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Morphological profiling by high-throughput single-
cell biophysical fractometry
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Complex and irregular cell architecture is known to statistically exhibit fractal geometry, i.e., a

pattern resembles a smaller part of itself. Although fractal variations in cells are proven to be

closely associated with the disease-related phenotypes that are otherwise obscured in the

standard cell-based assays, fractal analysis with single-cell precision remains largely unex-

plored. To close this gap, here we develop an image-based approach that quantifies a mul-

titude of single-cell biophysical fractal-related properties at subcellular resolution. Taking

together with its high-throughput single-cell imaging performance (~10,000 cells/sec), this

technique, termed single-cell biophysical fractometry, offers sufficient statistical power for

delineating the cellular heterogeneity, in the context of lung-cancer cell subtype classification,

drug response assays and cell-cycle progression tracking. Further correlative fractal analysis

shows that single-cell biophysical fractometry can enrich the standard morphological profiling

depth and spearhead systematic fractal analysis of how cell morphology encodes cellular

health and pathological conditions.
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Cell morphology is constituted by the complex biomolecular
machinery at the genomic, transcriptomics, and proteomic
levels. Hence, it is a valuable readout, which can be cap-

tured by microscopy, for assaying the functional state of indivi-
dual cells. Dramatic advancements in high-throughput imaging
and computer vision in the past decade have sparked the major
drive in the use of microscopy to extract quantifiable information
from cell morphology (i.e., morphological profiling)1,2. Creating
the catalogs of the cell morphological features, this cell profiling
strategy enables mining the underlying feature signatures or
patterns that can infer cell age3, metastatic potential4, screening
chemical5, and genetic perturbation6.

In morphological profiling, a wealth of quantitative metrics
(features) can be extracted from the individual cell images,
including cell size, shape, texture etc., representing a fingerprint
of each cell. Downstream analysis is then applied to investigate
the similarities or correlations between profiles in order to
identify the phenotypes specific to the cell types and states.
Traditionally, the morphological features are defined based on
Euclidean geometry, which can be easily coupled with general
variations in geometry (e.g., size and shape), however, irregular
spatial information hidden in the complex cellular structure (e.g.,
statistical properties of shape and texture) could often be missed.
This is particularly relevant to the cellular malignancy, in which
the intracellular mass growth shows a significant degree of ran-
domness and disorder7. Specifically, conventional Euclidean
geometry fails to holistically quantify the textural or shape irre-
gularity at different length scales in simple words, due to the
metrical variation along with the change of measurement reso-
lution. This explains the need for an extended set of local and
global features to separately examine the heterogeneity at differ-
ent spatial scales8. Yet, they do not capture an important property
shared in a wide variety of biological cells, i.e., “fractality”. It
refers to the fact that the texture pattern/shape of an object does
not significantly differ from the same property measured on a
larger scale. To this end, fractal dimension (FD) has been adopted
as an effective metric that quantifies and classifies the irregular
biological structures and the self-similarity characteristics that are
not well represented by the Euclidean geometry9. FD is typically a
non-integer value, in contrast to the dimensions defined in
Euclidean geometry, i.e., 1 for a line (1D), 2 for a plane (2D), and
3 for a cube (3D).

Indeed, fractal analysis has been demonstrated as an effective
tool in clinical diagnosis, such as the examination of aberrant
histopathological features in tissues10, and assessment of abnor-
mal organ morphology (e.g. tumor vasculatures) in radiology11.
Further down to the cellular or even subcellular level, fractal
behavior can be observed in the chromatin topology in the
nucleus12–14, cell membrane contour and adhesion topology15,
mitochondrial16, and cytoskeleton17 morphology. For instance,
the mitochondria organization undergoing fission and fusion
regulated by cellular metabolism follows the statistics of self-
similarity18; the protein interaction and structural intermingle-
ment of chromatin are both highly consistent with a fractal
framework12; the architecture of cytoskeleton and plasma mem-
brane also shows a self-similar topology where molecules are
confined hierarchically over time and length scales19. Hence, the
knowledge of fractal characteristics at the single-cell level could
offer new physical insights into cell types and states different from
the tissue’s fractal properties. Specifically, changes in cellular and
subcellular FDs are now known to be closely related to the epi-
genetic states20, the gene expression levels16. Hence, they can be
indicative of the functional states of cells (e.g., metabolic states21,
cell differentiation states22, and cell malignancy23).

However, these promises, together with the cellular fractal
characteristics that can readily be analyzed by standard

microscopy, have not yet made fractal analysis widely applicable
in cytometry and morphological profiling of cells. The key chal-
lenge stems from the fact that the cellular/subcellular morphology
exhibits fractal properties in a statistical sense, instead of the
archetypal geometrical sense. Yet, current imaging techniques
lack the scale and throughput to guarantee that fractal analysis
could show the sufficient statistical power for delineating the
cellular heterogeneity and complexity on the single-cell level (e.g.,
limited to ~10’s −100’s single cells15,23,24).

To address this challenge, here we employ an ultrahigh-
throughput quantitative phase imaging (QPI) flow cytometer
called multiplexed asymmetric-detection time-stretch optical
microscopy (multi-ATOM)25,26 to analyze single-cell biophysical
fractal characteristics (termed single-cell biophysical fractometry)
at the breadth and depth not achievable by the existing methods.
This strategy of single-cell fractometry is achieved by two key
attributes: (1) Establishing label-free morphological profiling that
includes not only the common shape and texture features based
on Euclidean geometry, but also a collection of biophysical fractal
parameters (not only FD) of each cell. This is enabled by the core
strength of QPI inherited by multi-ATOM, in which the complex-
field image information of individual cells (i.e., both amplitude
and quantitative phase images) can be obtained at subcellular
resolution. Such complex-field information can then be harnessed
to compute the corresponding far-field light-scattering pattern
(by means of Fourier Transform light-scattering (FTLS)27), which
provides a catalog of single-cell fractal and the associated ALS
(angular light-scattering) features. Defining these fractal features
as an intrinsic morphological profile aligns precisely with the
growing interest in new strategies for in-depth biophysical phe-
notyping of cells, which has already generated new mechanistic
knowledge of cell heterogeneity and showed initial promises in
identifying cost-effective biomarkers of disease, thanks to its
label-free nature28. (2) Enabling large-scale single-cell fractometry
by the ultrafast QPI operation in multi-ATOM, at the speed at
least 100 times faster than the existing QPI modalities that rely on
camera technology for image recording29. We note that another
form of QPI, digital holographic imaging, has also recently been
employed to perform fractal analysis of non-biological micro-
particles and microalgae at a moderate throughput30,31. Com-
bined with the high-throughput microfluidics platform8,25,26,32,
this approach enables single-cell fractometry at a throughput of at
least 10,000 cells/sec without sacrificing the subcellular imaging
resolution. This attribute critically provides in-depth statistical
fractal analysis, which has largely been underexploited in the
previous work on fractal analysis, especially at the single-cell
screening resolution. Indeed, comprehensive morphological pro-
filing often relies on analyzing the deeper statistics of cell phe-
notypes in order to detect cellular heterogeneity and
subpopulation with an improved sensitivity and robustness33.
More importantly, in order gain a better interpretation of the
significance of the extracted fractal-related features, we further
investigate the underlying correlation, if any, between Euclidean-
defined morphological features and the fractal features.

In this work, we show that high-throughput single-cell bio-
physical fractometry allows us to distinguish the histological
subtypes of lung cancer cell lines by fractal-related features. We
also demonstrate that these fractal-related features can be used for
assessing drug treatment responses. These features also play an
important role in identifying different stages of cell cycle pro-
gression (G1, S, and G2).

Results
Key workflow and basic performance of single-cell biophysical
fractometry. We applied multi-ATOM, an ultrafast QPI
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modality, to perform high-throughput single-cell imaging in
microfluidic flow (See Methods) (Fig. 1a). Detailed working
principle and experimental configuration were reported
previously8,25,26. The general principle is to first record the
complex optical field at the image plane of the flowing cell by
multi-ATOM, i.e., E x; y

� � ¼ A x; y
� �

ejϕ x;yð Þ, where A x; y
� �

is
amplitude (i.e. bright-field) image and ϕ x; y

� �
is the quantitative

phase image (Fig. 1b). Subsequently, the complex field at the

image plane is then numerically propagated to the far field using
the Fourier transform operation—yielding the (far-field) scattered
light-field pattern Sðkx; kyÞ ¼ F ½Eðx; yÞ�27, from which the fractal
properties of the cell can be measured (Fig. 1c). It is due to the
fact that the cellular and subcellular fractal structures give rise to
the heterogeneity of the refractive index within the cells, and thus
directly impact the scattered light pattern34. Here, we further
convert the scattered light pattern into an angular light scattering

Fig. 1 General workflow and performance of high-throughput single-cell fractal profiling. a Ultrafast imaging flow cytometry by multi-ATOM. b Label-
free single-cell image capture (Top: QPI; bottom: Bright-field image (BF)) (Example: polymer microspheres). Scale bar= 5 μm. c Complex-field light
scattering profile reconstruction via FTLS (Example: polymer microspheres). Scale bar= 2 rad/μm. d Retrieval of the ALS profile. (Example: Experimental
microsphere data acquired by multi-ATOM (red) and theoretical simulation result (blue) and the analytical Mie light scattering theory of ideal sphere with
the same size as the spheres (black). e Schematics of fractal fitting of Cρ rð Þ. FD is determined from the fractal fitting of the overall curve, whereas the fitting
within FW gives FD with FW. f ALS and fractal profiles extracted from (d, e). g Label-free single-cell image capture of leukemia cell line (ACC220). Spatial
scale bar= 5 μm. Frequency scale bar= 2 rad/μm. h Label-free single-cell image capture exampled by leukemia cell line (THP-1). Spatial scale bar= 5 μm.
Frequency scale bar= 2 rad/μm. i ALS plots summarizing ALS profiles of 2500 ACC220 cells. Shaded area indicates the statistical variance. j Plot
summarizing Cρ rð Þ of 2,500 ACC220 cells. Shaded area indicates the statistical variance. k ALS plot summarizing ALS profiles of 2500 THP-1 cells. Shaded
area indicates the statistical variance. l Plot summarizing Cρ rð Þ of 2500 THP-1 cells. Shaded area indicates the statistical variance.
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(ALS) profile S q
� �

in which scattered light intensity is averaged
over rings of constant wave vector q ¼ 4π=λsinðθ=2Þ, where θ is
the polar scattering angle27 (Fig. 1d). This approach has been
adopted in characterizing different metabolic states of red blood
cells (RBCs)35, assessing different intracellular organelles36, and
classification of bacterial species37, and analyzing the fractal
characterization of the fibrin network38, all in a label-free
manner.

Based on the light scattering theory39, we can further relate the
ALS with the dry mass density variation ρðrÞ (quantified through
spatial correlation of the density fluctuation CρðrÞ)(See
Methods)40 in such a way that the Fourier transform of an ALS
intensity profile will obey an inverse power law relationship, i.e.,

F S θð Þ
�� ��2h i

/ Cρ rð Þ / r�α, where α is the exponent, and Cρ rð Þ is
the spatial correlation of ρðrÞ. In practice, by fitting the slope α of

the log-scaled plot of F S θð Þ
�� ��2h i

, we could calculate the

FD= 3� α (See detailed derivation in Methods) (Fig. 1e). As
cells exhibit fractal properties (e.g., self-similarity) only within a
limited range of length scales, referred to as the fractal window
(FW), ALS offers a powerful tool to identify the FW where the
inverse power law behavior is present21,41. In addition, as
mentioned earlier, the fractal behaviors of cells are manifested
in a quantitative statistical sense. We exploited a catalog of
parameters that quantify the statistics of the ALS profiles, and the
statistics related to FW fitting, e.g., the mean square error (MSE),
the FW width, and the estimated FD (See the complete list of
parameters in Supplementary Table S1) (Fig. 1f). Here FW is
defined as the interval of correlation distance in Cρ rð Þ with the
most prominent downwards slope (See Supplementary Table S1).
We note that these FD-related parameters can reflect how well
the fractality is preserved in different scales and allow us to
quantify the degree of self-similarity. The basic performance of
imaging and the ALS analysis were tested with microbeads
(Fig. 1b–d), and two different types of leukemic cells, ACC220
and THP-1 (Fig. 1g–l).

Single-cell fractal profiles show differences among lung cancer
cell subtypes. Cell morphology assessment is commonly prac-
ticed in cancer diagnosis and classification. Taking lung cancer,
the leading cause of cancer-related mortality worldwide42, as an
example, histological characterizations of small biopsies or
cytology specimens play an integral role in the pipeline for clas-
sifying different lung cancer types, according to the criteria long-
established by World Health Organization (WHO)43,44. However,
these assessments are often confounded by subjective and biased
visual inspection and are mostly limited to obvious morphological
abnormalities across the histochemically stained tissues, e.g., cell
shapes and intercellular textural complexity. As abnormal sub-
cellular morphology (e.g. nucleus/nucleoli and cytoplasm) is also
found to be indicative of malignancy and different cancer
subtypes45,46, we sought to investigate if the single-cell fractal
properties of different lung cancer cell subtypes extracted from
the label-free ALS profiles can provide unbiased classification of
the three key different lung cancer subtypes which are commonly
categorized through histopathological examination: small cell
lung carcinoma (SCLC) and two subtypes of non–small cell lung
carcinoma (NSCLC), which are squamous cell carcinoma (SCC)
and adenocarcinoma (ADC)43.

Based on the visual examination of the randomly selected
reconstructed single-cell phase gradient and quantitative phase
images captured by multi-ATOM (Fig. 2a), it is generally
impractical to distinguish the 3 subtypes by standard bulk
features such as cell size and optical density (or opacity). Because

of the heterogeneity among individual cells, the morphological
difference across subtypes is challenging to define using only one
or a few phenotypes. For instance, although the general size
distribution of the population differs between SCLC and NSCLC,
there is a significant size variation on the single-cell level even
within the same subtype. Therefore, characterization that depends
solely on these bulk features alone, including cell size, is not an
effective way for label-free single-cell identification between the
heterogenous populations of SCLC and NSCLC. To augment the
dimensions of our morphological profiling, we parameterized the
cell morphology (recorded by multi-ATOM) through high-order
statistical analysis, which reveal global and local textural features
of the cells8. Going beyond, we evaluated the Cρ rð Þ from the ALS
profile (S θð Þ) of individual cells (Fig. 2a). We observed that Cρ rð Þ
appears to be statistically different among 3 subtypes (including a
total of 7 different lung cancer cell lines (Supplementary Fig. S1)).

Henceforth, we calculated the FD of individual cells through
inverse power law fitting and observed that the FD distributions
can relatively be categorized into the low/middle/high level for
SCLC, SCC, and ADC, respectively (Fig. 2b), with a significant
effect size ( dj j ~0.57–0.89 between subtypes using Cliff’s delta
statistics). The statistics of the overall fitting error (FD MSE2)
also shows significant difference among the subtypes ( dj j~
0.57–0.88). More importantly, FD MSE2 indicates that there is a
larger variance (or dispersion) of Cρ rð Þ for SCLC, while the cells
of SCC and ADC both tend to keep a better linearity, implying
the self-similarity of cellular structure is more consistently
preserved in a wider length scale (Fig. 2c). We stress that effect
size, which is independent of sample size, is adopted here to
evaluate the significance of sample difference. This is due to the
fact that the common p-value will give misleading high
statistical significance when using a large sample size47, which
is challenging to achieve in other fractal cellular measurements
but realized by our multi-ATOM system (>10,000 cells). Besides
effective size analysis, we also computed the Spearman
correlation coefficient of fractal features and lung cancer
subtype (1 for SCLC, 2 for SCC, and 3 for ADC) to prove
their close bonding (FD: 0.7174; FD MSE2: −0.6791).

We also studied the feasibility of using fractal features to
distinguish the three lung cancer subtypes. Based on one-versus-
all classification, we computed their area-under-curve of the
receiver operating characteristics (AUROC). We observed that
using FD alone can already allow us to distinguish the main
groups of NSCLC from SCLC, with the reasonably high accuracy
(AUROC score of 0.881). FD-only classification of the two
subtypes of NSCLC (i.e. ADC and SCC) is found to be more
challenging (AUROC= 0.602). (Fig. 2d). To test further, we
extracted the statistics of other fractal- and ALS-related features
from Cρ rð Þ (17 dimensions in total, see Supplementary Table S1)
to construct the linear regression classifiers. We observed that the
classification accuracy was enhanced noticeably for all three
subtypes (particularly for SCC) according to the ROC analysis
(AUROC ~0.832—0.968 (Fig. 2e)). These results illustrate that
fractal features have adequate effectiveness in the categorization
of lung cancer subtypes, in addition to providing meaningful
physical interpretation regarding cell complexity.

Leveraging the statistical power offered by multi-ATOM, we
further generated a 2D heatmap to display the single-cell fractal
profile (Fig. 2f), where each column represents the normalized
profile of an individual cell and each row represents a
subsampling set of the referring feature (1000 cells were randomly
picked for each cell line). Based on the heatmap of the five most
significant fractal features (ranked by the mean AUROC of three
one-versus-all subtype classification) (right panel of Fig. 2f), we
observe that each of the three lung cancer subtypes displays its
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distinct characteristic pattern in the fractal profile. For instance,
the three ADC cell lines (H358, H1975, HCC827) share a similar
profile that shows high FD, low FD MSE2, and high FD width.
When we further included other ALS features for higher-
dimensional analysis, visualized by the uniform manifold
approximation and projection (UMAP) algorithm48 (Fig. 2g),
we observed the three main clusters corresponding to the key
lung cancer subtypes. Although overlapping is observable to some
degree in the clusters of ADC and SCC, most cells of SCLC are
highly dispersed from NSCLC. Hence, this study suggests that
morphological profiling based on these label-free single-cell

fractal features, which are closely linked to the intracellular mass
density distribution characteristics, could provide the discrimi-
native power to distinguish the key histologically different lung
cancer subtypes.

Single-cell fractal profiles encodes cellular responses to drug
treatments. Going beyond cell-type classification, we next vali-
dated the sensitivity of this refractometry profiling in response to
the drug treatment of with different mechanisms of action, in
order to demonstrate its potential applications in label-free drug
screening. We acquired massive single-cell images of squamous

Fig. 2 Fractometry of multiple lung cancer cell subtypes. a Randomly selected phase gradient images (∇ϕx, top), QPI (middle) and the correlation
function plots (bottom) of three lung cancer cell lines, respectively. Scalar bar is 5 μm. Shaded area indicates the statistical variance. b Statistical
distributions of FD. c Statistical distributions of FD MSE2. d, e ROC curves for distinguishing the lung cancer subtypes in one-versus-all mode with d FD
only and e the linear regression classifiers constructed from all the 17-dimension fractal and ALS features. AUROC values are labeled in the legend. f The
fractal phenotypic profile of 7 lung cancer cell lines (feature values are normalized based on the z score). Each row represents a fractal feature, and each
column represents a single cell. The scale bar stands for 1000 cells, which were randomly subsampled from each cell line. The AUROC ranking results are
shown in the right panel. g 3D UMAP visualization of the 17 fractal and ALS-related phenotypes extracted from single-cell images of the lung cancer cell
lines. Clusters are colored according to the three lung cancer subtypes.
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cell carcinoma (H2170) cells by multi-ATOM imaging flow
cytometry. The cells were treated with two different drugs at their
respective IC50 (half maximal inhibitory concentration, see
Methods for details) for 24 h (Fig. 3a). The two drugs were
Docetaxel (DTX), which is a microtubule stabilizer inducing cell-
cycle arrest and death49, and Gemcitabine(GCB), which is an
analog of deoxycytidine inhibiting DNA synthesis and elongation
and thus causing DNA fragmentation and apoptotic cell death of
malignant cells50. Over 2000 images of each set were collected for
feature extraction, from which we observed the changes in cell
morphologies in response to the drug treatments (Fig. 3b).

We subsequently evaluated the statistical distributions of the
primary fractal features (Fig. 3c, d), and found that both FD and
FD MSE2 exhibit a significant decrease ( dj j= 0.440 and 0.398,
respectively) when GCB was applied, whereas present a sizable
increase ( dj j= 0.384 and 0.350) under the addition of DTX. The
distinguishable response of the three sets indicates that cells
treated with GCB are in better conformity with fractal pattern,
but possess less complex subcellular structures. This can be

attributable to the inhibited DNA replication by GCB. GCB
mainly interferes the cell growth by triggering chain termination
after blending into the elongating DNA strands. This mechanism
results in a reduced complexity of individual cells (smaller FD)
and a less local morphological/mass variation without active
DNA synthesis (lower MSE). On the other hand, DTX promotes
the assembly of microtubules and prevents their dynamic
polymerization/depolymerization51, which is required for the
mitosis-related functions (e.g., formation of spindle, binding to
mitochondria and chromosomes). Therefore, DTX blocks cell
division after chromosomes are duplicated, leading to a higher
cell morphological complexity (higher FD). A larger MSE also
suggests that the fractal pattern of the DTX-treated cells is less
well-fit than that of the control group, indicating a more
prominent difference across multiple fractal architectures of
intracellular structures.

Moreover, using similar approach utilized in the previous
section of lung cancer analysis, a heatmap combining all 17-
dimension fractal and ALS features can be generated to portray

Fig. 3 Single-cell biophysical fractometry for drug response analysis of H2170 cells. a Experimental workflow. b Randomly selected phase gradient
images (∇ϕx, top), QPI (bottom) of H2170 cells treated with DTX, control and GCB, respectively. Scalar bar is 5 μm. c Statistical distributions of FD.
d Statistical distributions of FD MSE2. e A fractal phenotypic profile of three different drug treatment (feature values are normalized based on the z-score).
Each row represents a fractal feature, and each column represents a single cell. The scale bar stands for 1000 cells, which were randomly subsampled from
each group. f ROC curves of the linear regression classifiers differing DTX/GCB-treated cells from control group, respectively, which were constructed
from 17-dimension Fourier features. AUROC values are labeled in the legend. g 3D UMAP visualization of the ALS-related phenotypes extracted from
single-cell images of drug-treated H2170 cells. Dispersion among different drug-treated clusters is observable.
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the fractal-related profile of cells in response to the drug
treatment (Fig. 3e). In general, we note that most of the
characteristics of GCB-treated cells have a lower value, but show
an increase in the DTX group, yet both of them differ
considerably from the control group in the presented pattern.
To further quantify the significance of this difference, we again
constructed two linear regression classifiers to distinguish the
drug-treated groups and control group with the 17-dimension
Fourier features, respectively. The corresponding ROC test results
in an AUROC value of over 0.80 to both drugs. Notably, the
discrimination power to GCB treatment reaches 0.911 (Fig. 3f).
Meanwhile, high-dimensional visualization of ALS features via
UMAP also showed that the ALS profiling of cells treated with
different drugs had observable dispersed distribution and formed
disparate clusters (Fig. 3g). All of the findings above demon-
strated that not only can our fractal profiling strategy accurately
identify the changes of cell morphology under drug treatment,
but also provide more granular statistics to investigate the
mechanisms of action of various drugs. Hence, single-cell
biophysical fractometry could be an effective approach for
label-free drug response analysis and screening.

Single-cell fractal profiles recapitulate cell-cycle progression.
We further sought to investigate if and how the label-free single-
cell fractal characteristics are impacted by different cell states in
the cell-cycle progression. In this study, the single-cell QPI/BF
image recording of over 15,000 fixed breast cancer cells (MDA-
MB231) is synchronized with 2-color fluorescence detection
(Fig. 4a, and see Methods). This multimodality allows us to
correlate the label-free fractal properties with the DNA content
quantified by the fluorescence labels, at the single-cell precision,
as the ground truth of cell-cycle progression from G1, S to G2
phase (by the propidium iodide (PI) label which quantifies DNA
content whereas EdU (5-ethynyl-2’-deoxyuridine) indicates the
newly synthesized DNA in S-phase cells) (Fig. 4b). We note that
the variation in the DNA content, and thus the changes in the
biophysical properties (including the fractal characteristics)
reflects the continuous progression of cells, instead of discrete
states of G1, S, and G252. Hence, the “ground truth” given by the
2-color cell-cycle fluorescence markers/labels should cautiously
be treated as the reference, which allows us to interpret the bio-
physical properties (especially FD) based on the established bio-
chemical signatures (e.g., DNA synthesis and replication) and the
related biological events (e.g., cell growth and protein synthesis).

To further harness the strength of information-rich morpho-
logical profiling, we defined an extensive set of multi-faceted
label-free morphological readouts, encompassing the spatial
features (directly computed from QPI and BF following a
hierarchical strategy8), the light-scattering characteristics
(extracted from ALS profile), as well as the fractal profile. We
observed that this label-free profile revealed the overall trajectory
of the cell-cycle progression from G1, S to G2 phase in the UMAP
visualization (Fig. 4c). Importantly, the expression variations of
the key fractal features, such as FD and FD with FW, also
consistently follow the progression (Fig. 4d, e), and show
significant differences across the three phases ( dj j> 0:40 for FD;
dj j> 0:38 for FD with FW) (Fig. 4f, g). FD exhibits a progressive
increase along the G1-S-G2 order (Fig. 4f), which is consistent
with the trend shown by cell size and cell mass (Supplementary
Fig. S2), as the size enlargement and mass accumulation are
common biophysical traits during cell cycle progression. This
suggests a growing complexity and irregularity of intracellular
mass distribution, which could be attributable to DNA replication
and the subsequent protein synthesis process (e.g. microtubule
production) as the cell evolves from the G1, S to G2 phase.

We further assessed the discrimination power to identify the
cell cycle phase of fractal features through ROC analysis in a one-
versus-all mode. While using FD alone is found to be not
sensitive to detect the S-phase, this single fractal feature is on the
other hand effective in identifying the G1 and G2 phases, with the
AUROC of 0.822 and 0.790 for G1 and G2 phase, respectively. As
S phase is a transit state between G1 and G2, it is acceptable that
more features are needed for an accurate identification. Therefore,
we performed the same ROC analysis with a linear regression
classifier integrating all the features extracted from Fourier
domain (17 dimensions), and found an improvement of the
AUROC for all three phases (G1:0.899, S:0.646, G2:0.889),
especially for S phase (Fig. 4h). By performing the same ROC
analysis including all the features extracted from QPI/BF
morphology the ALS features and the fractal profile (Supplemen-
tary Fig. S4), we also quantified the significance of these features
in performing the (one-versus-all) classification of the cell-cycle
phases (Fig. 4i). We observed that, apart from the cell size and cell
mass, which are known to be tightly linked to cell-cycle
progression, multiple fractal and ALS features (e.g., FW width
and FD) extracted from the FTLS analysis are among the top 30
features with the highest averaged AUROC, which implicates the
informativeness of these Fourier-domain features.

Notably, the high rank of FW width could suggest that an
irregular cell mass growth and distribution occur across a
longer length scale (i.e., the scale-invariant property of
fractals). We further visualized the expression pattern of a
total of 101 morphological features (see the circular heatmap in
Fig. 5a) and observed that more than half of the spatial features
extracted by Euclidean geometry (from the bulk, global to local
spatial features) do not show as clear changes as many ALS
and fractal features across the three cell-cycle phases. The
above analyses suggest that the fractal features could offer
the label-free specificity and sensitivity to track the cell-cycle
progression.

We further investigated if and how the common spatial
features extracted by Euclidean geometry can be correlated with
the ALS and fractal features during the cell cycle progression (a
total of 101 dimensions)—gaining additional insight of these
classical morphological features in the context of the fractal
behavior (Fig. 5a–c). We observed that the Fourier features, i.e.,
ALS and fractal features, are in general not strongly correlated
with the (Euclidean) spatial features, except a handful of
12 spatial features (i.e., ~12% of all the features) with the
absolute value of Spearman correlation coefficients >0.6, see the
orange lines in Fig. 5a and the heatmap in Fig. 5b). It indicates
the low redundancy between these two classes of features in
describing the morphological characteristics of cells. We noted
that the fractal and some ALS features are particularly correlated
with the cell (dry) mass and size—all of which are the important
features sensitive to the cell cycle progression, consistent with the
earlier feature ranking analysis (Fig. 4i). We further identified
that the Fourier features are more favorably linked to the local
textures (derived from both the BF and QPI images) (Fig. 5b).
For instance, by ranking the spatial features according to their
correlations with FD (Fig. 5c), we further identified a tight
connection between the changes in FD and dry mass, the local
textures that are related to the statistics of the fiber textures and
structural entropy. Based on this analysis, we thus could enrich
the label-free morphological profile that characterizes the
biophysics of cell cycle progression. Not only the well-known
features of cell and mass varies during the cell cycle, but also the
local textures linked to subcellular mass density (from QPI) and
optical density (from BF) distributions, many of which follow the
fractal behavior. A full view of the correlation analysis can be
referred to Supplementary Fig. S5.
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Discussion
Fractal characteristics of cell morphology has been well
acknowledged for four decades53, and has also been proven
indicative of complex cellular functions, especially disease pro-
gression. However, practices of defining cellular fractal pheno-
types have not been widely adopted in cytometry and cell-based

assay. This gap stems from that the fractal feature, e.g., FD, is a
statistical measure reflecting the morphological structural com-
plexity (especially the self-similar properties) of cellular/sub-
cellular components. Yet, current imaging cell-based assays lack
the throughput to demonstrate the fractal analysis with sufficient
statistical power for delineating cellular heterogeneity, especially

Fig. 4 Fractal analysis of cell cycle progression (MB231 cells). a Randomly selected single-cell images (Phase gradient (∇ϕ) and QPI) and the
synchronized fluorescence detection of the same cells in different cell cycle phases (G1, S, G2): (From left to right), ∇ϕ images, QPI images, fluorescence
profile of PI, and fluorescence profile of EdU. Scale bar= 5 μm. b Synchronized 2-color (EdU versus PI) fluorescence detection in multi-ATOM. DNA
content is quantified by PI intensity, whereas the S-phase cells are recognized by EdU (in log scale). A standard flow cytometry result for cell cycle
determination is shown in Supplementary Fig. S3 for reference. c 3D UMAP visualization of the full set of phenotypes (both Fourier and spatial) showing
the trend of cell cycle progression. d, e The same UMAP plot in c color-coded with the FD value, the FW value, respectively. f, g Violin plots of FD, and FD
with FW, respectively, across the G1, S, and G2 phase. h ROC curves to identify the cell cycle phase in one-versus-all mode with the linear regression
classifier constructed from all the Fourier features. AUROC values are labeled in the legend. i Feature ranking by AUROC mean (Top 30 features).
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at the single-cell precision. In this study, we demonstrated a high-
throughput morphological profiling strategy (~10,000 cells/sec)
that empowers biophysical single-cell fractometry based on a
catalog of label-free single-cell fractal-related features extracted
from an ultrafast QPI flow cytometry platform. Specifically, the
information content of the single-cell fractal profile is enriched by
(1) harnessing the fractal signature of a cell is intimately linked to
its light scattering characteristics, which can readily be read out
by our QPI platform through single-cell FTLS analysis; and (2)
quantifying the statistics of these single-cell fractal features,
thanks to the throughput offered by the QPI platform in this
work. Hence, in addition to the conventional morphological
profiling strategies, single-cell biophysical fractometry offers a
new dimension for parametrizing and thus fingerprinting cell
morphology.

We stress that QPI, in contrast to other optical imaging
modalities, has a unique capability of quantifying dry mass
density distribution of a cell at high sensitivity, that is derived
from the optical path length profile given by QPI (Methods)54.
For instance, in the current multi-ATOM platform, the detection
sensitivity of the optical path length was reported to be as small as
4—8 nm25, which corresponds to the dry mass surface density
resolution of ~0.02–0.04 pg mm−2, taking the refractive incre-
ment of 0.19 ml g−1 for biological cells55. Therefore, biophysical
single-cell fractometry described in this work measures not only
the fractal properties of the cellular morphology with subcellular
resolution, but also the subtle variation in the (dry) mass fractal
characteristics.

We demonstrated that the label-free single-cell fractal profiles
exhibited both biophysical implications and discriminative power
for the unbiased characterization of the histologically different
lung cancer subtypes and drug response effect of lung cancer cell

line, and are highly correlated with the cell-cycle progression.
More importantly, the fractal profile could also be integrated with
the conventional morphological profile based on the spatial fea-
tures extracted using the Euclidean geometry. This enables
extensive feature extraction which has a two-fold benefit: first, it
further augments the profiling dimensionality (and thus poten-
tially better encode relevant biological information). This allows
us to identify feature correlation, based on which further feature
selection (e.g., removing noisy or redundant features56) can be
done for extracting/refining relevant information for downstream
analysis. Second, it permits us to mine the potential correlative
patterns between fractal features and other spatial Euclidean
features. Hence, we could gain better interpretability, and thus
biophysical insights of the morphological features, in the context
of fractal behavior (e.g., the correlation between FD and the local
fiber textures and structural entropy identified in the cell cycle
study) (Fig. 5c). This correlation analysis can also be extended to
other experiments, including the lung cancer subtype identifica-
tion and drug response analysis (Supplementary Fig. S7 and S8).
These analyses generally show the strong relationship between
fractal features and the features associated with dry mass and
local textures. With this combined label-free phenotypic catalog
retrieved by multi-ATOM, the morphological information
embedded in both the spatial domain and Fourier domain can be
both analyzed simultaneously in a comprehensive manner. We
anticipate that this morphological profiling approach could
enable our further understanding in how the light scattering
properties are coupled with the morphological signatures for
single-cell heterogeneity characterization.

We note that the fractometry strategy presented in this work
could also be immediately applicable to the existing QPI mod-
alities, especially because the imaging speed and throughput of

Fig. 5 Analysis of the single-cell phenotypic correlation among the fractal, ALS, and spatial features. a A Circular plot summarizing the mean heatmap
and the correlations among all features in cell-cycle progression. The feature type is labeled by the outmost colored ring (bulk–orange, global–blue,
local–green, fractal–purple, and ALS–pink), and the full labels can be referred to Supplementary Fig. S6. The mean feature values of in different cell cycle
phases are color-coded in the three ring-shaped heatmap. In the inner circle, all the feature pair with an absolute value of Spearman correlation coefficient
over 0.6 are linked together by gray lines, while the Fourier-morphology connections are colored with orange specifically. Thickness of the lines is also
encoded by the absolute value of correlation coefficient. b Spearman correlation heatmap between Fourier-domain and spatial-domain features. Fourier
features are ranked by AUROC test. Spatial-domain features are ranked by the average of correlation coefficient with all Fourier features. The feature labels
are colored according to the feature type specified in a. c Correlation coefficient bar chart of FD ranked by absolute value. Only 30 features with the largest
coefficient magnitude with FD are listed.
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the existing QPI modalities continue to increase to the scale
comparable to those of flow cytometry57. As QPI can generally be
adaptable with the typical fluorescence microscopes29,58, we
anticipate that single-cell fractometry could readily be incorpo-
rated into the current fluorescence-based morphological profiling
strategies which are increasingly promising in many applications,
from drug discovery to basic biology research59–61. Using this
multimodal imaging approach (especially in a high-throughput
configuration62), future studies could aim to systematically
investigate how the biophysical fractal behaviors (i.e., mass fractal
studied in this work) of different subcellular organelles (e.g.
nucleus12, mitochondria18, and cytoskeleton19) are influenced by
chemical and even genetic perturbations. As the state-of-the-art
single-cell computational tools become increasingly versatile in
analyzing not only traditional omics data (e.g., genomics, epige-
netic, transcriptomic, and proteomic etc.) but also cell morpho-
logical data63, we anticipate that the inclusion of fractometry in
morphological profiling could facilitate the discovery of the
connections between multi-omics and cell fractal at single-cell
resolution morphology, (especially how the molecular signatures
dictates the disease-related fractal behaviors)—thus offering a
new dimension for deciphering complex cellular heterogeneity.

Methods
Cell culture. Seven cancer cell lines were authenticated via the Human STR pro-
filing cell authentication service, including three adenocarcinoma cell lines (ADC,
H358 (EGFR WT), HCC827 (EGFR exon 19 del), and H1975 (L858R and
T790M)), two squamous cell carcinoma cell lines (SCC, H520, and H2170) and two
small cell lung cancer cell lines (SCLC, H526, and H69). The breast cancer cell line
used for the cell cycle experiments was MDA-MB231. Leukemia cell lines used in
this work were THP-1 (TIB- 202TM) and Kasumi-1/ACC220 (CRL-2724TM). All
cell lines used in this study were purchased from American Type Culture Col-
lection (ATCC). Leukemia and lung cancer cell lines were cultured in the tissue
culture flasks (surface area of 75 cm2) (TPP) and MB231 in100mm culture dish
(Labserv), which were both placed in a CO2 incubator with 5% CO2 under 37 °C.
The full culture medium was ATCC modified RPMI-1640 (Gibco) supplemented
with 10% fetal bovine serum (FBS) (Gibco) and 1% antibiotic–antimycotic (Gibco).
Depending on cell confluency observed by a standard light microscope, passage or
medium replacement was performed 2–3 times each week.

Drug treatment. Both Docetaxel and Gemcitabine (Abcam) were dissolved to
1 mM stock solution with DMSO under sonification and warming at 37 °C. The
stock solution was then split into 1 mL aliquots and kept at −20 °C for later use
within one month. An ADC cell line, H2170, was seeded in six-well plates at a
seeding density of 105 cells/well, and cultured in a medium with ATCC-modified
RPMI-1640 (Gibco), 10% FBS (Gibco) and 1% antibiotic–antimycotic (Gibco).
After 24-hour incubation, the medium in various wells were replaced with fresh
medium containing targeted concentrations of drugs (IC50) (0 for control, 3.76 nM
for Docetaxel and 7.51 nM for Gemcitabine), which was determined with reference
to the online database “The Genomics of Drug Sensitivity in Cancer”64. The cells
were then incubated at 37 °C, 5% CO2 for 24-hour and harvested afterwards for
multi-ATOM imaging flow cytometry.

Fluorescence labeling for cell-cycle tracking. Click-iT Plus EdU Flow Cytometry
Assay Kits Alexa Fluor 488 and FxCycle PI/RNase Staining Solution were obtained
from Invitrogen to define the ground truth of the cell cycle stages (G1, S, and G2
phases). The MDA-MB231 cell culture was firstly renewed for 8 mL medium mixed
with 8 μL of 10 mM EdU staining solution. After 2-hour incubation, the cells were
harvested by 0.25% Trypsin (Thermo Scientific) and washed by PBS with 1% BSA.
The cells were then brought to protection from light for the following steps. The
centrifuged cells were fixed by 100 μL Click-iT fixative (4% paraformaldehyde in
PBS) and then permeabilized by the permeabilization and wash reagent (sodium
azide) with 15-minute incubation. Next, 500 μL Click-iT Plus reaction cocktail was
added into 100 μL cell suspension for 30 min under room temperature. After
washing with 3 mL Click-iT permeabilization and wash reagent, the cell pellet was
then mixed with 500 μL Click-iT permeabilization and wash reagent and 500 μL
FxCycle PI/RNase staining solution for 30 min at room temperature. Lastly, after
washing away the staining solution, PBS was added to make up a total volume of
7 mL cell suspension for the subsequent imaging experiments.

Microfluidic channel fabrication. The channel was designed for optimization of
inertial focusing to generate an in-focus single-cell stream under fast microfluidic
flow (>2 m/s) and then fabricated by polydimethylsiloxane (PDMS) by soft litho-
graphy technique. Firstly, a layer of photoresist (SU-82025, MicroChem, US) was

coated on a silicon wafer by a spin coater (spinNXG-P1, Apex Instruments Co.,
India), which was soft-baked two times (65 °C for 3 min and 95 °C for 6 min). After
cooling down under room temperature, a computer-aided design (CAD) pattern
was transferred onto the photoresist by a maskless soft lithography machine (SF-
100 XCEL, Intelligent Micro Patterning, LLC, US) through a 4-second exposure
and a two-step post-baking (65 °C for 1 min and 95 °C for 6 min). After photoresist
development with SU-8 developer (MicroChem, US) for 5 min, the wafer was
rinsed and dried for subsequent PDMS mixture pouring, which was mixed with
PDMS precursor (SYLGARD® 184 Silicone Elastomer kit, Dow Corning, US) and
curing agent at a ratio of 10:1. The height control of the imaging section in the
microfluidic chip was performed by placing a custom-designed acrylic block on the
wafer, yielding a channel dimension of 30 μm in height and 60 μm in width. After
the channel curing in an oven at 65 °C for 2 h before demolding, a biopsy punch
(Miltex 33-31 AA, Integra LifeSciences, US) was used to punch two holes for later
tube insertion as the inlet and outlet of the channel. Afterwards, the bonding
between the channel and glass slide was activated by oxygen plasma (PDC-002,
Harrick Plasma, US) and oven baking under 65 °C for 30 min. Lastly, plastic
tubings were inserted into the chip as channel inlet/outlet (BB31695-PE/2, Scien-
tific Commodities, Inc., US).

Multi-ATOM imaging. Multi-ATOM combines the time-stretch imaging
technique65,66 and phase gradient multiplexing method to retrieve complex optical
field information (including the bright-field and quantitative-phase contrasts) of
the cells at high speed in an interferometry-free manner (Fig. 1a). Detailed working
principle and experimental configuration were reported previously8,25,26. In brief, a
wavelength-swept laser source was firstly generated by a home-built all-normal
dispersion (ANDi) laser (centered wavelength: 1064 nm; bandwidth: ~10 nm;
repetition rate: 11 MHz; pulse width= ~12 ps). The laser pulses were temporally
stretched in a single-mode dispersive fiber (group-velocity dispersion (GVD):
1.78 ns/nm), and were then amplified by an ytterbium-doped fiber amplifier
module (output power= 36 dBm with an on–off power gain= 36 dB). The pulsed
beam was subsequently launched to and spatially dispersed by a diffraction grating
(groove density= 1200/mm) into a 1D line-scan beam which was projected
orthogonally onto the cells flowing in the microfluidic channel. This line-scan
beam was transformed back to a single collimated beam after passing through a
double-pass configuration formed by a pair of objective lenses (N.A.= 0.75/0.8).
Afterwards, the beam conveying phase-gradient information of the cell was split
into 4 replicas by a one-to-four de-multiplexer, where each beam profile (Ix

þ ,
Ix

�; Iy
þ , Iy

�) was half-blocked by a knife edge from four different orientations
(left, right, top, and bottom) respectively. Recombining the 4 beams by a four-to-
one fiber-based time-multiplexer, we were able to detect the line-scan phase-gra-
dient information in 4 directions in time sequence at high speed by a single-pixel
photodetector (electrical bandwidth= 12 GHz (Newport, US)). The digitized data
stream was processed by a real-time field programmable gate array (FPGA) based
signal processing system (electrical bandwidth= 2 GHz, sampling rate= 4 GSa/s)
for primary cell detection and image segmentation with a processing throughput of
>10,000 cells/s in real-time. These segmented phase-gradient images of cells were
sent to four data storage nodes (memory capacity >800 GB) through four 10 G
Ethernet links, which were reconstructed to 2D complex-field information fol-
lowing a complex Fourier integration algorithm, detailed elsewhere25 (Fig. 1b, c).

ALS validation using microbeads. The calibration experiment was conducted by
multi-ATOM using polymethyl methacrylate (PMMA) microbeads as a standard
sample, which have homogenous refractive index and normative spherical shape.
Microbeads were pipetted out from the stock solution and then centrifuged at
1000 rpm for 5 mins. After removing the supernatant, microbeads were resus-
pended in 10 mL of 5% BSA solution, followed with 10-min incubation with
sonication at room temperature to saturate any surface coating and avoid
unwanted aggregation. The microbeads were then resuspended in PBS with desired
concentration after centrifugation (1000 rpm, 5 mins). After flowing the bead
sample into multi-ATOM imaging platform, we obtained their FTLS patterns by
Fourier transform, and obtained the theoretical simulation results8 and Mie scat-
tering prediction of ball-shape phase objects with the same radius of bead size
(Fig. 1d).

Fluorescence detection. 2-channel (i.e., 2-color) fluorescence detection was also
synchronized with multi-ATOM, i.e., the bright-field, quantitative-phase contrasts
and fluorescence signal from the same cell can be detected simultaneously. It was
employed to generate the ground truth of the cell-cycle stages for single-cell
fractometry based on multi-ATOM images. When flowing through the imaging
section in the microfluidic channel, the cells were excited by two continuous wave
(CW) lasers (wavelength: 488 nm and 532 nm) simultaneously to generate epi-
fluorescence signals, which were detected by two photomultiplier tubes (PMT) in
the end. Frequency modulation was done (11.8 MHz and 35.4 MHz respectively)
by a multichannel direction digital synthesizer to multiplex the PMT-received
signals. After digital demodulation and low-pass filtering, the two fluorescence
signals of each segmented cell were synchronized with multi-ATOM signal by the
same FPGA configuration.
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Single-cell fractal analysis. The complex field at the image plane of the flowing
cell measured by multi-ATOM is denoted as

E x; y
� � ¼ A x; y

� �
ejϕ x;yð Þ ð1Þ

where A x; y
� �

is amplitude profile and ϕ x; y
� �

is the quantitative phase profile. In

multi-ATOM, the phase gradient along the x-direction ∂ϕ
∂x is first extracted based on

the two raw knife-edged images (cut from left and right orientations): Ix
þ x; y
� �

and Ix
� x; y
� �

, through the relationship:

∂ϕ

∂xs
/ Iþx � I�x

Iþx þ I�x
ð2Þ

the same expression of the phase gradient along the y-direction ∂ϕ
∂y can be

applied to the knife edges in the y-direction, Iy
þ x; y
� �

and Iy
� x; y
� �

. Hence, the

quantitative phase ϕ x; y
� �

was then obtained by applying complex Fourier
integration on the phase gradient images captured in multi-
ATOM∇ϕðx; yÞ ¼ ∂ϕ

∂xs
ðx; yÞ þ i ∂ϕ∂ys ðx; yÞ:

ϕ x; y
� � ¼ CF � Im F�1 NF �F ∇ϕ x; y

� �� �� �� � ð3Þ

where NF ¼
FOV

2πj � k x;yð Þ½ � ; k x; y
� �

≠ 0

0; k x; y
� � ¼ 0

(

where Im is the imaginary part of a complex number; and F�1 is inverse Fourier
transform operator; NF is a normalization factor for quantifying the phase and
avoiding singularity in the integration operation; k x; y

� �
is the 2D wavenumber;

FOV is the 2D field-of-view; CF is the calibration factor for correcting the
systematic phase deviation arise from non-ideal system setting8. On the other hand,
the amplitude image of the cell (Aðx; yÞ) is the sum of two images obtained from
opposite knife edges normalized by the background (i.e., B, regions without
samples).

A x; y
� � ¼ 1

B
Iþx þ I�x
� � ¼ 1

B
Iþy þ I�y

	 

: ð4Þ

Subsequently, the complex field at the image plane is then numerically
propagated to the far field using the Fourier transform operation—effectively

yielding the (far-field) scattered light-field pattern S kx; ky
	 


¼ F ½E x; y
� ��27, from

which the fractal properties of cell can be measured. We then convert the scattered
light pattern into an angular light scattering (ALS) profile S q

� �
in which scattered

light intensity is averaged over rings of constant wave vector q ¼ 4π=λsinðθ=2Þ,
where θ is the polar scattering angle27.

To quantify the fractal characteristics from the ALS, we also define a density-
density correlation function in the real space, which is related to the ALS intensity
via the Fourier transform relationship as the refractive index variation arises from
density fluctuation ρðrÞ40:

F S ~θ
	 
��� ���2� �

¼ S~r 0ð ÞS� ~r 0 þ rθ̂
	 
D E

/ ρ~r 0ð Þρ� ~r 0 þ rθ̂
	 
D E

� CρðrÞ ð5Þ

where ρðrÞ means the density at point r, and thus Cρ(r) is the density correlation of
an arbitary pair of occupied particles with a correlation distance of r67. As It is
known that the mass distribution of a fractal object can be expressed as9, m(r) ∝
rFD, where m(r) is the mass within a sphere of radius r. It can be also linked to Cρ(r)
as67:

m r0ð Þ /
Z r0

0
CρðrÞd3r ð6Þ

which indicates Cρ rð Þ / rFD�3. Hence, the Fourier transform of an ALS profile will

obey an inverse power law relationship, i.e., F S θð Þ
�� ��2h i

/ r�α , where α is the

exponent, and FD can be expressed as:

FD ¼ 3� α ð7Þ

Therefore, by fitting the slope α of the log-scaled plot of F S ~θ
	 
��� ���2� �

versus the

correlation distance r we could quantify the FD, i.e., 3� α (Fig. 1e). Besides, FW is
defined as the interval of correlation distance with the most prominent downwards
slope in CρðrÞ (See the equation stated in Supplementary Table S1). Here the
criteria of the FW definition include: (1) the fractal analysis should fall well within
the image resolution achieved in our system; (2) the short and long correlation
distance segments are excluded. These are the regions where the downwards slope
in the correlation curve is smaller than the slope of overall fitting—which
indicating that the linearity is not significant. We further used “multiple segments”
of FW to extract the FD value in this work, including both overall fitting (FD) and
fitting within fractal window (FD with FW), in order to more comprehensively
characterize the cellular fractality in different ways (Supplementary Table S1).

Statistics and reproducibility. Feature extraction and downstream statistical
analysis was both performed with MATLAB (MathWorks, USA). Large sample size

was obtained to guarantee reproducibility, which was 38,001 for cancer cell line
subtype identification, 10,773 for drug response analysis, and 15,884 for cell cycle
tracking, respectively. The statistical significance of typical features was visualized
by violin plot68 and quantified by effect size47. The data distribution of feature
profile was visualized by UMAP48 and quantified by ROC curve.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
A test dataset used in this paper can be accessed on the following link for your reference:
https://doi.org/10.5281/zenodo.7787607. Due to the large size of the raw image data, the
complete data supporting the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
Customized MATLAB code relevant to this paper can be accessed on the following link
for your reference: https://doi.org/10.5281/zenodo.7787607.
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