below. van der Heijden an Trahiotis54

found that this equation could account for 98% of the variance of
behavioral BMLD data from Robinson and Jeffress13. Here, TNo is
the mean threshold at the largest window size (1600 ms) and TNu
is the mean threshold with no window present.

BMLD ¼ �10 log10 ð1� IACÞ þ ðIACÞ TNo

TNu

� �
ð1Þ

FM phase difference detection using web-based psychoacous-
tics. In response to the COVID19 pandemic, we developed and
validated a web-based platform for conducting suprathreshold
psychoacoustics experiments53. We recruited 14 participants
from Prolific in the 18–55 year age range. Each participant
passed a headphone-use screening test, and a screening for
normal hearing based on a suprathreshold speech-in-babble
paradigm53 before participating in the main FM experiment.
One of the authors also completed the task, yielding a total of
15 total participants.

In the main task, participants were instructed to detect the
difference between two frequency modulations at a given
modulation rate, but applied to spectrally distant carriers. One
carrier was always between 500–750 Hz, and the other carrier was
chosen to be two octaves higher than the first. The modulation
depth of the FM was 10% of the carrier frequency. The FM rates
we evaluated were 4,8,16,32, and 64 Hz and the phase difference
between the FMs were 30, 60, 90, or 180 degrees. An example of
the FM phase difference detection stimulus is shown in
Supplementary Fig. 4. The stimulus duration was 1.5 s and had
a sampling rate of 44,100 Hz. To eliminate potential onset effects
in detecting the phase difference between the two FMs a discrete
prolate-spheroidal sequence (DPSS) window was used to apply a
125 ms ramp, and the starting phase of the FMs in each interval
was randomized. Each trial was organized in a 3-interval 3-AFC
format, with non-target stimulus intervals containing in-phase
FMs and the target interval containing the FMs with a phase
difference. Mean and standard error parameters for detection
accuracy were estimated using the median, and the median
absolute deviation, respectively.

Statistics and reproducibility. Statistical inferences were drawn
by looking at the distribution of data computed by the standard
error of the mean and by directly comparing physiology to
behavior using mean squared error. For physiological responses,
we computed the standard error by using a jackknife approach.

The 95 % confidence interval computed from the standard error
was used to evaluate where the physiologic response is clearly
greater than the noise floor. All code to replicate this analysis is
made available in our code availability statement. All raw data
and code to generate the stimuli to generate these physiological
responses is also made available through our data and code
availability statements. The binaural behavioral responses esti-
mated the standard error of the mean by dividing the standard
deviation of the data by the square root of the number of samples.
For the FM behavioral data, we utilized median absolute devia-
tion to estimate the standard error of the mean because the online
data had a tendency to have more potential outliers. Lastly, to
compare the behavior and physiology, we utilized mean square
error (MSE) which is a straightforward technique to measure the
similarity of two signals. All code to replicate our analysis, gen-
erate all figures in this paper, and generate our stimuli is made
available in our code and data availability statement to enhance
reproducibility. All raw data are also made available as described
in our data availability statement.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
All data is openly accessible and archived using Zenodo55.

Code availability
The code to reproduce the figures in this work is publicly available on GitHub (https://
github.com/Ravinderjit-S/DynamicBinauralProcessing) and archived using Zenodo56.
This repository also contains code for generating the stimuli used in this paper.
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