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Accuracy of haplotype estimation and whole
genome imputation affects complex trait
analyses in complex biobanks
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Sample recruitment for research consortia, biobanks, and personal genomics companies span

years, necessitating genotyping in batches, using different technologies. As marker content on

genotyping arrays varies, integrating such datasets is non-trivial and its impact on haplotype

estimation (phasing) and whole genome imputation, necessary steps for complex trait analysis,

remains under-evaluated. Using the iPSYCH dataset, comprising 130,438 individuals, genotyped

in two stages, on different arrays, we evaluated phasing and imputation performance across

multiple phasing methods and data integration protocols. While phasing accuracy varied by

choice ofmethod and data integration protocol, imputation accuracy variedmostly between data

integration protocols. We demonstrate an attenuation in imputation accuracy within samples of

non-European origin, highlighting challenges to studying complex traits in diverse populations.

Finally, imputation errors can bias association tests, reduce predictive utility of polygenic scores.

Carefully optimized data integration strategies enhance accuracy and replicability of complex

trait analyses in complex biobanks.
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A recent appreciation for the polygenic nature of complex
traits, with several small-effect risk loci scattered through-
out the genome has revealed that genome-wide association

studies (GWAS)1,2 often employ hundreds of thousands of parti-
cipants to identify trait-associated loci. Due to their cost-effective
nature, genotyping arrays, that ascertain between 200,000 to 2
million single nucleotide polymorphisms (SNPs) in the human
genome, have become the preferred technology for generating
genetic data at such sample sizes. A key component of these studies
is reference-based whole-genome imputation (imputation), which
expands the number of markers that can be studied3, in a two-step
process. First, a collection of genotyped SNPs are organized into
haplotype scaffolds (phased), relying on co-inheritance patterns of
SNPs (i.e., linkage disequilibrium, LD). Known, untyped variants
are then probabilistically imputed by matching these sparse scaf-
folds to more dense haplotypes from whole genome sequenced
reference individuals4. This process results in a much larger pool of
variants, thereby increasing GWAS power5. Importantly, it helps
build a common set of SNPs for meta-analysis across cohorts
genotyped on different arrays6, and ensures sufficient overlap of
SNPs between reference and target datasets for polygenic scoring
(PGS)7. Various computational methods and reference datasets
have been designed for this purpose. Research cohorts beginning
with different marker sets, in diverse batches are often combined,
even within a single population study.

State-of-the-art phasing methods, such as BEAGLE58,
SHAPEIT49, and EAGLE210 use hidden markov model approa-
ches built on the Li and Stephens model11. This model assumes
that an individual’s genome can be constructed as a mosaic of
segments from haplotypes observed in the reference data or the
study population, while accounting for additional factors such as
recombination and de novo mutation rates. Current phasing
methods differ in their computational approximations and data
structures used for selecting the most informative haplotypes.
Each phasing method further accepts user-defined parameters to
choose the number of informative haplotypes, with a trade-off
between accuracy, run times, and memory usage. While phasing
methods have been improved over the years to scale computa-
tionally with large datasets such as the UK biobank12, bench-
marking is often performed in subsets of the 1000 genomes
project13, UK biobank, genome in a bottle dataset14, or the GERA
cohort15. To the best of our knowledge, the robustness of these
methods has not been tested on input datasets with varying SNP
density, target sample sizes, and missingness that can arise when
integrating data generated on different genotyping platforms. It is
important to empirically characterize the accuracy of phasing and
imputation in such scenarios so that researchers can make
informed choices when designing bioinformatics workflows to
construct next-generation biobanks.

The predominant approach used by research consortia for
analyzing samples genotyped on multiple arrays has been to phase
and impute them separately, prior to meta-analyzing the results for
GWAS16,17. However, the accuracy of phasing has been demon-
strated to increase with increased sample sizes of reference and
target datasets18. Moreover, for samples generated from recent
population-scale biobanks (e.g., UK biobank12, iPSYCH19), the
number of study individuals is often much greater than the largest
available haplotype reference. Haplotype sharing among study
individuals and geographical variation in haplotype frequency
imply these study haplotypes are as informative, if not more than
published references for phasing20. Hence, there is intuitive rea-
soning to pool together as many samples as possible for phasing. In
the UK Biobank study, where 500,000 participants were genotyped
in 33 batches using two genotyping arrays, it was possible to phase
and impute the entire study population together, leveraging
the unprecedented sample size because the arrays used, the UK

Biobank Axiom array and the UK BiLEVE array, were closely
matched (95% marker overlap). However, challenges arise in sce-
narios where genotyping involves different arrays with low marker
overlap and there is currently insufficient guiding research.

Earlier studies on integrating cohorts genotyped on different
arrays were on a much smaller scale, used earlier generations of
methods, and focused on less diverse cohorts. Sinnott et al.21

compared imputed allele frequencies in two groups of healthy
European ancestry controls, genotyped on different arrays with only
~30% overlap. They observed a substantial type-I error rate, even at
genome-wide significance, due to associations with the genotyping
array. Retaining only the set of SNPs imputed at the highest quality
reduced, but did not eliminate, these errors. Uh et al.22 combined
two datasets imputed from arrays with 60,000 overlapping markers
into a union data set with high levels of missingness. GWAS across
all good-quality imputed markers showed an inflation in test sta-
tistics that was higher than when restricting to the markers geno-
typed on both arrays or when only including subjects genotyped on
one array. The inflation was reduced when extreme quality control
(QC) was applied (r2 quality metric >0.98). Johnson et al.23 com-
pared two approaches for integrating cases and controls genotyped
on different arrays. They observed that imputing from the union of
SNPs across arrays led to 0.2% of SNPs showing associations to
genotyping arrays, while imputing from the intersection led to lower
imputation accuracy, albeit without the same bias. These previous
studies highlight challenges associated with integrating genotype
data, including the important notion of a potential accuracy/bias
trade-off, but do not provide a consensus path forward.

Pimental et al.24 studied the biases introduced by imputation in
the context of estimating direct genomic values in livestock, ana-
logous to PGS in human genetics. They observed a bias in imputed
genotypes towards the more frequent (major) allele in the reference
panel that caused estimated genomic values to be shrunk towards
the sample mean. This bias was more evident in traits with high
heritability and when genomic values were estimated using impu-
tation from less dense haplotypes. More recently, Chen et al.25

studied the impact of different combinations of phasing and
imputation methods on PGS and demonstrated that while PGS
differ at an individual level, when computed using imputed geno-
types rather than gold standard whole genome sequencing, the
variation at cohort level is low, resulting in a less than 5 percentile
change in individual PGS rank within the cohort. The impact
of imputation on PGS in the context of data integration across
cohorts has otherwise remained underexplored and given the
attention PGS have recently received26–29, exploring these concepts
in modern, population-scale, human complex trait genetics appli-
cations is critical.

This study uses the Lundbeck foundation initiative for inte-
grative psychiatric research (iPSYCH) case-cohort dataset with an
initial 81,330 subjects genotyped on the Infinium Psych Chip v1.0
(Illumina, San Diego, CA USA) and an additional 49,108 subjects
genotyped on the Illumina Global Screening Array v2.0 (Illumina,
San Diego, CA USA) to evaluate four realistic protocols (Fig. 1)
for data integration. We compare the phasing accuracy using
SHAPEIT4.1.2, EAGLE2.4.1, BEAGLE5, and a consensus
approach in truth sets derived from 124 parent-offspring trios
that were genotyped on both arrays. To compare the resulting
imputation quality, we randomly masked 10,000 SNPs prior to
phasing and included 10 whole genome sequenced samples from
the Personal Genomes Project—UK cohort30 (Supplementary
Note 1) down-sampled to the SNPs in each cohort. Imputed
genotypes were then compared to these truth sets to assess the
loss of information in imputed data. It is known that current
haplotype references are skewed towards individuals of European
ancestry, hence we utilized the diverse ancestry composition of
iPSYCH (Supplementary Table 1) to assess the quality of phasing
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and imputation in non-European and admixed individuals.
Finally, using a simulated quantitative trait, we explore the impact
of phasing and imputations across data integration scenarios on
GWAS and PGS.

Results
Phasing accuracy. Phasing accuracy was measured using Switch
Error Rates (SER, Methods) with three methods, two-parameter
settings each, and a consensus set across four data integration
protocols (Fig. 2a, Supplementary Data 1). Our results show that
phasing accuracy depends on the data integration protocol,
phasing methods and associated parameters, target sample size,
genotyped SNP density in the target, rate, and structure of gen-
otype missingness. In general, the two-stage protocol, which
leverages the largest possible sample size and density of SNPs,
with no missingness, shows consistently high accuracy across all
phasing methods (SER= 0.17–0.55%). The intersection protocol,
which also leverages the largest sample size, albeit with lowest
SNP density, proves the least accurate (SER= 0.38–1.04%). The
ranking of the protocols was generally consistent across methods,
except for the union, which achieved the lowest overall SER with
BEAGLE5 at parameter value, phase-states= 560. The union was
also the worst-performing protocol when taking consensus hap-
lotypes across all three methods (SER= 0.61% at default para-
meters), suggesting the genotype missingness introduced by this
protocol causes systematic phasing errors that are reproduced
across tools.

In protocols involving little to no genotype missingness (i.e.,
not Union), BEAGLE5 and SHAPEIT4.1.2 show similar accuracy,
outperforming EAGLE2.4.1 across integration methods and
parameters. The union was again a point of departure from the
trends, with BEAGLE5 performing better (SER= 0.17%) on the

union and SHAPEIT4.1.2 performing better on the two-stage
(SER= 0.17%). This implicates genotype missingness for phasing
performance, suggesting that BEAGLE5 handles this more
robustly than SHAPEIT4.1.2. When considering the two-stage
protocol, which we hypothesized could mitigate initial missing
genotypes, SHAPEIT4.1.2 performed similarly to BEAGLE5 on
the union (and better than on the two-stage), suggesting, modulo
initial missingness, SHAPEIT4.1.2 may have at least as good a
phasing algorithm as BEAGLE5.

Comparing the phasing accuracy across chromosomes within
each method and data integration protocol reveals that phasing
accuracy follows the number of SNPs per centimorgan in the target
dataset, with denser chromosomes showing lower SER (Supple-
mentary Figure 1, Supplementary Data 2). We also observe that
EAGLE2.4.1 and BEAGLE5 produce more accurate estimates in
Cohort 2012 where the sample size is higher and SNP density is
sparser whereas SHAPEIT4.1.2 produces more accurate estimates
in Cohort 2015i where the SNP density is higher and the target
sample size is comparatively smaller. As mentioned above, the
worse performance of SHAPEIT4.1.2 and EAGLE2.4.1 on the
union as opposed to the two-stage highlight the sensitivity to initial
missing genotypes. These results show the necessity for bench-
marking the robustness of phasing methods in less-than-ideal
conditions, specific to study cohorts, prior to deploying them in
such untested scenarios.

Imputation accuracy. The accuracy of imputations derived from
each set of haplotype scaffolds (i.e., from each tool, parameters,
and data integration protocol set) are presented in Fig. 2b and
Supplementary Data 3. Variability in imputation accuracy stems
more from the choice of data integration protocol, rather than the
choice of phasing method or parameters. Since all methods

Fig. 1 The four data integration protocols evaluated in the study. a Shows the separate protocol where the cohorts genotyped on each array (Infinium
psych chip v1.0 in red fill, Illumina global screening array 2.0 in blue fill) are phased and imputed separately. b Shows the intersection protocol where the
two cohorts are merged to include only SNPs in common to both genotyping arrays (highlighted in green fill) prior to phasing and imputation. c Shows the
union protocol where the two cohorts are merged to include SNPs genotyped on either array (highlighted in green fill) and the resulting dataset with
missingness is phased and imputed. d Shows the two-stage protocol where the haplotypes obtained from the separate protocol are initially imputed to the
markers in the union protocol (highlighted in green fill), prior to a second stage of phasing before the cohorts are split back to the original sets of genotyped
SNPs after which imputation to the full reference panel is performed.
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process data in variant call format (VCF), this renders the choice
of phasing method less relevant if the end goal is to attain the
most accurate missing data imputation. The highest imputation
accuracy is obtained when the cohorts are phased separately, with
the r2 between true masked genotypes and imputed dosages
varying between 0.43 at rare (MAF < 0.005) and 0.95 at more
common (0.2 <MAF ≤ 0.5) SNPs. This trend is consistent across
haplotypes generated by all methods. The added bioinformatics
effort aimed at enhancing sample size without missingness with the
two-stage protocol did not yield a higher imputation accuracy
than the separate protocol. At the minor allele frequency bin,
0.01 <MAF ≤ 0.05, using haplotypes phased by BEAGLE5, both
approaches show identical accuracy (r2= 0.88) (Supplementary
Data 3). Imputation accuracy is degraded when using the inter-
section protocol with an attenuation between 8.4–13.6% at com-
mon and 13.9–18.6% at rare SNPs as compared to the separate
protocol, highlighting the drop in phasing accuracy at low target
SNP density carrying over to imputation performance.

Haplotypes estimated by SHAPEIT4.1.2 in the union protocol
are an outlier and resulting imputations are of noticeably poorer
quality compared to haplotypes obtained from other methods.
Phasing in the presence of missingness is itself a two-step process,
where each phasing method makes a rough imputation of missing
data prior to constructing haplotypes. If this data is not overwritten
during imputation, the pre-phasing imputation algorithm imple-
mented by SHAPEIT4.1.2 could be the reason for problems with
the union protocol. This becomes more credible when considering
the imputation accuracy obtained from the two-stage protocol
using SHAPEIT4.1.2, where the attenuation is mitigated. The
pattern of results described above is replicated in the PGP-UK
samples (Supplementary Figure 2a, b).

A comparison of imputation accuracies between Cohort2012
and Cohort2015i within the separate protocol using the PGP-UK
samples (Supplementary Figure 2c, Supplementary Data 4) shows
higher imputation accuracy in Cohort2015i, imputed from a higher
SNP density as compared to Cohort2012 with a larger sample size
with a difference as high as 6.7% at MAF 2 ð0:1; 0:05�. This finding
is important because it emphasizes a trade-off between sample size
and SNP density and, with modern sample sizes, perhaps SNP
density should be emphasized. Enhanced parameters that showed
higher phasing accuracy do not seem to substantially increase
imputation accuracy (Supplementary Figures 2a, b). Taken
together, these results show that imputation performance suffers
when merging cohorts genotyped on different arrays prior to
phasing, and choice of phasing method is less relevant than the data
integration protocol.

Previous studies have suggested lower variability in imputation
accuracy as a function of imputation (versus phasing) tools31, a
result we confirmed in limited comparison of BEAGLE5.18,
Minimac432, and Impute531 is presented in Supplementary Note 2,
Supplementary Figure 3 and Supplementary Data 5.

Imputation accuracy in non-European and admixed samples. It
is known that GWAS results and subsequent PGS constructed from
them do not generalize well across populations33. This is typically
attributed to inaccuracies in the estimation of SNP effect sizes (i.e.,
per SNP beta) due, e.g., to variable LD across populations34.
However, if non-European haplotypes are underrepresented in
either reference or target datasets, imputed genotypes in these
individuals may be of lower quality, and errors in the genotypes
themselves could be contributing to the generalization problems of
GWAS. Imputation accuracy was estimated in non-European and
admixed iPSYCH samples, grouped according to the birthplace of
the proband’s parents (Fig. 3, Supplementary Data 6). Within the
separate protocol, Individuals born to non-Scandinavian European

Fig. 2 Phasing and imputation accuracy vary across state-of-the-art tools
and data integration protocols. a Shows the accuracy in switch error rate
percentage of phasing across the three tools at two parameter sets each
and a consensus approach taking the majority haplotype at each locus from
the three tools at two parameter sets each across all four data integration
protocols (cohort 2012 within the separate protocol in red bars, cohort
2015i within the separate protocol in blue bars, intersection protocol in
green bars, two-stage protocol in black bars and union protocol in gray
bars). Default parameters are SHAPEIT4.1.2 pbwt-depth= 4, BEAGLE5
phase-states= 280, EAGLE2.4.1 Kpbwt= 10000. High-Resolution
parameters are SHAPEIT4.1.2 pbwt-depth= 8, BEAGLE5 phase-
states= 560, EAGLE2.4.1 Kpbwt= 20,000. The switch error rates were
computed within 124 trio offspring by comparing the computationally
assigned phase to the mendelian transmission from known parental
genotypes at the heterozygous loci common to both genotyping arrays.
b Shows the imputation accuracy (r2) within each data integration protocol
(intersection protocol denoted by circles, separate protocol denoted by
triangles, two-stage protocol denoted by squares, union protocol denoted
by plus symbols), and choice of phasing tool (Beagle5 in red, Eagle2.4.1 in
green, Shapeit4.1.2 in black, consensus across all three tools in blue) at
different minor allele frequency bins across the 10,000 SNPs common to
both genotyping arrays that were masked prior to phasing.
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parents had lower imputation accuracy (7.07–12.58%) than those
with both parents born in Denmark. These effects were larger for
individuals with both parents born in Asia (11.1–11.2%), Africa
(17.37–17.48%), or Middle East (11.2–17.7%). The attenuation in
imputation accuracy within admixed individuals is comparatively
lower, varying between 4.47 and 8.56% as compared to individuals
with both parents born in Denmark. These results, as expected,
suggest that imputation accuracy varies by ancestry and introduces
a systematic loss of information in the genotypes of non-Europeans
and this effect is more pronounced when employing less optimal
data integration protocols (Supplementary Figure 4, Supplemen-
tary Data 6).

Impact on PGS. Imputations can contribute to sub-optimal
predictive performance of PGS by introducing measurement
error in the genotypes used in the discovery GWAS as well as in
the target genotypes used for scoring. To empirically compare
attenuation in predictive performance due to imputation errors at
each stage, we utilized the independent sample ascertainment of
the two iPSYCH cohorts, employing iPSYCH2012 as the dis-
covery cohort while predicting in iPSYCH2015i and vice-versa.
To estimate the impact of imputation errors in discovery GWAS,
we performed a GWAS using PLINK with a simulated continuous
phenotype as the outcome, regressed against the imputed dosages
at the 10,000 masked SNPs in one iPSYCH cohort, and calculated

PGS by summing the product of the obtained SNP effect sizes
with true genotypes at the 10,000 masked loci in the other
iPSYCH cohort. To estimate the impact of imputation errors in
target genotypes, we performed GWAS using true genotypes in
one iPSYCH cohort, while calculating PGS in the other cohort
as the running sum of the product of per SNP effect sizes
with imputed dosages at the 10,000 masked SNPs (Methods).
The genomic control coefficients, a measure of the power of the
discovery GWAS arising from each data integration protocol are
presented in Supplementary Note 3, Supplementary Table 2 and
Supplementary Figure 5.

The results of the PGS analysis (Fig. 4a; Supplementary
Data 7), suggest that the impact of imputation errors is more
severe when present in target genotypes used for scoring than
when they are present in the genotypes used for discovery GWAS.
When using imputed dosages from iPSYCH2012 in a discovery
GWAS and scoring using true genotypes in iPSYCH2015i, the
only noticeable attenuation in the variance explained by PGS
occurs in the intersection protocol, diminishing to 0.26 as
compared to 0.27 in the ideal scenario, where both GWAS and
scoring use true genotypes. On the other hand, when the
discovery GWAS used true genotypes and scoring was done using
imputed dosages, there is an attenuation in variance explained by
PGS across all four imputation protocols, increasing in severity
from the separate protocol (r2= 0.26) to the intersection protocol

Fig. 3 The accuracy of imputation varies extensively by parental birthplace. a Shows the imputation accuracy (r2) in iPSYCH samples grouped by
parental birthplace as ascertained from the Danish civil registers at different minor allele frequency bins within the 10,000 SNPs common to both
genotyping arrays, masked prior to phasing. (Both parents were born in Africa: Red, Asia: Blue, Denmark: Dark Green, Scandinavia non-Danish: Light Green,
Europe non-Danish or Scandinavian: Gray, Middle East: Yellow). b Shows the imputation accuracy (r2) in admixed samples where at least one parent was
born in Denmark (Non-Danish parent born in Africa: Maroon, Asia: Blue, Australia: Fluorescent Green, Europe non-Danish or Scandinavian: Brown,
Greenland: Black, Middle East: Orange, North America: Cyan, South America: Pink, Scandinavia non-Danish: Lavender, Unknown: Purple). All imputations
were performed using a separate protocol, haplotype estimation was performed using BEAGLE5 phase-states= 560, imputations were performed using
BEAGLE5.1 with the HRCv1.1 as the reference.
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(r2= 0.23). This demonstration of reduced predictive capability
of PGS in presence of imputed genotypes is in line with animal
breeding studies24 and highlights an additional challenge when
projecting PGS across populations.

Another application of PGS is to prioritize individuals in top
quantiles of a PGS distribution for monitoring and intervention. To
investigate the effect of imputation accuracy on such an application,
individuals in iPSYCH2015i were ranked into percentiles for the
simulated continuous trait based on a PGS calculated using SNP
effects with iPSYCH2012 as reference GWAS, true genotypes, and
imputed dosages across all four data integration protocols, in turn
accounting for the genetic dose. The results (Fig. 4b, Supplementary
Data 8) are consistent with prior work25 showing a discrepancy in
individual rank that is higher in the middle percentiles and lower in
the more actionable top percentiles of the PGS distribution. The
discordance in individuals in the top percentiles between PGS
constructed by true genotypes and imputed dosages is, however,
much higher than the 5% previously reported. The overlap in the
proportion of individuals ranked in the top 5 percentiles of PGS
using true genotypes and imputed dosages is highest in both cohorts
when employing either the separate (85%) or two-stage (86%)
protocol and lowest when using the intersection (75%) protocol.
Our results suggest that using imputed genotypes for the discovery
GWAS stage of constructing a PGS might be more robust than
when incorporating imputed genotypes into the scoring stage.
The attenuation in predictive performance, and discordance of
individuals in the actionable percentiles of PGS follow the quality
of imputed dosages obtained from each data integration protocol,
showcasing the importance of optimal data integration for genetic

prediction and may have special relevance for cross-ancestry PGS
applications, where errors due to imputation are systematically
larger.

Batch effects. Association studies were performed comparing
genotypes and imputed dosages at the masked SNPs from all four
data integration protocols in unrelated controls of iPSYCH2012
and 2015i of a homogenous genetic origin with the genotyping
array as the outcome (see Methods). The resulting genomic infla-
tion factor in test statistics across different thresholds for imputa-
tion quality is shown in Fig. 5a, Supplementary Data 9. The number
of SNPs used in the association tests at each imputation quality
threshold is shown in Fig. 5b, Supplementary Data 9.

The baseline for the inflation observed by comparing the
genotyped SNPs in controls is ƛgc= 1.05. No inflation is observed
when comparing SNPs imputed in both iPSYCH2012 and
iPSYCH2015i using the intersection protocol, while test statistics
are most inflated when using the union protocol. Using the separate
and two-stage protocols, inflation is reduced at high thresholds of
BEAGLE imputation r2, but not eliminated. For example, in the
separate protocol, with SNP imputation quality filter, DR2 >= 0.9,
the ƛgc= 1.13 when comparing SNPs genotyped in iPSYCH2012 to
SNPs imputed in iPSYCH2015i, and ƛgc= 1.18 when comparing
SNPs imputed in iPSYCH2012 to SNPs genotyped in iPSYCH2015i
and ƛgc= 1.1 when comparing SNPs imputed in both. At this
threshold, 22% of the imputed SNPs are excluded. This analysis
suggests that imputations performed from different genotyped
backbones, which result in genotyped SNPs being compared to

Fig. 4 The performance of polygenic scores is attenuated when using imputed data, which affects both population-level measures such as variance
explained in a simulated phenotype, and in individual-level metrics, such as rank concordance when compared to true genotypes. a Shows the
attenuation in variance explained by a PGS when an error introduced by using imputed dosages resides in either the discovery stage or in scoring. The
green bars are the reference, where true genotypes were used for both discovery and scoring. Red bars indicate that imputed dosages were used in
discovery, while blue bars indicate that imputed dosages were used for scoring. b Shows the rank concordance between individuals in iPSYCH2015i ranked
according to their PGS calculated using true genotypes on X axis and imputed dosages from each data integration protocol, across the four figure panels on
the Y axis. The rank concordance with the truth set is higher (Red: Low, Blue: High in heatmap gradient) when employing the separate or two-stage
protocols as compared to union or intersection protocols.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-04477-y

6 COMMUNICATIONS BIOLOGY |           (2023) 6:101 | https://doi.org/10.1038/s42003-023-04477-y | www.nature.com/commsbio

www.nature.com/commsbio


imputed SNPs, will contain batch artifacts that can be difficult to
remove by standard SNP exclusion, which might also be
complicated, due to a lack of robustness of imputation quality

metrics under different data integration protocols (Supplementary
Note 4, Supplementary Figure 6).

Discussion
As the cost of genotyping drops, the burden of complex trait
analysis is moving away from genotyping requisite participants and
towards storage, computational requirements, and the bioinfor-
matics expertise to integrate and analyze such datasets35. Phasing
and imputation have somewhat remained a black box in bioin-
formatics pipelines with researchers having the opportunity to avail
themselves of services like the Michigan imputation server32. to
reduce the computational burden of data preparation. However,
privacy stipulations governing datasets generated through national
biobanks might prohibit the use of such services. The bench-
marking work presented in this study stresses the importance of
making an educated choice of data integration protocols that could
introduce a trade-off among peculiarities such as a sparse marker
set, small sample size, high missingness in the input dataset, or the
potential of batch artifacts.

The benchmarking of imputation accuracy presented in this
study replicates previous findings23, suggesting imputation from
the intersection of markers when incorporating samples geno-
typed on multiple arrays leads to a loss of accuracy while
imputation from the union of the markers leads to spurious
associations with genotyping arrays23. Consistent with our
hypothesis that the phasing accuracy could be improved by
increasing the target sample size by jointly analyzing the two
cohorts (by either the union or two-stage protocol) we did
observe a drop in SER. However, these improvements did not
result in improvements in imputation accuracy, likely reflecting
that the phasing tools were not developed with this type of sys-
tematic missingness in mind. Until software that can leverage this
apparent potential for improvement in phasing accuracy are
available, our results suggest that phasing and imputing separately
results in equivalent or better imputation accuracy. The higher
phasing and imputation accuracies, PGS performance in the sub-
cohort of iPSYCH individuals genotyped using the Illumina
Global Screening Array, enriched with more common markers as
compared to the sub-cohort imputed using the Infinium Psych
Array, enriched for rare markers with prior associations to psy-
chiatric phenotypes, suggests that when faced with a choice, it
might be more beneficial to prioritize genotyping arrays with
more common markers that overlap more with the content of
haplotype reference panels. Analysis pipelines and methods
focusing on common disease research, rely on established high-
quality SNP sets, such as HapMap3, and use thresholds to exclude
rare markers during QC, effectively rendering them useless for
such applications.

Imputed data will contain non-random errors, especially in
presence of systematic missingness, as can be the case when
genotyping of samples is performed in batches and over time.
Therefore, it is critical to consider the sensitivity of any analysis
performed on these datasets. Technical artifacts in the genotype
generation process are one of the sources of poor performance
of PGS across cohorts27. While the attenuation introduced in
PGS performance and the discordance of individual rank in
different percentiles of the risk distribution when PGS are cal-
culated using imputed data as compared to genotyped SNPs has
received attention in animal breeding studies, this remains
under-researched in human populations. As one of the clinically
informative uses of PGS lies in selecting a subset of individuals
in the actionable risk percentiles of a PGS distribution26,27,
errors introduced during phasing and imputation could have a
sizable impact on genetic risk profiling—especially when data is
acquired over time and according to different protocols. The

Fig. 5 Inflation of test statistics shows type-I errors in association
studies with imputed data across the four data integration protocols as
compared to genotyped variants. a Shows the inflation in test statistics
represented using lambda genomic control when performing an association
test at each of the 10,000 SNPs common to both genotyping arrays masked
prior to phasing. Controls of a homogeneous genetic origin were compared
between the iPSYCH2012 and iPSYCH2015i cohorts with the genotyping array
as the outcome at different thresholds of post-imputation quality control across
the four different data integration protocols (Array genotypes: black bars,
intersection protocol: red bars, separate protocol: blue bars, union protocol:
yellow bars, two-stage protocol: green bars). The dotted horizontal black line
indicates the baseline ƛgc when the association test was performed using true
genotypes from both arrays. Haplotypes were phased using BEAGLE5 phase-
states= 560, imputations were done using BEAGLE5.1 with the HRCv1.1 as the
reference. b Shows the number of SNPs left after each threshold of post-
imputation quality control across the four data integration protocols.
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presence of spurious associations with genotyping arrays when
comparing allele frequencies of genotypes and imputed dosages
between cohorts as demonstrated in this study shows the need
to pick stringent QC thresholds for GWAS. As stringent fil-
tering might reduce the power due to exclusion of a majority of
imputed SNPs, other approaches such as including the geno-
typing array as a covariate in regression models or as a fixed
effect in linear mixed models need to be further investigated.

Haplotype reference panels employed for phasing and
imputation are skewed towards Europeans and the evaluation of
imputation accuracy within iPSYCH individuals, grouped by
parental birthplace shows differentially worse accuracy in non-
Europeans, stressing the need for reference panels with a more
genetically diverse catalog of haplotypes, if genotyping arrays
and imputation are to be used in precision medicine initiatives
in a fair and equitable manner33,34. While considerable atten-
tion has been paid to the lack of PGS portability between
populations due to less informative SNP effects, less attention
has been paid to imputation quality in non-European popula-
tions, which introduces an additional source of error, not only
in PGS but also in GWAS within these populations. While our
comparisons held the reference population constant to the
largest set of haplotypes that are currently publicly available,
testing the imputation performance with varying references
would also be informative. There has been demonstrable
improvement in imputation accuracy for individuals of His-
panic/Latin and African descent using the NHLBI Trans-Omics
for Precision Medicine whole genome sequenced reference
panel36, but it is currently only available through an imputation
server, rendering its usage prohibitive for studies with data
privacy stipulations.

It is important to acknowledge caveats associated with this
study, that it studies the outcomes when the chosen genotyping
arrays are very dissimilar, and the two cohorts being studied do
not differ by an order of magnitude. Therefore, there can exist
scenarios, where a data integration protocol such as union or two-
stage might prove necessary to enhance the number of infor-
mative study haplotypes if one of the two cohorts is much smaller
than the other. Similarly, if the overlap of SNPs is a magnitude
higher, it might prove beneficial to prioritize the dramatic
reduction in batch effects and simplicity of an intersection pro-
tocol. Such empirical comparisons can only be made by iterating
across sample sizes and marker densities, across cohorts, in a
more broadly orchestrated study.

In conclusion, this study demonstrates four different ways of
integrating data genotyped on multiple arrays with sparse marker
overlap. Care should be applied when integrating datasets and
building biobanks for precision medicine initiatives, as improper
treatment can hurt PGS performance, introduce batch artifacts,
and produce systematically lower-quality data in non-European
samples.

Methods
Data. iPSYCH2012 is a case-cohort design nested within 1,472,762 individuals
born in Denmark between 01-05-1981 and 31-12-2005, with a known mother, alive
and residing in Denmark at the end of the first year after birth. Out of 86,189
individuals chosen for genotyping, 57,377 are cases with one or more mental
disorders among schizophrenia, autism, attention-deficit/hyperactivity disorder
(ADHD), and affective disorder. The cohort is a random sample of 30,000 indi-
viduals representative of the national population of Denmark born during the same
time period. Genotyping was performed at The Broad Institute, Boston MA, USA
with the Infinium Psych Chip v1.0 (Illumina, San Diego CA, USA), using DNA
extracted from dried blood spots, obtained from the Danish neonatal screening
biobank37. Further details on the ascertainment and data generation process of
iPSYCH2012 have previously been described19. iPSYCH2015i is an extension of
iPSYCH2012, nested within 1,717,316 individuals born in Denmark between 01-
05-1981 and 31-12-2008, satisfying the same criteria, encompassing 33,345 cases
and 15,756 cohort individuals, genotyped on the Illumina Global Screening Array

v2.0 (Illumina, San Diego CA, USA) at Statens Serum Institut, Copenhagen
Denmark.

The trio dataset contains 128 parent-offspring trios where the offspring were
ascertained for diagnoses of autism or ADHD with both parents born in Denmark,
on or after 01-05-1981. Samples were genotyped using both the Infinium Psych
Chip v1.0 and the Illumina Global Screening Array v2.0. Information on
psychiatric diagnoses was obtained from the Danish national psychiatric central
register38,39, demographic information including age, gender, and parental
birthplace was obtained from the Danish civil registration system40,41.

The Personal Genomes Project—UK (PGP-UK) is an open source initiative
aimed at facilitating access to multi-omics datasets for the purpose of gaining
insights into biological and medical processes30 and contains 1100 citizens or
permanent residents of the United Kingdom who provided consent after passing a
test aimed at educating them on the risks of sharing personal genetic data. DNA
was extracted from blood and whole-genome was sequenced using Illumina HiSeq
X at an average depth of 15×. The resulting BAM files were deposited to the
European Nucleotide Archive (Study identifier: PRJEB17529).

Genotyping arrays. The iPSYCH2012 dataset was genotyped using the Infinium
Psych Chip v1.0. Per manufacturer details, the array is designed to genotype a total
of ~593,260 markers, half of which are haplotype informative tag SNPs as found on
the Infinium BeadChip, while the other half are rare markers as found on the
Infinium Exome BeadChip. An additional 60,000 markers were added to the
manifest based on prior associations with psychiatric disorders. Apart from single
nucleotide polymorphisms, short insertions/deletions as well as large copy number
variants are ascertained.

The iPSYCH2015i dataset was genotyped using the Illumina global screening
array v2.0, which per manufacturer details is designed to genotype ~654,027
markers, mostly single nucleotide polymorphisms, which were especially chosen to
deliver high accuracy imputations at common allele frequencies (>0.01) across all
26 sub-populations of the 1000 genomes consortium population dataset. The
manifest files for the two iPSYCH arrays overlap at ~179,856 markers.

Ethical permissions. Research using iPSYCH and the trio data has been approved
by the Danish scientific ethics committee, Danish health authority, and the Danish
neonatal screening biobank committee. The consent structure of iPSYCH, as
governed by the Act on Research Ethics Review of Health Research Projects in
Denmark is exempted from obtaining informed consent from human research
participants (https://ipsych.dk/en/data-security/health-research-and-ethical-
approval/). PGP-UK has been approved by the University College London scien-
tific ethics committee and informed consent was obtained from all human research
participants. All analyses were performed on a secure server within the Danish
national life science supercomputing cluster (https://computerome.dtu.dk/) and the
Aarhus Genome Data Center (https://genome.au.dk/).

Genotype QC. The QC steps prior to phasing are divided into two stages. An initial
SNP level QC and a second sample level QC were performed on a subset of
individuals of a relatively homogenous genetic origin, as determined through the
Danish birth registers and principal components analysis, within the iPSYCH
sample.

Identifying a genetically homogenous sample subset for QC. Certain steps in
the QC process such as tests of Hardy–Weinberg equilibrium, identification of
samples with abnormal heterozygosity, etc could be biased by genetic diversity in
the dataset. To perform these QC steps in an unbiased manner; we identify a set of
samples of a homogenous genetic origin. To do this, the variant calls from the 1000
genomes phase 3 project13 were downloaded in VCF format. Within each sub-
population of the 1000 genomes dataset, we excluded variants with a minor allele
frequency less than 5%, Hardy–Weinberg p values <10−6, pairwise correlation (r2)
>0.1 within a 1 kb region or were not genotyped on either the Infinium psych chip
v1.0 or the Illumina global screening array v2.0. Insertions and deletions and
variants in regions with extended linkage disequilibrium were also excluded42. The
resulting data was merged with iPSYCH2012 and iPSYCH2015i using PLINK43.
We performed a principal component analysis using the smartpca module of the
eigensoft software package44, the principal components were computed using the
1000 genomes samples, and the iPSYCH2012, iPSYCH2015i samples were pro-
jected into the resulting principal component space. We further utilized the Danish
national birth records to identify a set of 47,586 individuals whose parents and both
sets of grandparents were born in Denmark. For each sample in our dataset, we
calculate the mahalanobis distance of the sample from the multivariate mean of the
joint distribution of the first 10 principal components obtained from the 47,586
individuals previously identified. We exclude a sample as an outlier if the distance
has a probability less than 5.73 × 10−7 under a chi-square distribution with 10
degrees of freedom. This resulted in 120,890 samples classified as inliers being used
for QC.

Aligning to the reference. All 26 waves of iPSYCH2012, 78 waves of iPSY-
CH2015i, Trios2012, Trios2015, and the PGP-UK samples were aligned to
Haplotype Reference Consortium v1.1 (hereafter, referred to as HRC) using
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GenotypeHarmonizer v1.4.20-SNAPSHOT45. SNP IDs in the target datasets
were harmonized to the SNP IDs in the HRC where a match was found, A/T and
G/C SNPs were rescued where possible using linkage disequilibrium informa-
tion, variants not present in the reference, multi-allelic SNPs and indels were
excluded.

SNP missingness. Per SNP and sample, missingness was calculated using PLINK
2.0. Genotyping for iPSYCH2012 was performed in 26 waves. We initially excluded
variants missing in >5% of samples in each individual wave. The samples were
further merged and variants that were either not genotyped in all 26 waves or were
found to be missing in ≥ 5% of samples in the merged dataset were further
excluded. 344,498 SNPs pass this QC. The genotyping for iPSYCH2015i was
performed in 78 waves. We excluded SNPs missing in excess of 5% of the samples
in each genotyping wave. Samples were merged across batches and SNPs missing in
>5% of samples across the entire cohort were removed. A total of 558,013 SNPs
pass missingness filters.

Differential missingness between cases and controls. We test for SNPs showing
differential missingness between cases and controls of a homogenous genetic origin
as described in section 1 using the test-missing option in PLINK. We excluded
SNPs that show evidence for differential missingness with an FDR-adjusted p
value ≤ 0.2. 342,837 SNPs in iPSYCH2012 and 555,131 SNPs in iPSYCH2015i pass
this filter.

Hardy–Weinberg equilibrium. The individuals of a homogenous genetic origin as
derived in section 1 were further subset to include individuals without any disease
diagnosis as ascertained from the Danish national patient registers and a test for
Hardy-Weinberg equilibrium was performed using the –hardy option in PLINK.
We exclude SNPs that fail this test with an FDR-adjusted p ≤ 0.2. 338,104 SNPs in
iPSYCH2012 and 544,308 SNPs in iPSYCH2015i pass this QC.

Batch artifacts. Due to the large sample size of iPSYCH, the genotyping for
iPSYCH2012 was performed in 26 waves and the genotyping for iPSYCH2015i was
performed in 78 waves. To identify markers showing significant batch effects, we
performed 26 and 78 logistic regressions in iPSYCH2012 and iPSYCH2015i
respectively where samples of a homogenous genetic origin in a particular wave are
cases and samples in other waves are controls. For each SNP, we take the minimum
of p values from all association tests.

The p values thus selected do not follow a uniform distribution and the
cumulative distribution function of drawing minimums from n independent
distributions

Y ¼ minðp1; p2; ¼ pmÞ ð1Þ
is given by

CDF y
� � ¼ p Y ≤ y

� � ¼ 1� ð1� yÞm ð2Þ
If pi is the ith element in a set of m sorted p values, the CDF of pi is given by i

m,
the ith element in a set of m sorted minimum p values is given by

pi ¼ 1� ð1� i
m
Þ
1
m ð3Þ

The qq-plot of observed vs expected p values using the above theoretical
distribution suggests some inflation. FDR adjustment, defined as the ratio of the
expected (under a global null) to observed number of p values below a given
threshold, can be calculated using the above CDF to estimate the numerator as,

pfdr ¼
m ð1� ð1� pÞmÞ

p< pi
�� �� ð4Þ

We chose an FDR adjusted p value cutoff of 0.1 to exclude SNPs, which
corresponded to a p value of 6.31 × 10−5 in iPSYCH2012 and 2.38 × 10−6 in
iPSYCH 2016. SNPs passing QC filters, iPSYCH2012= 333,308,
iPSYCH2015i= 543,422.

Minor allele frequency. A subset of 34,545 individuals in iPSYCH2012 was
exome sequenced using the Illumina capture kit on HiSeq machines. QC was
performed using HAIL and variant calling was performed in accordance with
the GATK best practices. More details on the data processing have previously
been described46. For these individuals, we calculated genotype concordance
between the exome sequencing data and genotypes from the iPSYCH2012 array
data using bcftools47 as shown in Table 1. We observe that the concordance
between genotyped and next-generation sequencing datasets drops sharply at
minor allele frequencies below 0.001. So, we chose this as a sensible threshold for
censoring SNPs. SNPs passing QC filters: iPSYCH2012: 261,551, iPSYCH2015i:
460,445.

SNP masking. To evaluate the performance of missing data imputation, we
randomly selected 10,000 SNPs that were genotyped on both the Illumina
PsychArray v1.0 and the Illumina Global Screening Array v2.0 using the

sample function in R. These were excluded prior to haplotype estimation.
SNPs used for haplotype estimation and imputation, iPSYCH2012: 251,551,
iPSYCH2015i: 450,445.

Abnormal heterozygosity. Abnormal levels of heterozygosity that cannot ade-
quately be explained by admixture, population structure, or runs of homozygosity
could indicate sample contamination. To identify individuals with heterozygosity
that cannot be accounted for by population phenomena, we use an approach
described by the UK biobank (https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/
genotyping_qc.pdf). Per sample heterozygosity, homozygosity and missingness
were calculated using PLINK–het,–homozyg and–missing options respectively.
Ancestry-adjusted heterozygosity is computed as the residuals from the model
shown below:

H xð Þ �H0 þ PC1 þ PC2 þ PC3 þ PC4 þ PC2
1

þ PC2
2 þ PC2

3 þ PC2
4 þ PC1 � PC2 þ PC2 � PC3

þ PC3 � PC4 þ PC4 � PC1 þ PC1 � PC3 þ PC2 � PC4

ð5Þ

Where H(x)= observed heterozygosity
H0=mean heterozygosity/Intercept
PC1, PC2, PC3, PC4= first four principal components of genetic ancestry
E= residual/ancestry adjusted heterozygosity
We further fit two linear models predicting the observed and ancestry-adjusted

heterozygosities from runs of homozygosity calculated using PLINK. Samples are
flagged as outliers if the observed and ancestry-adjusted heterozygosity as well as
the residuals from the models fit against runs of homozygosity are four standard
deviations away from the mean. 166 samples from iPSYCH2012 and 98 samples
from iPSYCH2015i failed this quality check and were excluded.

Sample duplication. A total of 121 samples were found to be genotyped more than
once across the 26 waves in iPSYCH2012. Further, mapping sample identifiers to
unique identifiers from the registers yielded 159 sample identifiers in iPSYCH2012
and 25 sample identifiers in iPSYCH2015i mapping to a non-unique identifier in
the registry. Two samples from iPSYCH2012 were found to be genotyped again in
iPSYCH2015i due to the randomness of ascertainment. In each case, the sample
with lower missingness was retained. Six samples in iPSYCH2012 and 1 sample in
iPSYCH2015i were genotyped as part of the trios and were excluded. Kinship
analysis performed using KING48 revealed three monozygotic twins in
iPSYCH2012 and ten monozygotic twins in iPSYCH2015i. In each case, the case
was retained and if both samples were cases, the sample with higher missingness
was excluded. For GWAS and PGS analyses, the relatedness cutoff was set to a
kinship coefficient <0.0825.

Sample missingness. Two samples from the iPSYCH2012 cohort were excluded
for excessive missingness (>5%). This left us with 80,876 samples in iPSYCH2012,
genotyped at 251,551 loci and 48,974 individuals in iPSYCH2015i, genotyped at
450,445 loci to be used as a backbone for haplotype estimation and missing data
imputation.

Pre-phasing data integration protocols. We evaluated four different ways of
integrating data as shown in Fig. 1.

In the separate protocol (Fig. 1a), samples from iPSYCH2012 and iPSYCH2015i
are phased and imputed separately. 124 trio offspring were added to both cohorts.
Ten whole genome sequenced samples from the PGP-UK cohort were down-
sampled to both the iPSYCH2012 and iPSYCH2015i SNPs that passed QC and
merged with both cohorts. This resulted in two cohorts: (1) Cohort2012
(81,022 samples, 251,551 SNPs, 0.1% missingness) which includes iPSYCH2012,
trio offspring genotyped on the Infinium Psych Chip v1.0 and ten PGP-UK
samples, down-sampled to the Infinium Psych Chip v1.0 variants that pass QC. (2)
Cohort2015i (49,120 samples, 450,455 SNPs, 0.31% missingness) which includes
the iPSYCH2015i, trio offspring genotyped on the Illumina Global Screening Array

Table 1 Concordance between genotypes from Infinium
Psych Chip v1.0 and whole-exome sequencing data in a
subset of 34,545 individuals in iPSYCH2012.

Allele frequency bin Concordance between
genotyping array and exome
sequencing data

Number
of SNPs

0.00001–0.0001 0.4085 20,701
0.0001–0.001 0.7976 30,367
0.001–0.01 0.9676 14,145
0.01–0.1 0.9966 6795
0.1–0.5 0.999 5081
0.5–1 0.9991 28
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v2.0 and ten PGP-UK samples, down-sampled to the Illumina global screening
array v2.0 variants that pass QC.

In the intersection protocol (Fig. 1b), samples from iPSYCH2012 and
iPSYCH2015i were merged at the 116,962 QC’ed SNPs present on both iPSYCH
arrays. 62 offspring samples were chosen at random from each of the trio
datasets genotyped using both iPSYCH arrays and merged to this dataset along
with ten PGP-UK samples, down-sampled to the 116,962 common loci. This
resulted in the intersection (129,886 samples, 116,962 SNPs, 0.17% missingness)
cohort.

In the union protocol (Fig. 1c), samples from iPSYCH2012, iPSYCH2015i were
merged with missingness to the 596,028 QC’ed SNP loci, genotyped on either
iPSYCH array. To this, 62 samples each from the trio dataset genotyped on both
arrays were merged, same as in the intersection. Five PGP-UK samples, each down-
sampled to the SNPs present on either genotyping array, were merged resulting in
the union cohort (129,886 samples, 596,028 SNPs, 44.54% missingness).

In the two-stage protocol (Fig. 1d), eight sets of phased haplotypes from the
Cohort2012 and Cohort2015i obtained in the separate protocol were initially
imputed using BEAGLE5.1 in batches of 10,000 samples to the 596,028 QC’ed
SNPs genotyped on either iPSYCH array with HRCv1.1 as the reference. Then the
two cohorts were merged, retaining the same 62 trio samples from each cohort as
chosen in the intersection and union approaches along with five PGP-UK samples
from each cohort, forming the two-stage cohort (129,886 samples, 596,028 SNPs,
0% missingness).

All datasets were stored and processed in VCF (http://samtools.github.io/hts-
specs/VCFv4.2.pdf) using bcftools49.

Phasing. Cohorts arising from each data integration protocol were phased using
three methods and two different parameters, BEAGLE5 (phase-states=280, 560),
SHAPEIT4.1.2 (pbwt-depth= 4, 8), EAGLE2.4.1 (Kpbwt= 10000, 20000) with the
added aim of benchmarking improvements in accuracy at a higher resolution
parameter set at the expense of longer run times and memory requirements. A
consensus haplotype set was generated by taking the majority haplotype estimate
across the three tools at both the default and higher resolution parameters at each
locus within each individual using BEAGLE’s consensusvcf (https://faculty.
washington.edu/browning/beagle_utilities/utilities.html#consensusvcf) module.
The HRCv1.1 dataset, consisting of 64,976 haplotypes50 was used as the
reference panel.

Imputation. Due to the cohort sizes, imputations using BEAGLE5.1 at default
parameters were carried out in batches of 10,000 samples. Imputations using
Impute5 were carried out in multiple steps, an initial step to define chunks of the
region to impute, followed by imputation, and finally, concatenation of chunks
using bcftools. For imputations using Minimac4, the reference HRC haplotypes
were converted to m3vcf format using Minimac3, followed by imputation using
Mimiac4. All imputations used default parameter settings for the tools. Imputed
dosage (DS) for an individual at a bi-allelic locus is calculated as DS= p(RA)+
2*p(AA) where p(RA) is the genotype probability corresponding to the presence of
one alternate allele (A) and one reference allele (R) as per the reference panel and
p(AA) corresponding to the genotype probability of the presence of two copies of
the alternate allele.

Phasing accuracy. Phasing accuracy was evaluated by calculating SER in the trio
offspring at the QC’ed heterozygous SNPs common to both iPSYCH arrays. A
switch error arises from an inconsistency between the computationally assigned
phase and the phase observed by mendelian transmission with knowledge of
parental haplotypes. SER is the number of such switches divided by the total
possible switches51. The code for SER calculation has previously been used9 and
available on Github (https://github.com/odelaneau/switchError).

Imputation accuracy. Imputation accuracy within iPSYCH was calculated as the
squared Pearson correlation coefficient (r2) between true genotypes and imputed
dosages within different minor allele frequency (MAF) bins (MAF as measured in
HRCv1.1) at each of the 10,000 SNPs masked prior to phasing. Imputation
accuracy within PGP-UK was calculated as the r2 between true genotypes obtained
from multi-sample variant calling using samtools49 and imputed dosages in eight
MAF bins at 6,517,513 loci that were genotyped on neither iPSYCH array. The
code is available on GITHUB (https://github.com/vaqm2/impute_paper/blob/
main/truth_vs_impute_2021_02_24.pl). To evaluate variations in imputation
accuracy by ancestral origin, r2 was calculated within iPSYCH samples, grouped
according to the country of birth of both parents according to the Danish civil
register40,41.

Phenotype simulations. To evaluate the impact of whole genome imputation on
PGS, a quantitative trait for 129,850 iPSYCH individuals was simulated using
GCTA52 version 1.92.1beta6, with a heritability of 0.5 and the 10,000 masked SNPs
as causal loci with effect sizes drawn from a standard normal distribution.

Association tests. To evaluate the presence of batch artifacts in each protocol
we conducted multiple GWAS with iPSYCH cohort membership (iPSYCH2012
vs iPSYCH2015i) as the outcome using the glm module of PLINKv2.00a2LM 64-
bit Intel (10 Nov. 2019)53. As a baseline, we performed the GWAS using true
values of 10,000 masked genotypes as explanatory variables. Subsequently,
GWAS were performed comparing allele frequencies from true genotypes in one
cohort to imputed dosages in the other and imputed dosages in both, across all
four data integration protocols (separate, union, intersection, two-stage). Tests
were restricted to iPSYCH individuals without mental disorders (i.e., a random
sample of psychiatric controls), of a homogenous genetic origin based on
principal component analysis using Eigenstrat44, and pruned for relatedness
beyond the third degree using kinship coefficients estimated by KING48. The
overall inflation of test statistics above the null was evaluated using the genomic
inflation factor which compares the median of the chi-square test statistic
obtained from each GWAS to the expected median of a chi-square distribution
with 1 degree of freedom.

Polygenic scores. To calculate the PGS for each individual, j, we initially per-
formed a GWAS within unrelated individuals of a Danish genetic background as
ascertained by principal component analysis (Supplementary S1.1, S1.3.2) from the
iPSYCH2012 and iPSYCH2015i cohorts using PLINK2 –glm option with the
simulated continuous phenotype as outcome. The per SNP effect sizes from each
iPSYCH cohort was in turn used as the discovery set (βi) to calculate PGS for
individuals in the other cohort as follows:

PGSj ¼ ∑
m

i¼1
βiXij ð6Þ

where m is the total number of SNPs (10,000 masked SNPs), βi is effect for SNP i in
the discovery GWAS, Xij is the imputed dosage or best guess genotype count of
effect alleles for individual j at SNP i. Variance explained by PGS was calculated by
fitting two linear models using the function, lm in R. The simulated trait value is
the outcome, individual PGS is the sole explanatory variable in one model, while
individual PGS, age, gender, and first 10 principal components of genetic ancestry
are explanatory variables in the second model. Variance in the simulated trait value
explained by PGS is the difference between the correlation coefficients (R2)
between the two models. We restrict the analysis to 67,587 individuals from
iPSYCH2012 and 41,069 individuals from iPSYCH2015i with parents and both sets
of grandparents born in Denmark and clustering with the CEU (Utah residents
with Northern and Western European ancestry) and GBR (British in England and
Scotland) populations of the 1000 genomes phase 3 dataset in principal component
analysis.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data underlying figures are provided in Supplementary Data 1–9. The haplotype
reference consortium can be downloaded from the European Genome-Phenome archive
with the study identifier: EGAD00001002729. Personal genomes project UK datasets are
publicly available for download at https://www.personalgenomes.org.uk/data/ and
through the European nucleotide archive with the accession number: PRJEB17529. In
accordance with the Danish law and consent permissions governing iPSYCH, the
individual-level genotype data from the iPSYCH and trios datasets cannot be shared
publicly. The data, hosted on Genome DK is available for researchers involved with the
consortium. Further information on iPSYCH data security can be found here: https://
ipsych.dk/en/data-security, the ethical approval statement is available here: https://
ipsych.dk/en/data-security/health-research-and-ethical-approval. Further queries
regarding the consortium can be directed to the concerned research committee here:
https://ipsych.dk/en/contact.

Code availability
The phasing tools are available from the project webpages. Beagle5 and its associated
utilities, ConformGT and ConsensusVCF can be downloaded from https://faculty.
washington.edu/browning/beagle/b5_1.html, http://faculty.washington.edu/browning/
conform-gt.html, and https://faculty.washington.edu/browning/beagle_utilities/utilities.
html#consensusvcf. Eagle2.4.1 can be downloaded from http://data.broadinstitute.org/
alkesgroup/Eagle/downloads/. Shapeit4.1.2 can be downloaded from https://odelaneau.
github.io/shapeit4/. Switch errors in haplotype estimation were calculated using code
available on GitHub at https://github.com/SPG-group/switchError. Imputation
accuracies were estimated using code available on GitHub at https://github.com/vaqm2/
impute_paper. Bcftools (version 1.9) can be obtained from https://github.com/samtools/
bcftools and PLINK2 can be downloaded from https://github.com/chrchang/plink-ng.
Genotype harmonizer v1.4 is available on GitHub at https://github.com/molgenis/
systemsgenetics/tree/master/Genotype-Harmonizer.
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