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Progress and gaps of extracellular vesicle-mediated
intercellular cargo transfer in the central nervous
system
Chun Wan1, Michael H. B. Stowell 1 & Jingshi Shen 1✉

A fundamentally novel function proposed for extracellular vesicles (EVs) is to transfer

bioactive molecules in intercellular signaling. In this minireview, we discuss recent progress

on EV-mediated cargo transfer in the central nervous system (CNS) and major gaps in

previous studies. We also suggest a set of experiments necessary for bridging the gaps and

establishing the physiological roles of EV-mediated cargo transfer.

EVs are membranous particles released by virtually all cell types including neurons and glial
cells of the CNS1–4. EVs can cross the blood-brain barrier under certain conditions such
that CNS-originating EVs can enter the circulation and reach other tissues5–7. Likewise,

CNS-resident EVs may come from tissues outside the CNS. EVs enable neurons and glial cells to
eliminate excess or harmful membranes and macromolecules8–11. EVs also mediate intercellular
signaling when EV-anchored ligands interact with their receptors displayed on the surfaces of
recipient cells12–15. However, the most fascinating function proposed for EVs is the mediation of
intercellular signaling via the transfer of bioactive molecules including proteins, RNAs, lipids,
and even entire organelles (Fig. 1 and Box 1)8,16–18.

EV-mediated intercellular cargo transfer is comprised of three sequential steps: EV release
from donor cells, EV uptake into recipient cells, and delivery of EV-carried cargoes into the
cytosol of recipient cells (Fig. 1)1. EV release and entry can be both stimulated by neuronal
activities7,19–21. In the CNS, cargo transfer can occur between the same or different cell
types4,22–27. The molecular basis of EV release from donor cells is relatively well understood:
exosomes are formed by the exocytosis of intraluminal vesicles encapsulated in multivesicular
bodies whereas microvesicles are released through direct budding from the plasma
membrane1,28,29. Delivery of EV cargoes into recipient cells, however, remains poorly
understood.

After uptake, the default route of EVs within recipient cells is lysosomal degradation
(Fig. 1)1,2,30. To avoid degradation, EVs must fuse with the endosomal membrane following
internalization or fuse directly with the plasma membrane of recipient cells (Fig. 1). After fusion,
EV-carried lumenal cargoes are released to the cytosol whereas membrane proteins and lipids are
integrated into the endomembranes of recipient cells25,31–34. Notably, EVs enable RNAs to serve
as intercellular signaling messengers by shielding them from extracellular RNases. EV-delivered
mRNAs are translated into signaling molecules25,26, whereas miRNAs modulate the expression
of target genes in recipient cells35,36. EV-mediated transfer of entire mitochondria has been
suggested to alter the metabolic states of recipient cells in the CNS37–39. Finally, the EV-
mediated transfer pathway can also serve to spread disease-promoting molecules including tau,
amyloid β peptide, and prion proteins40–55.

Here, we review evidence for EV-mediated cargo delivery in the CNS. We discuss major gaps
in previous studies and outline experiments to examine the physiological roles of EV-mediated
cargo transfer. EV release and EV signaling through ligand-receptor interactions (i.e., without

https://doi.org/10.1038/s42003-022-04050-z OPEN

1 Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA. ✉email: jingshi.shen@colorado.edu

COMMUNICATIONS BIOLOGY |          (2022) 5:1223 | https://doi.org/10.1038/s42003-022-04050-z | www.nature.com/commsbio 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-04050-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-04050-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-04050-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-04050-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-04050-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-04050-z&domain=pdf
http://orcid.org/0000-0001-7250-1419
http://orcid.org/0000-0001-7250-1419
http://orcid.org/0000-0001-7250-1419
http://orcid.org/0000-0001-7250-1419
http://orcid.org/0000-0001-7250-1419
http://orcid.org/0000-0001-9595-1148
http://orcid.org/0000-0001-9595-1148
http://orcid.org/0000-0001-9595-1148
http://orcid.org/0000-0001-9595-1148
http://orcid.org/0000-0001-9595-1148
mailto:jingshi.shen@colorado.edu
www.nature.com/commsbio
www.nature.com/commsbio


cytosolic cargo delivery) are not covered here because they are
well established and have been extensively discussed
elsewhere1,4,5,8,9.

EV-mediated cargo transfer in intercellular signaling—
progress and gaps in previous studies
In the past two decades, EV-mediated cargo transfer has been
reported in many aspects of CNS physiology4,8,22. A typical study
of EV-mediated cargo transfer begins with a signaling event eli-
cited by incubation with purified EVs, including changes in cell
growth, morphology, metabolism, or gene expression (e.g.,
mRNA translation). The cellular response is diminished when EV
release from donor cells is reduced or when a putative cargo is
deleted26,27,56. A notable example is oligodendrocyte-derived EVs
that deliver bioactive proteins into neurons to induce metabolic
changes56–58. These studies present exciting observations with the
potential to radically change our view of CNS functions. How-
ever, despite the progress, much is still unknown about EV-
mediated cargo delivery in the CNS.

First and foremost, studies of CNS EVs rarely examined cargo
delivery to the cytosol of recipient cells. For most signaling
functions proposed for EVs, substantial amounts of cargo need to
be delivered into the cytosol of recipient cells. In particular,
miRNA levels are extremely low in EVs and mammalian cells lack
a miRNA-amplifying mechanism59,60. Hence, a large number of
EV fusion events are required to deliver sufficient miRNA
molecules to trigger cellular responses in recipient cells. Previous
research, however, usually measured crude EV internalization
without distinguishing cargoes delivered to the cytosol from those
still trapped in the endosome/lysosome. Limited experiments
carried out using cultured neuronal and non-neuronal cells
showed little or no cytosolic delivery of EV cargoes61–65. Like-
wise, cytosolic cargo delivery was detected at very low levels in the
CNS using animal models24. The low cytosolic delivery efficiency
could be due to a mismatch of EVs and recipient cells (i.e., a non-
physiological pair) and efficient cargo delivery could occur when

EVs are matched with their cognate cell types. Such physiological
cognate pairs remain to be definitively established for the CNS.

Previous studies often sought to determine the EV cargo(es)
responsible for eliciting a signaling event, but the evidence was
often insufficient. Deletion of a putative EV cargo such as a
miRNA from donor cells does not provide a definitive answer
because other EV cargoes could be altered as well. Thus, it is
difficult to rule out the possibility that a signaling event is
mediated by EV ligand-receptor interactions instead of cytosolic
cargo delivery. Moreover, a cellular response could be triggered
by a soluble molecule co-purified but not associated with EVs.
Membrane-free particles often co-purify with EVs and it is
challenging to fully separate them66. This issue was often
addressed by reducing EV release from donor cells using phar-
macological or genetic approaches51,67,68. When a signaling event
was blunted, the data were often taken as evidence for a role of
EVs in the pathway. However, reduction of EV release invariably
compromises many other cellular pathways including secretion of
non-EV molecules, thus precluding accurate assessment of EV’s
role in an intercellular signaling event.

Moving forward—experiments to examine the physiological
roles of EV-mediated cargo transfer
To fill the gaps in the studies of EV-mediated cargo transfer, it is
crucial to directly examine cargo delivery into the cytosol of
recipient cells. Highly sensitive assays have already been devel-
oped to detect cytosolic cargo delivery using genetically encoded
reporters24,63,69,70. For instance, Cre proteins or mRNAs can be
readily loaded into EVs when a Cre-encoding gene is expressed in
donor cells. When delivered to the cytosol of recipient cells, Cre
induces recombination of a floxed reporter gene and activates the
expression of the reporter24,27,70. A major advantage of the Cre/
LoxP system is its permanent recording of cytosolic delivery
events. Other delivery assays take advantage of engineered luci-
ferase or fluorescent proteins genetically loaded into EVs in donor
cells63,71, permitting quantitative measurements of cytosolic
delivery events. If EVs mediate an intercellular signaling event

Fig. 1 Fates of EV-carried cargoes in a recipient cell. In addition to the well-documented fate of lysosomal degradation, it has been proposed that EVs can
fuse with the plasma membrane or the endosome following internalization, delivering cargoes to the cytosol of the recipient cell.
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through transferring cargoes, it can be inferred that cytosolic
cargo delivery occurs efficiently. Retroviruses are often used to
stably express EV cargoes in reporter assays61,62. To preclude the
possibility that EV-mediated cargo delivery is driven by residual
viral fusion proteins, neutralizing antibodies against viral fusion
proteins should be used as a control. Similarly, if donor cells are
transfected with DNA plasmids encoding EV cargoes, caution
needs to be taken to remove residual DNA and transfection
reagents from purified EVs.

If efficient cytosolic cargo delivery is observed, a study needs to
determine the cargo(es) responsible for a cellular response. This is
a daunting task because as stated above, deletion of a cargo such
as a miRNA in donor cells may alter other EV cargoes. This
concern could be partially addressed by measuring the protein
and RNA profiles of the mutant EVs using proteomics and RNA
sequencing. Based on the outcomes of protein and RNA profiling,
additional EV cargoes may need to be tested. Moreover, it is
critical to adopt stringent EV isolation procedures including
density gradient separation and size-exclusion chromatography.
To further examine the roles of EVs in a signaling event, EVs or
EV subpopulations could be immunodepleted from a sample
using antibodies against EV surface markers. In parallel, EV
membranes could be disrupted using sonication or detergents
(followed by detergent removal).

The above experiments are essential to interrogate the phy-
siological roles of EV-mediated cargo transfer, but the data
obtained are correlative in nature. Ultimately, to definitively
address the question, the fusogen mediating EV-cell fusion needs
to be identified and perturbed at the molecular level. Like the
entry of many enveloped viruses, EV-mediated cargo delivery at
the endosome is pH dependent and sensitive to negative reg-
ulators of viral fusion63,71. Thus, it is tempting to postulate that
the fusion of EVs with recipient cells is driven by a fusogen
functionally resembling viral fusion proteins. An EV fusogen
might be anchored only on EVs, similar to viral fusion proteins,
while recipient cells only provide a receptor without directly
contributing to the force-generating fusion machinery. Alter-
natively, an EV fusogen could be a trans-complex formed by
proteins rooted in both the EV and recipient cell, analogous to the
functions of HAP2 in cell-cell fusion and SNAREs (soluble N-
ethylmaleimide-sensitive factor attachment protein receptors) in
intracellular vesicle fusion72–74. There could be multiple isoforms
of an EV fusogen with distinct tissue distributions, enabling EVs
to specifically deliver cargoes into their cognate recipient cells.
The machinery mediating EV fusion with the plasma membrane
may be the same or different from the machinery underlying EV-
endosome fusion.

Once the EV fusogen is known, its activity can be selectively
disrupted using gene knockout and dominant-negative mutants
to determine the role of EV-mediated cargo delivery in an
intercellular signaling event. If EV fusogens remain elusive after
extensive efforts, an alternative possibility needs to be considered:
EVs fuse with recipient cells through spontaneous lipid rearran-
gements without involving proteinaceous fusogens. Testing this
model would require significant conceptual and technical inno-
vations because all known biological membrane fusion processes
are driven by proteinaceous fusogens.

Conclusion and perspectives
Despite the controversies and uncertainties associated with EV
biology, the potential impacts of the field on fundamental biology
and therapeutic delivery are immense. If validated, the sig-
nificance of EV-mediated cargo transfer would be as high as that
of intracellular membrane trafficking, which has been recognized
by multiple Nobel Prizes including the 2013 Nobel Prize in
Physiology or Medicine. The experiments outlined in this mini-
review are challenging but critical for establishing the physiolo-
gical roles of EV-mediated cargo transfer in intercellular
signaling. While this minireview focuses on the CNS, all the
concepts are applicable to other cell types as well.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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