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Functional imaging analyses reveal prototype and
exemplar representations in a perceptual single-
category task
Helen Blank 1 & Janine Bayer 1✉

Similarity-based categorization can be performed by memorizing category members as

exemplars or by abstracting the central tendency of the category – the prototype. In

similarity-based categorization of stimuli with clearly identifiable dimensions from two

categories, prototype representations were previously located in the hippocampus and the

ventromedial prefrontal cortex (vmPFC) and exemplar representations in areas supporting

visual memory. However, the neural implementation of exemplar and prototype repre-

sentations in perceptual similarity-based categorization of single categories is unclear. To

investigate these representations, we applied model-based univariate and multivariate ana-

lyses of functional imaging data from a dot-pattern paradigm-based task. Univariate proto-

type and exemplar representations occurred bilaterally in visual areas. Multivariate analyses

additionally identified prototype representations in parietal areas and exemplar representa-

tions in the hippocampus. Bayesian analyses supported the non-presence of prototype

representations in the hippocampus and the vmPFC. We additionally demonstrate that some

individuals form both representation types simultaneously, probably granting flexibility in

categorization strategies.
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Categorisation is a fundamental cognitive process that
enables us to structure the world, apply prior knowledge to
new situations, and thereby facilitate perception. In

everyday life, we categorise various stimulus types into different
category structures, often without being aware of the categorising
process itself, for example, when we recognise faces, emotional
expressions, or speech1–3. According to prototype and exemplar
theories, categorisation can be either performed by representing
category knowledge in the form of its central tendency, the
‘prototype’, or by storing category ‘exemplars’ as separate
instances4,5. Correspondingly, the categorisation of a new item
can either be based on its similarity to the prototype or the
summed similarities to the exemplars.

What is known about the localisation of prototype and
exemplar representation in the brain stems from a few studies
using stimuli with clearly identifiable, discrete dimensions (e.g.,
foot or body shape in imagery birds) and two contrasting cate-
gories (A/B tasks), i.e., a particular type of similarity-based
categorisation6–8. In these studies, exemplar representations were
identified in the posterior occipital cortex, the inferior frontal
gyrus, and the lateral parietal cortex6,8, areas known to typically
mediate basic visual memory of single items9. Prototype repre-
sentations were located in the anterior hippocampus and the
ventromedial prefrontal cortex (vmPFC)6,7. Well-grounded on
current knowledge about hippocampal functions beyond episodic
memory6,10,11, it has been proposed that the interplay between
hippocampus and vmPFC mediates prototype abstraction. In
everyday life, we frequently discriminate a single category from
other stimuli, e.g., when recognising a face as familiar, a fruit as
edible, or an animal as dangerous. Therefore, it is an important
question whether the findings from two contrasting categories (A/
B tasks) can be generalised to single-category tasks (i.e. ‘A/non-A’
problems) in which category membership is defined by the hol-
istic, overall perceptual similarity among category members12. In
the laboratory, this categorisation problem is often oper-
ationalized by the dot-pattern paradigm13. While declarative
memory systems are supposed to support A/B categorisation of
stimuli composed of clearly distinguishable feature dimensions,
A/notA categorisation of stimuli like dot patterns is rather sup-
ported by the perceptual learning system or striatal learning14–18.
While this is in line with relatively preserved categorisation
performance for perceptual single-category tasks in patients with
memory dysfunction and hippocampal lesions19–22, the questions
arise if and where prototypes are represented in these tasks.

On the behavioural level, an important contribution to the
debate over which of the two accounts (i.e., the exemplar or the
prototype theory) explains similarity-based categorisation was
the finding that individuals can engage both strategies7,16,23–25.
The additional observation of both prototype, as well as exemplar
representations in group-level functional magnetic resonance
imaging (fMRI) analyses triggered the idea that individuals could
form both representation types simultaneously11, entailing the
potential to flexibly adapt strategy choices to situational
requirements. Nevertheless, the fact that the co-occurrence of
both representation types has not yet been investigated in single
individuals motivates the question of whether the co-occurrence
of both strategy representations was caused by the presence of
subgroups with either prototype or exemplar representations or
by concurrent representations of both strategies within indivi-
duals. Furthermore, it is unclear whether the presence of neural
prototypes or exemplar representations is related to behavioural
preferences of the corresponding strategy.

The primary goal of the current study was to test how the
prototype and exemplars are represented in a single-category
perceptual categorisation task based on a classical dot-pattern
paradigm13 (Fig. 1a–c) by combining formal modelling of

individual categorisation behaviour with model-based univariate
analyses and multivariate representational similarity analyses
(RSA) of fMRI data. In addition, we used RSA to test co-existent
prototype and exemplar representations on the individual level
and their correspondence to individual behavioural strategies.

We demonstrate that prototype representations in a single-
category task with abstract visual patterns primarily occurred in
visual and parietal but not hippocampal areas or the vmPFC.
Exemplar representations were mainly found in visual and
memory-related areas like the hippocampus. Moreover, our
results indicate that individuals can form both representation
types simultaneously.

Results
Behavioural results. In the transfer phase, the average accuracy
was 0.86 (SD= 0.28) in deciding whether an item belonged to
category A or not. Accuracy for category (M= 0.85, SD= 0.29)
and non-category items (M= 0.86, SD= 0.27) did not differ
significantly [F(1, 79.4)= 0.09, p= 0.75] and did not change
across blocks [F(7, 20118.8)= 0.66, p= 0.71]. Among category
members, accuracy was significantly predicted by both logarith-
mized model-free distances to the prototype [F(1,19)= 8.28,
p= 0.010] and to exemplars [F(1,19)= 29.14, p < 0.001].

Averaged posterior means of the sensitivity parameter c,
quantifying individual sensitivies to distances from the prototype
or exemplars, and the decision criterion parameter k were very
similar for both models (MC= 2.55, SDC= 0.84 and Mk= 0.038,
SDk= 0.101 for the prototype and MC= 2.64, SDC= 0.83 and
Mk= 0.022, SDk= 0.039 for the exemplar model). Neither
averaged DIC’s (prototype model: MDIC= 7.45; exemplar model:
MDIC= 4.50) nor a paired t-test on individual DIC’s showed a
clear preference for one strategy on the group level
[t(61)=−1.54, p= 0.128]. Both models showed clearly better
fits than the guessing model (MDIC= 53.67; prototype model:
t(61)=−17.75, p < 0.001; exemplar model: t(61)=−15.54,
p < 0.001). There was a strong relationship between observed
and predicted endorsement rates for both models (Mr= 0.806,
SDr= 0.121 for the prototype and Mr= 0.815, SDr= 0.105 for
the exemplar model).

The deviance information criterion (DIC)26 was used as a
measure of model fit to identify individual strategies. A
comparison of individual DICs from the two models suggests
that 12 individuals preferred the prototype strategy [i.e.,
(DICexemplar – DICprototype) ≥5] and 20 individuals preferred the
exemplar strategy [i.e., (DICprototype – DICexemplar) ≥5], while the
remaining 30 volunteers did not show a clear preference [i.e.,
|(DICexemplar – DICprototype)| <5; Fig. 1d). There was no indication
for significant differences in total accuracy between the three
preference groups [F(2,59)= 0.37, p= 0.692]. All included
participants showed better fits of the prototype or the exemplar
model than the guessing model.

Please refer to Supplementary Note 1 for analyses of
behavioural performance in the training phase.

Univariate prototype and exemplar representations on the
group level. Univariate and searchlight representational similarity
analyses (RSA; see below) of fMRI data were used to localise
prototype and exemplar representations in the whole brain. In
univariate analyses, the application of positive and negative
contrasts to the parametric modulators allows for investigating
the perceptual similarity (positive contrast) and perceptual dis-
similarity (negative contrast) to the prototype and exemplars.

Perceptual dissimilarity, i.e., negative correlations with percep-
tual similarity of each category member to the prototype or the
exemplars, correlated mainly with activity in visual areas with no
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evidence for the involvement of higher cognitive areas. In
particular, perceptual dissimilarity to the prototype was asso-
ciated with robust bilateral activations in lower and higher visual
processing areas, extending from the inferior and lateral occipital
gyri to the right fusiform gyrus (Fig. 2a and Table 1). Perceptual
dissimilarity to exemplars was associated with effects in lower
visual areas of the left hemisphere, such as the posterior part of
the inferior occipital gyrus, extending into the lingual gyri and the
cuneus (Fig. 2a and Table 1).

Analyses did not yield significant positive correlations with
perceptual similarity to the prototype in any region. Perceptual
similarity to exemplars correlated again with activity in lower
visual areas such as the bilateral posterior occipital cortex,
extending into inferior occipital gyri (Fig. 2b and Table 1).

Bayesian analyses were used to quantify the probability by
which univariate effect sizes (ESuniv) in bilateral anatomical masks
deviate from zero (Fig. 2c and Supplementary Table 1).
Confirming results from our frequentist analyses, Bayesian
analyses provided evidence for the association between univariate
activity and (dis-)similarity to the prototype or exemplar
representations, respectively. Specifically, Bayesian analyses
revealed (1) strong evidence for dissimilarity to the prototype
in the lateral occipital gyrus, with moderate evidence for the non-
presence of exemplar associations in this region; (2) strong
evidence for dissimilarity to exemplars in the caudal lingual gyrus,
with very strong evidence for the non-presence of prototype
associations, (3) moderate evidence for dissimilarity to the
prototype in the inferior occipital gyrus, with very strong

Fig. 1 Category learning task and behavioural results. a Examples for members of category A for each distortion level (DL) and non-members. The red
frame illustrates that only medium to highly distorted category members and non-members were part of the training set. The blue frame illustrates that the
transfer set consisted of a full range of stimuli. b Trial timing of the training and the transfer phase. Single training blocks had a duration of 2.8 min. Single
transfer blocks had a duration of 4.8 min. Positions of ‘yes’ (Y) and ‘no’ (N) responses changed pseudo-randomly between left and right to preclude direct
category to motor mapping94. c Conceptual illustration of the prototype and the exemplar model. The prototype model (purple) assumes that a category is
represented as its central tendency, the prototype. The exemplar model (green) posits that a category is represented by storing individual category
members as separate instances. Once category representations are established, the category membership of a new item can be determined by comparing
its appearance to the representation of the prototype or to the stored exemplars. d Behavioural strategy preference. Percentages of volunteers (n= 62)
showing behavioural preferences for the prototype strategy (purple), the exemplar strategy (light green) and those who showed unclear preferences (dark
turquoise).
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evidence for similarity to exemplars; and (4) very strong evidence
for dissimilarity to the prototype and for similarity to exemplars
in the lateroventral fusiform gyrus (see left column of Fig. 2d for
individual effect sizes (ESuniv) from regions of interest (ROIs)
with at least moderate evidence for prototype or exemplar
representations). While the first three results from the Bayesian
analyses confirm the results from the frequentist analysis, the
fourth result adds evidence for univariate exemplar representa-
tion in the fusiform gyrus.

In contrast to previously reported univariate prototype
representations in the hippocampus for the similarity-based
categorisation of stimuli with clearly identifiable dimensions from
two categories (A/B tasks)6,7, we did not detect significant effects
either associated with perceptual dissimilarity (largest effect at
x= 26, y=−28, z=−8; Z= 3.08, punc= 0.001, pFWEROI n.s.) or
perceptual similarity to the prototype (largest effect at x=−28,

y=−40, z=−2; Z= 2.90 punc= 0.002, pFWEROI n.s.) in this
region. Current data also do not provide evidence for univariate
prototype representations in the vmPFC, neither for perceptual
dissimilarity (largest effect at x=−20, y= 20, z=−24; Z= 2.55,
punc= 0.005, pFWEROI n.s.) nor perceptual similarity (largest effect
at x=−8, y= 22, z=−4; Z= 2.68, punc= 0.004, pFWEROI n.s.).
The non-presence of univariate exemplar representations was
confirmed by strong evidence in the anterior hippocampus and
the vmPFC and very strong evidence in the posterior hippo-
campus (see Fig. 2d for individual effect sizes extracted from
hippocampal and vmPFC masks).

Multivariate prototype and exemplar representations on the
group level. To investigate whether a multivariate approach
could uncover additional localisations of prototype and exemplar

Fig. 2 Univariate prototype and exemplar representations (n= 62 individuals). a Negative correlation with perceptual similarity (i.e. perceptual
distance). Regions sensitive to model-based perceptual distances to the prototype (purple) and to exemplars (green). A search depth of 16 voxels was
applied to also depict exemplar model representations located slightly below the cortical surface. b Positive correlation with a perceptual similarity. Regions
sensitive to model-based similarities to the prototype (purple) and to exemplars (green). a, b Statistical t-maps are thresholded at punc < 0.001 for
visualisation. c ROI-specific posterior probabilities that univariate effect sizes (ESuniv) for prototype (purple) and exemplar (green) representations deviate
from zero. Only ROIs with a BF >3 for the comparison against the null model are depicted. d Violin plots of observed ESuniv for ROIs with a BF >3 for the
comparison against the null model and regions of particular interest. The bolded horizontal lines depict the mean ES within each ROI. Black borders around
the violin plots highlight effects with a BF >3.
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representations in the brain, searchlight RSA comparing fMRI
patterns with model representational dissimilarity matrices
(RDMs; see Methods Section ‘Multivariate fMRI representational
similarity analyses’) based on stimulus similarity to the prototype
and exemplars was performed (Fig. 3a).

Multivariate analyses revealed prototype representations in
parietal, parieto-occipital and occipito-temporal regions (see
Fig. 3b and Table 2), specifically in the intraparietal sulcus [IPS;
i.e., bilateral inferior parietal lobule (IPL) and superior parietal
lobule (SPL)] and bilateral lateral superior occipital gyri, as well as
in the right fusiform and the right inferior temporal gyrus (ITG).
In addition, prototype representations occurred in the right
ventral inferior frontal gyrus (IFG; Table 2). Again, there was no
evidence for prototype representations in the anterior hippo-
campus (largest effect at x=−18, y=−18, z=−22; Z=−0.22,
punc= .558, pFWEROI n.s.) or the vmPFC (largest effect at x=−8,
y= 56, z= 8; Z= 2.00, punc= 0.023, pFWEROI n.s.).

Multivariate exemplar representations were present in parietal,
(medio-)temporal and frontal regions (see Fig. 3b and Table 2),
including the left IPS, the right anterior hippocampus and the
vmPFC (x= 10, y= 38, z=−30; Z= 4.21, pFWEROI= 0.028).
Temporal clusters covered the superior temporal gyrus (Table 2),
the rostral ITG (x=−38, y= 0, z=−40; Z= 4.28, pFWEROI=
0.028) and the ventral ITG (x= 45, y=−12, z=−30; Z= 4.13,
pFWEROI= 0.038). In addition, exemplar representations were
present in the bilateral putamen and the insular gyrus (see Fig. 3b
and Table 2).

Bayesian analyses were used to quantify the probability by
which multivariate effect sizes (ESRSA) in bilateral anatomical
masks deviate from zero (Fig. 3c, Supplementary Table 2 and
Supplementary Note 2). Confirming results from our frequentist
analyses, Bayesian analyses provided evidence for multivariate
prototype or exemplar representations in different regions.
Specifically, Bayesian analyses revealed (1) moderate evidence
for prototype representations in the lateral SPL and the inferior
frontal sulcus of the IFG and very strong evidence in the
rostrodorsal IPL with at least very strong for the absence of
exemplar representations in these regions; (2) strong evidence for
exemplar representations in two ITG regions, with moderate to
strong evidence against prototype representations in the ventral
ITG but inconclusive results regarding the lateral ITG; (3)
moderate evidence for exemplar representations in the anterior
hippocampus and very strong evidence in posterior hippocam-
pus, with moderate evidence for the non-presence of prototype

representations in hippocampal; (4) extreme evidence for the
absence of prototype representations and moderate evidence for
the absence of exemplar representations in the vmPFC. The
difference between the latter result and frequentist analyses is
likely related to the small extent and pronounced lateralisation of
exemplar representations in this region.

Fig. 3d depicts violin plots of individual ESRSA from ROIs with
at least moderate evidence for prototype or exemplar representa-
tions or being of particular interest.

Co-existence of multivariate prototype and exemplar repre-
sentations within individuals. Region-of-interest RSA analyses
on the individual level were employed to investigate the potential
co-occurrence of prototype and exemplar representations within
individuals and their relation to behavioural strategy preferences.

In line with previous reports of co-existent prototype and
exemplar representations on the group level, current RSA
analyses on the individual level indicated the co-occurrence of
prototype and exemplar representations in 29 out of 62
individuals (i.e., ρ ≥ 0.1 and punc < 0.05 for at least one ROI), 13
individuals showed only prototype and 11 individuals only
exemplar representations. A total of nine individuals did not
show any representation exceeding the predefined threshold.
Figure 4a illustrates that the relationship between neuronal
representation groups (i.e., only prototype, only exemplar, both
or no representations) and behavioural preference is inconclusive
(see also Supplementary Fig. 1).

Importantly, the co-occurrence of the two representation types
was not caused by higher correlations between prototype and
exemplar model RDM’s in individuals showing evidence for co-
existent representations (Mρ= 0.178; SDρ= 0.051) compared to
the 23 individuals who show only evidence for one particular
model (Mρ= 0.176; SDρ= 0.032; t(47.75)= 0.22, p= 0.825). In
summary, current results provide evidence that the two
representation types can co-exist within individuals.

Discussion
We show that prototype representations in a single-category
categorisation task with abstract visual patterns are primarily
present in visual and parietal areas, with Bayesian analyses
yielding a high probability for the non-existence of prototype
representations in the hippocampus and the vmPFC. In line with
the assumption that different cognitive mechanisms underlie

Table 1 Localisation of univariate prototype and exemplar representations.

Peak voxels and local maxima Cluster extent

MNI coordinates

x y z Z pFWE kFWE

Perceptual distance to prototype
Medioventral and lateroventral FG R 38 −52 −18 5.67 0.001 26
Inferior and lateral OG area V5 R 44 −72 −8 5.32 0.006 46
Perceptual distance to exemplars
Inferior OG, posterior occipital cortex, caudal lingual gyrus,
caudal cuneus

L −12 −92 −6 5.9 <0.001 84

Perceptual similarity to exemplars
Inferior and middle OG, posterior occipital cortex R 30 −96 −2 7.33 <0.001 367

36 −90 −8 6.68 <0.001
48 −80 −12 5.25 0.008

Inferior OG, posterior occipital cortex L −30 −96 −10 6.1 <0.001 95

FG fusiform gyrus, OG occipital gyrus.
Peak voxels and local maxima for the univariate effects of perceptual distance and similarity to the prototype and exemplars surviving family-wise correction for multiple comparisons across the entire
scan volume (pFWE <0.05, k≥ 10).
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prototype- and exemplar-based categorisation, prototype and
exemplar representations were localised in different regions.
Moreover, brain activity correlated exclusively negatively with
model-based similarity to the prototype, whereas correlations
with similarity to exemplars were both positively and negatively
signed. Multivariate analyses additionally revealed exemplar
representations in memory-related regions like the hippocampus
and the inferior temporal gyrus. Furthermore, we report evidence
for the co-existence of prototype and exemplar representations on

the individual level, indicating that individuals can from proto-
type and exemplar representations simultaneously.

We used a twofold approach to localise exemplar- and prototype-
dependent representations by (1) correlating perceptual similarity to
exemplars and the prototype with univariate fMRI activity and (2)
comparing multivariate pattern similarity between items based on
their perceptual similarity and dissimilarity to exemplars and pro-
totype. The univariate parametric contrast revealed regions in which
overall activity to a stimulus scaled positively or negatively with its

Fig. 3 Multivariate analyses on the group level (n= 62 individuals). a Examples of representational dissimilarity matrices (RDM) for the prototype and
the exemplar model from one volunteer. Each cell in the model RDM represents absolute differences between similarity estimates of a category member
stimulus pair. For visualisation purposes, both model RDMs were sorted by similarity to the prototype in descending order and were rank-transformed. The
small squares represent single stimuli. The prototype, which is also a category A transfer item, is denoted by a purple framed square. All other transfer
items are denoted by black framed squares. The exemplars are denoted by green-filled squares. b Multivariate prototype and exemplar representations.
Multivariate representational similarity analyses (RSA) show significant fits of the prototype (purple) and the exemplar (green) models. Statistical t-maps
are thresholded at punc < 0.001 for visualisation purposes. c ROI-specific posterior probabilities that multivariate effect sizes (ESRSA) for prototype (purple)
and exemplar (green) representations deviate from zero. Only ROIs with a BF >3 for the comparison against the null model are depicted. d Violin plots of
observed ESRSA for ROIs with a BF >3 for the comparison against the null and ROIs of particular interest. The bolded horizontal lines depict the mean ES
within each ROI. Black borders around the violin plots highlight effects with a BF >3. Black borders around the violin plots highlight effects with a BF >3.
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model-based similarity to the prototype or exemplars, respectively27.
In addition, the RSA searchlight enabled the localisation of brain
regions in which activation and deactivation across voxels contribute
simultaneously to the similarity of neural activity patterns between
any two items depending on the degree to which model-based
similarity to the prototype or exemplars of the two stimuli resemble
each other.

Insight into potential processes underlying the prototype and
exemplar strategies is given by the inspection of the sign of the

correlation between perceptual similarity and univariate fMRI
activity. Only perceptual similarity to exemplars but not to the
prototype correlated positively with univariate fMRI activity,
suggesting qualitatively different mechanisms mediating the two
strategies. While both strategies are based on the comparison of
an item to a stored representation, exemplar-based categorisation
requires an additional active, serial retrieval of single exemplars
from memory4. This is also supported by the positive correlation
with perceptual similarity to exemplars in posterior occipital

Table 2 Localisation of multivariate prototype and exemplar neural representations.

Peak voxels and local maxima Cluster extent

MNI coordinates

x y z Z pFWE kFWE

Prototype model
Lateral superior OG, IPS (Rostrodorsal IPL, caudal SPL) R 28 −62 40 5.14 0.001 778
Lateral superior OG, IPS (Rostrodorsal, caudal and rostroventral IPL,
caudal SPL)

L −36 −70 40 4.81 0.006 492
−26 −60 38 4.38 0.032
−30 −76 46 4.33 0.040

Lateroventral FG, ventrolateral ITG R 46 −52 −8 4.52 0.019 43
IPS (lateral SPL) R 28 −42 40 4.42 0.027 52
Ventral IFG R 51 9 18 4.34 0.039 13
IPS (rostroventral IPL) R 52 −60 38 4.33 0.039 25
Exemplar model
Dorsal and caudal cingulate gyrus, paracentral lobule L/R 2 −27 44 5.07 0.002 783

−8 −24 51 5.04 0.002
IPS (rostroventral IPL), postcentral gyrus, superior temporal gyrus L −51 −22 16 4.63 0.011 150
Dorsolateral putamen, dorsal insular gyrus L −36 −3 3 4.5 0.018 92
Postcentral gyrus, precentral gyrus R 32 −26 56 4.44 0.023 106
Dorsolateral putamen, dorsal insular gyrus R 33 4 3 4.4 0.028 52
Postcentral gyrus L −38 −27 44 4.36 0.033 45
Anterior hippocampus R 36 −10 −20 4.34 0.035 11

OG occipital gyrus, IPS intraparietal sulcus, IPL inferior parietal lobule, SPL superior parietal lobule, FG fusiform gyrus, ITG inferior temporal gyrus, IFG inferior frontal gyrus.
Peak voxels and local maxima for fits of the prototype and exemplars models surviving family-wise correction for multiple comparisons across the entire scan volume (pFWE <0.05, k≥10).

Fig. 4 Neural representation groups organised by behavioural preference groups (n= 62 individuals) based on ΔDIC ≥5. The pie charts depict the
proportion of individuals showing only exemplar representations in green, only prototype representations in purple, the presence of both representations in
dark turquoise, and the presence of neither representation type in grey. Supplementary Fig. 1 additionally depicts the subgrouping of neural representation
groups when no threshold for the ΔDIC is applied.
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areas, known to mediate basic visual recognition memory28 as
well as in the fusiform gyrus, mediating object recognition29,30

and the retrieval of visual features31. Negative correlations with
perceptual similarity, i.e., perceptual dissimilarity (Fig. 2a),
occurred for both prototype and exemplar models, albeit in dif-
ferent regions. This negative correlation is in line with expecta-
tion suppression32,33 and predictive coding theories34, assuming
that the brain computes the deviation between sensory input and
prior representations. Accordingly, activity in visual areas might
scale with the deviation from exemplars and the prototype
reflecting fine-grained information35–39. To summarise, uni-
variate analyses indicate that while the comparison of an item to
the prototype mostly reflects its deviation from a holistic visual
representation, the comparison to exemplars is mediated by both
the processing of perceptual deviation and memory-related pro-
cesses in which exemplars are actively retrieved and matched to
the input.

RSA revealed additional prototype and exemplar representa-
tions in inferior parietal and frontal regions, consistent with
previous work showing that multivariate voxel patterns in these
regions reflect behaviourally relevant category distinctions27,40

and information pattern reinstatement during categorisation41.
Multivariate prototype representations were additionally pre-
sent in superior parietal regions, which are (1) involved in
perceptual evidence accumulation42,43 and (2) areas of con-
vergence of multiple perceptual processing streams, enabling
the progressive abstraction of conceptual knowledge from
perceptual experience44. Activity in parietal and prefrontal
areas has also been related to difficulty, uncertainty, and
related variables (e.g., response conflict resolution or decision-
bound implementation)45,46. Hence it would be interesting to
investigate to what degree parietal and frontal category
representations also reflect the recruitment of executive
functions inherent in categorisation processes.

The current Bayesian analyses provided moderate to strong
evidence that prototype representations were not present in
hippocampal areas in this perceptual single-category categorisa-
tion task, for which previous studies found relatively preserved
performance in patients with memory deficits and hippocampal
damage as well as a predominant engagement of the perceptual
learning system in healthy individuals19–22. The apparent con-
tradiction to reports of prototype representations in the hippo-
campus of healthy individuals during two-category tasks with
stimuli with clearly identifiable binary features could hence be
reconciled by hippocampal prototype representations depending
on task and stimulus characteristics. The idea of a task- and
stimulus-specific hippocampal involvement in prototype repre-
sentations also fits well to research focusing on categorisation in
general: where hippocampal contributions to categorisation have
been shown to depend on whether one or two categories are
present14,15, incidental versus intentional learning modes47,48,
category structures49, as well as learning stage50. In addition, a
stronger hippocampal involvement in the categorisation of sti-
muli with clearly identifiable dimensions compared to stimuli like
dot patterns is consistent with the central role of the hippo-
campus in relational binding11,51. Although neural prototype
representations for A/non-A tasks with dot-pattern stimuli have
not yet been addressed directly, more direct evidence for the task-
and stimulus-dependency of hippocampal contributions to
prototype-based categorisation comes from studies in memory-
impaired individuals who showed reduced performance in a two-
category but not single-category task22 and for the categorisation
of scenes but not faces19. Since these patients could not rely on
the memory-intense exemplar strategy52,53, they likely preferred
the ‘memory-friendly’ prototype strategy. As prototype repre-
sentations in tasks with stimuli with clearly identifiable

dimensions from two categories depend on hippocampal areas6,7,
patients were less impaired in single-category tasks in which
stimuli can be processed in a holistic manner, such as faces or
abstract patterns.

We found multivariate exemplar representations in areas
mediating episodic memory, mental search, and/or mental replay,
such as the vmPFC, the putamen, the cingulate gyrus, the insula,
and most notably, the anterior and posterior hippocampus54–58.
Hippocampal exemplar representations support the view that the
exemplar strategy involves the recall of single stimulus
instances59,60. Previous work suggests that the anterior hippo-
campus is more involved in associative processes, whereas the
posterior hippocampus mainly mediates distinct representations
supporting stimulus discrimination11. We found both pro-
nounced posterior hippocampal exemplar representations in line
with previous literature using simple exemplar models7 and
anterior hippocampal exemplar representations, that were so far
only demonstrated in previous studies using more sophisticated
models55,61 like SUSTAIN that build adaptive clusters varying in
their degree of abstraction from exemplar-like to prototype-like
representations. Therefore, the detection of exemplar repre-
sentations in the anterior hippocampus might require relatively
large sample sizes as in our study or more sophisticated modelling
approaches as in previous studies.

Inspection of multivariate neural representations within indi-
viduals supports the view that prototype and exemplar repre-
sentations can be stored simultaneously (Fig. 4). A similar
phenomenon has been described for recognition memory, where
the same events and objects were represented simultaneously at
different resolutions62,63, and for decision making, where value
estimates were simultaneously represented based on recent but
also long-term experience64. The formation of both representa-
tion types, i.e., prototype as well as exemplars, might preserve
high flexibility in behavioural strategies so that categorisation
could be based either on prototype or exemplar representations,
depending on the current stimulus properties and/or resources.
Here, we used an exploratory descriptive approach for describing
prototype and exemplar representations on the individual level so
that the exact proportion of individuals using both representa-
tions warrants support from future research.

The current article focused on the localisation and co-existence
of prototype and exemplar representations in the brain. Con-
necting to previous research using a similar approach6–8, we used
simple prototype and exemplar models instead of more complex
models such as mixture models or SUSTAIN. In addition,
reflecting that comparing a new item to a relatively large set of
individual exemplars involves more complex cognitive processes
than the comparison to a single prototype, similarity estimates
produced by the exemplar model are naturally more complex
than those from the prototype model, which in turn poses the risk
that smaller exemplar-dependent effects could have been over-
looked. Nevertheless, our approach confirmed exemplar repre-
sentations in previously described regions. Particularly the
localisation of (more complex) exemplar representations in the
hippocampus reinforces our findings of non-present hippocampal
prototype representation in the current task. Relatedly, it should
be noted that prototype and exemplar models can be differentially
flexible to fit the data65, however in the present study, both
strategies were identified. Moreover, although the non-presence
of hippocampal prototype representations in the current results
could provide a good explanation for relatively preserved cate-
gorisation performance in single-category tasks with abstract
visual patterns in memory-impaired individuals, they do not rule
out general hippocampal contributions to prototype-based per-
ceptual categorisation. Furthermore, it would be interesting to test
whether the similarity structure of prototype and exemplar
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representations identified in our data corresponds to the per-
ceived similarity of our stimulus set, as suggested by previously
reported high correspondence between objective and subjective
similarity measures13,66. Finally, although significant learning
effects during training speak against a strong contribution to this
issue in our task, it is worth noting that A/notA tasks pose the
risk of reaching above-average categorisation without training67.

In summary, our approach to measuring univariate and mul-
tivariate exemplar and prototype representations demonstrates
that prototype representations in a single-category task with
abstract visual patterns were predominantly mediated by visual
and parietal but not hippocampal areas. This finding could
account for apparent contradictions between hippocampal pro-
totype representations in two-category tasks and relatively pre-
served prototype-based categorisation in individuals with
hippocampal lesions in single-category tasks. In particular, we
provide evidence that prototype representations in single-
category perceptual categorisation with abstract visual stimuli
are mainly formed based on category-relevant deviations from the
prototype in visual areas like the fusiform gyrus. Exemplars seem
to be represented as fine-grained memory representations in
visual areas, with memory-based evidence for category mem-
bership being further processed in memory-related areas like the
hippocampus. Moreover, our results indicate that individuals can
form both representation types simultaneously.

Methods
Participants. A total of N= 72 volunteers took part in the study. Volunteers were
recruited via advertisement on a job board of the University of Hamburg.
Volunteers were eligible to participate when they were between 18 and 35 years old,
fluent in the German language, had no history of mental or neurological disease,
drug or alcohol abuse and did not have any contraindications to MRI measurement
(e.g. metal implants, pregnancy). Moreover, all volunteers were required to have
normal or, through contact lenses, corrected-to-normal vision. All gave signed
informed consent according to the Declaration of Helsinki. Ethics approval was
obtained from the Ethics Committee of the Hamburg Medical Association
(PV5874).

Two volunteers felt uncomfortable in the scanner, one measurement was
interrupted by technical problems and one volunteer was measured with wrong
sequence settings. Datasets from these volunteers were excluded from all analyses.
In addition, volunteers were excluded who both performed below 75% during the
last training block of the category learning task and did not reach an average
performance of 75% during the test phase (N= 5). The data from an additional
volunteer were excluded because the fit of the guessing model did not show a
meaningful difference between the fits of the prototype and the exemplars models
(see Methods Section ‘Computational modelling’).

In total, N= 62 volunteers were included in further analyses. Included
volunteers were between 19 and 34 years old [M= 25.6, SD= 3.7 years]. N= 30 of
the volunteers were female and n= 8 were left-handed. Volunteers had at least 12
years of education, with the majority being currently enroled as university students
(n= 38).

Stimuli. Dot patterns were created using a well-established procedure originally
published by Posner and colleagues13. The prototypical stimulus of category A was
created by placing nine dots at random positions within the central 30 × 30 area of a
50 × 50 grid. Category members were created by moving each dot of the prototypical
stimulus probabilistically following a procedure published by Posner and colleagues
(1976), in which varying levels of distortions from the prototype are implemented by
the application of different probability sets for dot movement. These probability sets
determine whether a dot will either keep its position or the distance by which it will be
moved within a 20 × 20 around its original position. For the training set, four stimuli
with distortion levels of 5.0, 6.0 and 7.0 bit/dot were randomly chosen as exemplars,
summing up to 12 idiosyncratic category members. Non-member training stimuli
were 12 randomly generated dot patterns with dot positions located within the central
30 × 30 area of a 50 × 50 grid, each pattern was distorted by a level of 7.0 bit/dot to
prevent non-members to be easily identified by a more central positioning of the dots
compared to the distorted category members. As in the classical paradigm, the
prototype was not part of the training set. The transfer set consisted of the prototype,
the 24 stimuli from the training set, 8 novel distorted versions of the prototype
(distortion levels of 4.0, 5.0, 6.0 and 7.0 bit/dot) and eight novel distorted versions of
random patterns (distortion level of 7.0 bit/dot). Following a common
practice4,45,66,68, dots were connected to polygons to make the stimuli visually more
appealing and facilitate holistic processing.

Category learning task. Participants were informed that they would learn via
trial-and-error whether abstract patterns belong to a certain category (‘A’) or not.
They were explicitly instructed to focus on the overall appearance of each stimulus
and the similarity among category members. They were informed that no single
feature was informative of category membership and that there was no hidden
verbalisable rule. Before the acquisition of the actual category structure, two
familiarisation blocks consisting of 24 trials with a different stimulus set of dot-
pattern stimuli ensured that volunteers understood the task.

Participants performed the acquisition and the transfer phases of the
categorisation task in the MRI scanner. Each training block consisted of all
24 stimuli from the training set (12 ‘A’ & 12 ‘non-A’ stimuli), presented
individually in pseudo-randomised order at a visual angle of 4.22 degrees.
Volunteers had to indicate via button press within a time window of 2.5 s whether
they believed a pattern belongs to category A or not. The position of ‘yes’ and ‘no’
responses on the screen changed pseudo-randomly between left and right to
prevent stimulus-response mapping. Visual feedback was presented after each trial
indicating whether the volunteers’ response was ‘correct’, ‘incorrect’, or ‘too late’.
Total accuracy per block was shown after each training block. All participants
performed at least eight training blocks. Training continued until completing four
blocks with an accuracy of 75% or after 14 training blocks.

During the acquisition phase, each fMRI run comprised three training blocks,
giving individuals the opportunity to take a short break within the scanner after
every third block. To minimise fatigue, all participants left the scanner after the
acquisition phase (~23 to 40 min) for a period of 5 to 10 min. During the transfer
phase, each block consisted of 24 training stimuli plus 17 novel stimuli (the
prototype, eight distorted ‘A’ members and eight ‘non-A’ stimuli). Stimuli were
presented in pseudo-randomised order without feedback. To optimise fMRI
acquisition for multivariate fMRI analyses, individual fMRI runs were used for the
8 transfer blocks (each ~4.8 min). See Fig. 1b for details on trial timing.

Because the research questions of the current articles focus on stable prototypes
and exemplar representations, only data from the transfer phase were included in
further analyses.

Computational modelling. Classical A/non-A prototype and exemplar
models60,69,70 were applied to endorsement rates of the transfer phase to study
prototype and exemplar representations in the brain (Fig. 1b, c). Both models
define perceptual similarity (s) as an exponential decay function with a sensitivity
parameter (c), quantifying the steepness of how perceptual similarity decays with
distance (d). The prototype model postulates that the similarity of item i to cate-
gory A is represented by its similarity to the prototype P (i.e. siA= siPA ). The
exemplar model postulates that the similarity of item i to category A is represented
by the summed similarity to training exemplars j (i:e:; siA ¼ ∑

j2A
sij).

similarity of the i-th item to prototype : siA ¼ e�cdiP ð1Þ

similarity of the i-th item to exemplars j : siA ¼ ∑
j2A

e�cdij ð2Þ
While physical similarity is based on Euclidian distances (d) between stimuli,

perceptual similarity (s) is derived using an exponential function in which physical
distances are scaled by an individual sensitivity parameter (c) taken to the power of
the Euler’s number (1/2). Accordingly, physical distances farther away from the
prototype or exemplars are down-weighted, with the amount of down-weighting
being determined by individual sensitivity. The resulting estimates of perceptual
similarity have been shown to closely match similarity ratings in previous
studies13,66.

The endorsement probabilities (r) are based on the similarity to category A (sA)
plus a criterion parameter (k).

endorsement probability of the i-th item : ri ¼
siA

siA þ k ð3Þ
Fitting of the prototype and exemplar models was performed using the package

‘R2jags’71 under R version 4.0.372 which implements Bayesian analysis in JAGS73.
To identify volunteers whose performances could be better explained by guessing
than by a prototype or exemplar strategy74, a guessing model was estimated
assuming endorsement probability to be at chance level (i.e. r= 0.5). All three
models were fit to endorsement rates of the transfer phase individually for each
volunteer. Uniform priors were used for sensitivity [c ~ uniform(0,5)] and criterion
parameters [k ~ uniform(0,1)] of the prototype and exemplar models, representing
beliefs before fitting the models to the data that c varies between 0 and 5 and k
between 0 and 1 with homogenous probabilities. Markov Chain Monte Carlo
(MCMC) algorithms provided by the JAGS software were used for parameter
estimation. Starting values for parameter estimation were created by first fitting the
two models without initial value definition (4000 repetitions, burn-in period of
1000 repetitions, four chains) and then using the 2.5, 25, 50, 75 and 97.5% quantiles
of the posterior distributions (i.e. the updated beliefs after model fitting to the data)
as initial values for the next modelling step. The final model estimation was
performed using 100,000 repetitions, a burn-in period of 25,000 repetitions and
four chains. To reduce autocorrelations, a thinning factor of 5 was used so that only
every fifth sample from the posterior distribution was kept. Chain convergence
diagnosis, i.e., testing whether the simulated draws reached its stationary state, was
performed by visual inspection and by calculating the potential scale reduction
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factor (Rhat)75. The JAGS software provides the Deviance information criterion
(DIC)26 as a default measure for Bayesian model fit, a hierarchical modelling
generalisation of the Akaike Information Criterion (AIC). Following the previous
literature76–78, a ΔDIC ≥5 was interpreted as a threshold for a meaningful
difference. Posterior means of posterior distributions for the two free parameters
were used for subsequent analyses, including the generation of trial-wise similarity
vectors for each individual volunteer [formula (1) and (2)].

Only similarity estimates of category members were used as parametric
modulators in univariate fMRI analyses and for the generation of model RDMs for
multivariate fMRI analyses for two reasons. Firstly, the fact that category members
have a higher average similarity to the prototype/exemplars than non-member
stimuli would introduce the main effect of category membership to the similarity
vectors. Secondly, prototype and exemplar similarity vectors of non-members were
highly correlated (Mr= 0.991, SDr < 0.01) and are therefore not informative to
distinguish prototype and exemplar representations. This was not the case for
similarity vectors of category members (Mr=−0.249, SDr= 0.08).

Regions of interest (ROI). Region-of-interest definition was based on the three
existing model-based fMRI studies on prototype and exemplar representations
using complex categorisation tasks7,8,11 as well as on a study using a basic per-
ceptual categorisation task which did not directly target prototype/exemplar
representations45. We selected the following regions of interest: (1) prefrontal
regions7,8,11, specifically the IFG and the vmPFC; (2) parietal regions8,11,45, such as
the IPS [in this atlas labelled as rostral, caudal and lateral SPL and rostrodorsal
inferior parietal cortex (IPL)] and the precuneus; (3) occipital areas8 and occipito-
temporal regions45, specifically, the ITG and the fusiform gyrus; and (4) the
hippocampus6,7.

All masks were created by using the BRAINNETOME atlas (BNA)79.
Additionally, a mask for the vmPFC was taken from Mackey and Petrides80. Since
the BNA provides a different division of the hippocampus than used by Bowman
and colleagues6, hippocampal masks extracted from the atlas were first collapsed
and then divided at the middle slice into an anterior and a posterior division. In
total, six IFG masks, seven ITG masks, three fusiform gyrus masks, nine parietal
regions masks, 11 occipital regions masks, two hippocampus and one vmPFC mask
covering both hemispheres (see Supplementary Table 3 for BNA IDs) were
selected. For family-wise error correction of uni- and multivariate analyses on the
group level, the 39 masks were combined into a single ROI mask.

Image acquisition and preprocessing. Event-related functional MRI was per-
formed on a 3 Tesla scanner (Siemens PRISMA) with a multiband gradient echo-
planar imaging T2*-weighted sequence in 54 contiguous axial slices (2-mm
thickness, TR 1.636 s, TE 29 ms, flip angle 70°, a field of view 224 × 224, multiband
factor 2). For spatial normalisation, a high-resolution T1-weighted structural MR
image was acquired by using a 3D-MPRAGE sequence (TR 2.3 s, TE 2.89 ms, flip
angle 9°, 1 mm slices, a field of view 256 × 192; 240 slices).

Neuroimaging data were preprocessed and analysed using Statistical Parametric
Mapping (SPM12; Wellcome Department of Imaging Neuroscience, London, UK)
run in Matlab R2020b. To prevent biases due to spin saturation, the first five
functional images were discarded. To correct for susceptibility-by-movement
artefacts, all functional images were realigned and unwarped (as implemented in
SPM12). Individual structural T1 images were coregistered to functional images,
segmented into grey and white matter and submitted to the ‘diffeomorphic
anatomic registration through an exponentiated lie algebra algorithm’ (DARTEL)
toolbox to create structural templates, individual flow fields as well as subject-
specific grey matter, white matter and cerebrospinal fluid (CBF) masks. DARTEL
flow fields were used for normalising structural and functional images to
MNI space.

We conducted several first-level models (for different versions, see next
sections) for which functional images from the transfer phase were submitted to
general linear models (GLMs) with a 128 s high pass filter. We applied SPM’s
alternative pre-whitening method to account for autocorrelation, FAST, which has
been suggested to perform better than SPM’s default81.

Univariate fMRI analyses. For univariate group-level analyses, normalised
functional images were smoothed with a full-width half maximum (FWHM)
Gaussian kernel of 8 mm in all spatial directions. The kernel size of 8 mm was
chosen based on our previous work targeting cortical and hippocampal
regions82,83, the observation that larger smoothing kernels can increase sensitivity
to hippocampal activity84 and general recommendations85. To make sure that we
did not overlook effects in small hippocampal regions due to an 8 mm smoothing
kernel, we repeated the univariate analyses on functional images smoothed with
4 mm (see Supplementary Note 2). White matter and CBF masks were used to
extract time series representing noise unrelated to the experimental paradigm.
Principal components explaining at least 1% of variance were used as nuisance
regressors in all first-level models.

Two GLMs were estimated for each subject to localise univariate prototype and
exemplar representations. For each GLM, the eight runs from the transfer phase
were concatenated and a session constant was added. GLMs contained an onset
regressor for correctly categorised category members modulated by trial-wise

prototype or exemplar similarity estimates in two separate GLMs, respectively. To
explain the additional variance, onsets for correctly classified non-members, onsets
for incorrectly categorised patterns (members and non-members), response onsets
modulated by reaction times, onsets of fixation crosses, as well as nuisance
regressors were added as regressors of no interest.

Univariate prototype and exemplar representations for each individual were
measured by contrasting BOLD effects associated with the parametric modulator
containing prototype or exemplar similarity estimates for correctly classified
category members against the implicit baseline. The resulting contrast images were
submitted to one-sample t-tests. Results were considered significant at p < 0.05,
family-wise error corrected for multiple comparisons on the entire scan volume
(pFWE) and within the regions of interest mask (pFWEROI), and an extent threshold
of ten contiguous voxels.

In addition to assessing localisations of prototype and exemplar representations
using classical peak-based frequentist approaches, we applied a Bayesian analysis
approach. This approach provides an opportunity to quantify the probability of the
(non-)existence of prototype and exemplar representations in specific brain areas
on the group level and thereby also connects our findings to previous research
focusing on ROI-based group analyses6. For this purpose, Bayesian analyses were
conducted using the brm() function from the R-package ‘brms’. To calculate ROI-
specific effect sizes (ESuniv)6 for each individual, contrast estimates from each of the
39 bilateral masks associated with univariate prototype and exemplar
representations were averaged and then divided by the standard deviation. Next,
individual ROI-specific ESuniv were submitted separately to simple intercept-only
models (i.e., ESuniv ~0+ intercept) as well as models assuming an intercept of zero
(i.e., ESuniv ~0). Model estimation was performed using a uniform prior
distribution [ESuniv ~uniform(−5,5)], 40,000 repetitions, a burn-in period of 2500
repetitions and four chains. Following the interpretation of evidential strength of
the standards proposed by Jeffreys86 and adapted by Lee and Wagenmakers87 (p.
105), a Bayes factor (BF) >3 was interpreted as evidence that ESuniv deviates from 0
(H1) and a BF <0.333 as evidence that ESuniv was sampled from a null distribution
(H0).

Multivariate fMRI representational similarity analyses (RSA): first-level
models and generation of representational dissimilarity matrices (RDM). We
performed two RSA analyses. (1) To identify multivariate prototype and exemplar
representations on the group level in a whole-brain searchlight analysis, realigned
native-space functional images from the transfer phase were submitted to subject-
specific GLMs. (2) To identify multivariate prototype and exemplar representations
in individual ROIs (located in MNI space) within single individuals and relate them
to behavioural model fits, normalised functional images from the transfer phase
were submitted to subject-specific GLMs.

For our design with jittered ITI and randomised order of conditions within and
across runs, the best modelling approach is to model the data with a regressor for
all of the trials within the condition of interest88. This approach is optimal for
obtaining stable estimates of activity for each condition because the model is fit for
multiple observations. Hence, individual GLMs contained separate regressors for
all 41 stimuli, each holding eight onsets reflecting stimulus repetitions. Similar to
the first-level models for univariate analyses, regressors containing response onsets,
modulated by reaction times, and onsets of fixation crosses, as well as nuisance
regressors, were added as regressors of no interest.

We used the resulting single stimulus t-maps of category members (i.e., 21 t-
maps) for RSA using the RSA-toolbox89. T-maps were chosen because they consist of
effect sizes weighted by their error variance, which reduces the influence of large but
variable response estimates for multivariate analyses90. In general, RSA involves
testing whether the observed similarity of brain responses (a neural RDM)
corresponds to a hypothetical pattern of similarity (model RDM).

To generate the model RDMs, trial-wise estimates of similarity to the prototype
and exemplars of category members were first rescaled. Each cell of the model
RDMs, representing one stimulus pairing, was then filled with the absolute
difference in model-based similarity estimates for each stimulus pair (Fig. 3a). In
contrast to the above-mentioned parametric modulators directly testing whether
BOLD effects correlate with model-based perceptual similarity or dissimilarity to
the prototype/exemplars, the multivariate RDMs measure how closely stimuli
resemble each other regarding their model-based similarity to the prototype or
exemplars. In the univariate approach, stimuli with low similarity to the prototype
have a smaller value for the parametric modulator than stimuli with high similarity
to the prototype. In contrast, in our RSA approach, a stimulus has a small RDM-
value when being paired with a stimulus that is similar in similarity to the
prototype (i.e. when the paired stimuli have both low or both high similarity to the
prototype, respectively) and a large RDM-value when being paired with a stimulus
that is dissimilar in its similarity to the prototype (i.e. when comparing two stimuli
with low and high similarity to the prototype). The difference between the current
univariate and RSA approach is that the univariate approach identifies regions in
which evoked activity scales with an item’s (dis-)similarity to the prototype or
exemplars, whereas the RSA approach identifies regions in which voxel pattern
similarity between two items correlates with their resemblance in (dis-)similarity to
the prototype or exemplars. Illustrating the difference between the current RSA and
other RSA approaches, highly distorted stimuli can look very different but still
resemble each other closely in their (dis-)similarity to the prototype or exemplars.
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Intra-individual Spearman rank correlation coefficients for the relationship
between prototype and exemplar RDMs were on average Mρ= 0.18 (SDρ= 0.041).

We measured neural multivoxel RDMs by computing the dissimilarity
(1–Pearson correlation across voxels) of t-maps for each specific category member.

Searchlight RSA (group level). To assess neural prototype and exemplar repre-
sentations on the group level across the whole brain using a searchlight approach, the
21 single stimulus t-maps in native space were submitted to RSA searchlight sepa-
rately for each volunteer. For each searchlight (eight voxels radius), neural RDMs
were generated by extracting stimulus-specific t-values from t-maps masked by
individual grey matter masks (thresholded at an intensity value of 0.2). For each
subject, neural and model RDMs were compared using Spearman’s rank correlation
coefficient. The resulting ρ-maps were Fisher Z-transformed to conform to Gaussian
assumptions, smoothed with an FWHM Gaussian kernel of 8mm in all spatial
directions, normalised using individual flow fields from the DARTEL toolbox, and
masked by a normalised, average cerebrum grey matter mask. Again, we repeated the
analysis with 4mm smoothing to make sure we do not overlook effects due to an
8mm smoothing kernel. Preprocessed ρ-maps were submitted to one-sample t-tests.
We tested for positive correlations between the neural and model RDMs to identify
regions in which multivariate pattern activity reflects prototype or exemplar-
dependent representations so that activity patterns evoked by two stimuli with similar
distances to the prototype (or exemplars) should be more similar than activity pat-
terns evoked by two stimuli with a dissimilar distance to the prototype (or exemplars).
Results were considered significant at p < 0.05, family-wise error corrected for mul-
tiple comparisons on the entire scan volume (pFWE) and within the regions of interest
mask (pFWEROI), and an extent threshold of 10 contiguous voxels.

As for contrast estimates from univariate analyses, Bayesian analyses were
conducted on ROI-specific averages of correlation coefficients from normalised ρ-maps
to quantify the probability that anatomical brain regions carry prototype and/or
exemplar representations on the group level. Model estimation on ESRSA was performed
using a uniform prior distribution ranging between−1 and 1 [ESRSA ~ uniform(−1,1)].

ROI RSA (individual level). To assess the potential co-occurrence of neural pro-
totype and exemplar representations within individuals and study how they are linked
to behavioural preferences, the 21 single stimulus t-statistic maps in standard space
were submitted to RSA separately for each volunteer within the above-mentioned
predefined ROI89. For each ROI, neural and model RDMs were compared using
Spearman’s rank correlation coefficient. Given the large number of ROIs, uncorrected
statistical comparisons would yield a high chance of false positives, while a Bonferroni
correction for multiple comparisons is likely associated with a decreased sensitivity.
Therefore, we relied on the correlation coefficients as effect sizes and uncorrected p
values of the condition-label randomisation test of RDM relatedness as implemented
in the RSA-toolbox89, with a threshold of ρ ≥ 0.1 (i.e., at least a small effect size91,
p. 82) and punc < 0.05 being interpreted as evidence for the presence of prototype or
exemplar representations. Concerning the relationship between neural and beha-
vioural model fits investigated with Spearman’s rank correlation coefficient analyses, a
similar critical threshold of ρ ≥ 0.1 and punc < 0.05 was used.

Analyses of behavioural data. Linear models were estimated using the lm()
function to compare accuracy between the three preference groups. Linear mixed
models were estimated using the lmer() function of the lme4-package92 in com-
bination with the lmerTest-package93 to investigate the effects of category mem-
bership and training/transfer blocks on accuracy and to test whether model-free
distances to the prototype or exemplars predict accuracy. A paired t-test was
performed using the t.test() function to compare the DICs of the two strategies.
Results were considered significant at p < 0.05.

Statistics and reproducibility. Please refer to the Methods section for details
about the software, analyses and statistics used in the present study. All analyses
were based on data from 62 individuals (see Methods Section ‘Participants’).

Data availability
The experimental data that support the findings of this study are available from https://
osf.io/xkgqz/?view_only=9b02442f834c44f8b4923996f0e41ff6, including the source data
underlying Figs. 2d, 3d placed in a subfolder named ‘Functional imaging analyses’.
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