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DeepBacs for multi-task bacterial image analysis
using open-source deep learning approaches
Christoph Spahn 1,2✉, Estibaliz Gómez-de-Mariscal3, Romain F. Laine 4,5,11, Pedro M. Pereira 6,

Lucas von Chamier4, Mia Conduit7, Mariana G. Pinho 6, Guillaume Jacquemet8,9,10, Séamus Holden7,

Mike Heilemann 2✉ & Ricardo Henriques 3,4,5✉

This work demonstrates and guides how to use a range of state-of-the-art artificial neural-

networks to analyse bacterial microscopy images using the recently developed Zer-

oCostDL4Mic platform. We generated a database of image datasets used to train networks

for various image analysis tasks and present strategies for data acquisition and curation, as

well as model training. We showcase different deep learning (DL) approaches for segmenting

bright field and fluorescence images of different bacterial species, use object detection to

classify different growth stages in time-lapse imaging data, and carry out DL-assisted phe-

notypic profiling of antibiotic-treated cells. To also demonstrate the ability of DL to enhance

low-phototoxicity live-cell microscopy, we showcase how image denoising can allow

researchers to attain high-fidelity data in faster and longer imaging. Finally, artificial labelling

of cell membranes and predictions of super-resolution images allow for accurate mapping of

cell shape and intracellular targets. Our purposefully-built database of training and testing

data aids in novice users’ training, enabling them to quickly explore how to analyse their data

through DL. We hope this lays a fertile ground for the efficient application of DL in micro-

biology and fosters the creation of tools for bacterial cell biology and antibiotic research.

https://doi.org/10.1038/s42003-022-03634-z OPEN

1 Department of Natural Products in Organismic Interaction, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany. 2 Institute of Physical and
Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany. 3 Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal. 4MRC-Laboratory for
Molecular Cell Biology, University College London, London, UK. 5 The Francis Crick Institute, London, UK. 6 Instituto de Tecnologia Química e Biológica
António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal. 7 Centre for Bacterial Cell Biology, Newcastle University Biosciences Institute, Faculty of
Medical Sciences, Newcastle upon Tyne NE24AX, United Kingdom. 8 Turku Bioscience Centre, University of Turku and Åbo Akademi University,
Turku, Finland. 9 Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland. 10 Turku Bioimaging, University of Turku and Åbo
Akademi University, Turku, Finland. 11Present address: Micrographia Bio, Translation and Innovation hub 84 Wood lane, W120BZ London, UK.
✉email: christoph.spahn@mpi-marburg.mpg.de; heilemann@chemie.uni-frankfurt.de; rjhenriques@igc.gulbenkian.pt

COMMUNICATIONS BIOLOGY |           (2022) 5:688 | https://doi.org/10.1038/s42003-022-03634-z | www.nature.com/commsbio 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-03634-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-03634-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-03634-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-03634-z&domain=pdf
http://orcid.org/0000-0001-9886-2263
http://orcid.org/0000-0001-9886-2263
http://orcid.org/0000-0001-9886-2263
http://orcid.org/0000-0001-9886-2263
http://orcid.org/0000-0001-9886-2263
http://orcid.org/0000-0002-2151-4487
http://orcid.org/0000-0002-2151-4487
http://orcid.org/0000-0002-2151-4487
http://orcid.org/0000-0002-2151-4487
http://orcid.org/0000-0002-2151-4487
http://orcid.org/0000-0002-1426-9540
http://orcid.org/0000-0002-1426-9540
http://orcid.org/0000-0002-1426-9540
http://orcid.org/0000-0002-1426-9540
http://orcid.org/0000-0002-1426-9540
http://orcid.org/0000-0002-7132-8842
http://orcid.org/0000-0002-7132-8842
http://orcid.org/0000-0002-7132-8842
http://orcid.org/0000-0002-7132-8842
http://orcid.org/0000-0002-7132-8842
http://orcid.org/0000-0002-9821-3578
http://orcid.org/0000-0002-9821-3578
http://orcid.org/0000-0002-9821-3578
http://orcid.org/0000-0002-9821-3578
http://orcid.org/0000-0002-9821-3578
http://orcid.org/0000-0002-2043-5234
http://orcid.org/0000-0002-2043-5234
http://orcid.org/0000-0002-2043-5234
http://orcid.org/0000-0002-2043-5234
http://orcid.org/0000-0002-2043-5234
mailto:christoph.spahn@mpi-marburg.mpg.de
mailto:heilemann@chemie.uni-frankfurt.de
mailto:rjhenriques@igc.gulbenkian.pt
www.nature.com/commsbio
www.nature.com/commsbio


The study of microorganisms and microbial communities is
a multidisciplinary approach bringing together molecular
biology, biochemistry, and biophysics. It covers large spa-

tial scales ranging from single molecules over individual cells to
entire ecosystems. The amount of data collected in microbial
studies constantly increases with technical developments, which
can become challenging for classical data analysis and inter-
pretation, requiring more complex computational approaches to
extract relevant features from the data landscape. Therefore,
manual analysis is increasingly replaced by automated analysis,
particularly with machine learning (ML)1. In bioimage analysis,
ML for example contributed to a better understanding of viral
organisation2 and the mode of action of antimicrobial
compounds3. In recent years, the interest in ML, and particularly
deep learning (DL), for bioimage analysis has increased sig-
nificantly, as their high versatility allows them to perform many
different image analysis tasks with high performance and
speed4–7. This was impressively demonstrated for image
segmentation8–11, object detection and classification12,13, quality
enhancement and denoising14,15, and even prediction of super-
resolution images14,16,17 from diffraction-limited images. DL
tools have even contributed to the conception of new transfor-
mative applications such as image-to-image translation18 or
artificial labelling19,20.

Next to developing novel DL approaches, effort has been put
into their democratisation and providing an entry point for non-
experts by simplifying their use and providing pretrained
models21–24. To further democratise expensive model training,
recent developments employ cloud-based hardware solutions,
thus bypassing the need for specialised hardware22,25,26. How-
ever, these methodologies dominantly focused on the study of
eukaryotes, particularly given the wealth of pre-existing imaging
data17,27.

In microbiology, DL approaches are intensively used for seg-
mentation, as they facilitate single-cell analysis in image analysis
pipelines and automated analysis of large datasets28–33. Such
pipelines can, for example, be used for automated cell counting or
morphological analysis of individual cells or cell lineages. How-
ever, due to the considerable variety in microscopy techniques
and bacterial shapes there is no universal DL network that excels
for all types of data. Although there is effort in developing gen-
eralist networks10,28, specialised networks tend to especially excel
for the type of images they were developed for and are typically
not characterised beyond that.

Beyond segmentation, DL remains largely underexploited in the
analysis of microbial bioimages, although other tasks like object
detection, denoising, artificial labelling, or resolution enhancement
could be well applied with many useful applications.

Object detection is a task closely related to image segmentation,
which, instead of classifying pixels as background or foreground
pixels, outputs a bounding box and a class label for each detected
object. This is used extensively in real-life applications, such as
self-driving cars or detecting items in photographs12,13. In
microscopy, object detection can detect and classify cells of spe-
cific types or states22, which can also be integrated into smart
imaging approaches that allow for automated image acquisition34.

Denoising and artificial labelling are particularly suited to
improve live-cell imaging, where high contrast and fast image
acquisition are critical to capture the dynamic nature of biology in
full detail. However, these usually come associated with high
illumination power regimes often not compatible with live-cell
imaging14. Several denoising techniques such as PureDenoise35 or
DL-based approaches, both self-supervised (e.g. Noise2Void15)
and fully supervised (e.g. Content-aware image restoration
[CARE]14), have been proposed to circumvent this experimental
challenge. Robust denoising of images with low signal-to-noise

ratio (SNR) allows for lower light doses, which reduces photo-
toxicity, and shorter integration times, which increases the tem-
poral resolution, as was demonstrated in many eukaryotic
systems14.

Phototoxicity can be further reduced by employing artificial
labelling networks. These networks create pseudo-fluorescent
images from bright field, histology or electron microscopy (EM)
images19,20,36. Artificial labelling is particularly beneficial for
bright field-to-fluorescence transformation in live-cell application.
As it does not require fluorophore excitation, it is even less pho-
totoxic than denoising of low-SNR images, while providing
molecular specificity. Here, the neural network learns features in
bright field images imprinted by specific structures or biomole-
cules (for example, membranes or nucleic acids) and creates a
virtual fluorescence image of these structures. In contrast to image
segmentation, artificial labelling does not require manual anno-
tation, which reduces the time required for data curation. The use
of bright field images as inputs further allows to train networks for
different subcellular structures, leading to a high multiplexing
capability. In the original published work, this allowed predicting
multiple subcellular structures and their dynamics in mammalian
tissue culture samples19,20.

Another strategy to increase the information content in
microscopy images is resolution enhancement. Several supervised
DL approaches were developed that allow conversion of low-
resolution to high-resolution images. This includes confocal-to-
STED16, widefield-to-SRRF14,22 or widefield-to-SIM17 transfor-
mation. Next to increasing spatial resolution, these networks also
reduce the required light dose and increase temporal resolution.
This, for example, allowed for fast multi-colour imaging of
organelles in live mammalian cells17 or computational high-
resolution imaging of cytoskeletal proteins or the endocytosis
machinery. Application in microbiology, however, is still lacking.

To diversify the use of DL technology in microbiological
application, we propose that existing open-source DL approaches
used for eukaryotic specimens can be easily employed to analyse
bacterial bioimages. As the key requirement for successful
application of DL is suitable training data, we generated various
image datasets comprising different bacterial species (Escherichia
coli (E. coli), Staphylococcus aureus (S. aureus) and Bacillus sub-
tilis (B. subtilis)) and imaging modalities (bright field, widefield
and confocal fluorescence and super-resolution microscopy). We
used these datasets to train DL models for a wide range of
applications using the recently developed ZeroCostDL4Mic
platform22. Due to the ease-of-use and low-cost capabilities of
ZeroCostDL4Mic, it allows users to quickly train various net-
works and explore whether they are suitable for the desired task.
DeepBacs guides users by providing data and models, as well as
advice and image annotation/analysis strategies.

Specifically, we demonstrate the potential of open-source DL
technology in image segmentation of both rod and spherically
shaped bacteria (fluorescence and bright field images); in the
detection of cells and their classification based on growth stage
and antibiotic-induced phenotypic alterations; on denoising of
live-cell microscopy data, such as nucleoid, MreB and FtsZ
dynamics; and finally, we explore the potential of DL approaches
for artificial labelling of bacterial membranes in bright field
images and prediction of super-resolution images from
diffraction-limited widefield images.

To give researchers the opportunity to test and explore the
different DL networks, we openly share our data and models. This
will enable them to use pretrained models on existing data, or to
train custom models more efficiently via transfer learning22,37.
We envision that this work will help microbiologists seamlessly
leverage DL for microscopy image analysis and benefit from high-
performance and high-speed algorithms.
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Results
In the following sections, we describe the individual datasets
(Supplementary Table 1) that we used to perform the tasks shown
in Fig. 1. We explain how we designed our experiments, how data
was prepared and analysed, and showcase results for the different
image analysis tasks. The datasets and selected trained models are
publicly available via the Zenodo data sharing platform38 (Sup-
plementary Table 2), allowing users to explore the DL technology
described in this work. An overview of the networks applied in
this study is provided in Table 1.

Image segmentation. Image segmentation represents the main
application of DL technology for bacterial bioimages. Most

networks for bacterial segmentation focus on phase-contrast
images as their high contrast allows for efficient segmentation
even at high cell densities33,39,40. If no phase contrast is available,
researchers have to perform segmentation on bright field or
fluorescence images, which is challenging due to reduced contrast
and increased image heterogeneity. We thus sought to test various
DL networks for their capability to segment different types of
non-phase-contrast images frequently encountered in micro-
biological studies. For this, we generated and annotated different
datasets comprising bright field and fluorescence microscopy
images of rod- and cocci-shaped bacteria (E. coli and S. aureus for
bright field, S. aureus and B. subtilis for fluorescence) (Fig. 2a).
For all datasets, we trained DL models using ZeroCostDL4Mic, as
it provides rapid and straight-forward access to a range of popular

Fig. 1 Overview of the DL tasks and datasets used in DeepBacs. a We demonstrate the capabilities of DL in microbiology for segmentation (1), object
detection (2), denoising (3), artificial labelling (4) and prediction of super-resolution images (5) of microbial microscopy data. A list of datasets can be found in
Supplementary Table 1, comprising different species such as B. subtilis (1), E. coli (2–4) and S. aureus (5) and imaging modalities (widefield (1,2) and confocal
(2,3) fluorescence microscopy, bright field imaging (1,2,4) or super-resolution techniques (4,5)). NN: neural network output. CAM=Chloramphenicol. Scale
bars: 2 µm. b Schematic workflow of applying a DL network. Users select a ZeroCostDL4Mic notebook based on the image analysis task to be performed.
Custom annotated or publicly available datasets are used to train and validate DL models. The user can train the DL model from scratch or load a pretrained
model from public repositories (e.g., Zenodo or BioImage Model Zoo77) and fine tune it. After model accuracy assessment, trained models can be applied to
new experimental data.
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DL networks22. To evaluate their performance, we calculated
common metrics, which compare the network output of test
images to the respective annotated ground truth (Supplementary
Note 1, Table 2).

Five popular networks were used for segmentation, namely
U-Net8,41, CARE14, pix2pix18, StarDist9 and its recent variant
SplineDist42 (Supplementary Table 3). As the underlying network
architectures vary, the workflows to obtain instance segmenta-
tions (individual objects from binary masks) differ in terms of, for
example, input/output data formats and image post-processing
(Supplementary Fig. 1). While StarDist and SplineDist provide
instance segmentation directly as network output, instances have
to be generated from U-Net, CARE and pix2pix predictions by
post-processing the outputs. CARE and pix2pix were not
explicitly designed for segmentation, but are versatile enough to
generate probability maps that can be segmented subsequently.
Similar to U-Net, the instance segmentation performance
depends not only on the trained model but also on the applied
post-processing routine.

For our first dataset, we recorded live S. aureus cells
immobilised on agarose pads, either in bright field mode or
using the fluorescent membrane stain Nile Red (Fig. 2b). Due to

their coccoid shape, we speculated that StarDist9 is well suited to
segment this kind of data (Table 1). Testing an unseen and fully
annotated dataset demonstrated cell counting accuracies (recall)
of 100 ± 1% (membrane fluorescence) and 87 ± 3% (bright field)
(Table 3). The reduced accuracy for bright field images is caused
by optical artefacts at high cell density, leading to merging of
defocussed cells (Fig. 2ai). Next to performing segmentation in
the cloud, trained models can also be downloaded and
conveniently used with the StarDist plugin distributed via the
image analysis platform Fiji43 (Supplementary Video 1). Similar
to the ZeroCostDL4Mic notebook, this enables efficient segmen-
tation of live cell time-lapse data (Supplementary Video 2).

Motivated by this finding, we sought to know whether StarDist
is also suitable for segmenting rod-shaped cells. For this, we
recorded bright field time-lapse images of live E. coli cells
immobilised under agarose pads44 (Fig. 2c). Bright field images
show less contrast than phase contrast images and suffer from
high noise, making them challenging to segment. Still, they are
widespread in bacterial imaging, and proper segmentation would
be beneficial for studying bacterial proliferation (i.e. cell counts
over time) and morphology (cell dimensions and shape). We
annotated individual image frames spread over the entire time

Table 1 Overview of the deep learning models used in this study.

Network Description

U-Net The U-Net, an encoder-decoder type of convolutional neural network (CNN), was proposed for the first time by Olaf Ronneberger to
segment microscopy images41. It represents a milestone in the field of computer vision (CV), and particularly, for bioimage analysis. The
subdivision into two parts, the encoder and the decoder, is the main difference to previous CNN. The encoder extracts features at different
scales by successively processing and downscaling the input image. By this process, the content of the input image is projected in more
abstract feature space (i.e., feature encoding). Then, these features are upscaled, processed again and synthesised until reaching an image
of similar size as the original one but which contains only the information of interest (i.e., feature decoding). In the decoding process, the
image features are compared to the respective encoder part image to allow for better adjustment of the output to the initial image.

CARE Content-aware image restoration (CARE) is a supervised DL-based image processing workflow developed by Weigert et al. for image
restoration14. It uses a U-Net as backbone network architecture and its training parameters are modified to retain intensity differences
instead of creating probability masks for segmentation. CARE’s main applications are image denoising and resolution enhancement, both
in 2D and 3D. CARE is accessible through the CSBDeep toolbox, which allows the deployment of trained models in Fiji as well.

StarDist StarDist was developed by Schmidt et al. for the supervised segmentation of star-convex objects in 2D and 3D (i.e., ellipse-like shaped
objects)9. StarDist uses a U-Net like CNN to detect the centroid of each object in an image and the distances from each centroid to the
object boundary. These features allow the representation of each object boundary as a unique polygon in the image, which is then used to
determine the object segmentation. By treating each detected object independently, StarDist achieves an excellent performance at high
object densities. The StarDist Python package is optimised for a fast and reliable training and prediction. StarDist is available as Fiji and
Napari plugins and it is also integrated in QuPath85. The battery of StarDist software is equipped with pretrained models for the
segmentation of cell nuclei in fluorescence and histology images.

SplineDist SplineDist was developed by the Uhlmann’s group and represents an extension of StarDist to detect non-star-convex objects42. The latter
is achieved by substituting the polygons by splines, which enables the reconstruction of more complex structures besides ellipses.
SplineDist is equipped with a Python package for training and deployment of their models.

pix2pix The supervised pix2pix, developed in the lab of Alexei Efros, belongs to the class of generic adversarial networks (GANs)18. Two separate
U-Net-like networks are trained in parallel to perform image-to-image translation (e.g., to convert daylight to nightlight photos, from DIC
to fluorescence). Hereby, one network performs the image translation task (i.e., generator), while the second network tries to discriminate
between the predicted image and the ground truth (i.e., discriminator). Model training is considered successful when the discriminator
cannot distinguish between the original and the generated image anymore. In microscopy, pix2pix is employed to generate super-resolved
images from sparse PALM data (ANNA-PALM)86 or to convert low-resolution (widefield, confocal) to high-resolution images (confocal,
STED)16.

Noise2Void Noise2Void is a self-supervised network for image denoising proposed in microscopy by the Jug lab15. The idea behind this approach is
that each image has a unique noise pattern. Hence, a small portion of an image is used during the training to determine it and then, use it
to denoise the entire image. Training and prediction are fast. Noise2Void is part of the CSBDeep toolbox as well and in this particular case,
training and deployment are available in Fiji.

YOLOv2 YOLOv2 was developed by Redmon and Farhadi for supervised (real-time) detection and classification of objects in images12. Training
requires paired data consisting of images and corresponding bounding boxes (i.e., rectangles drawn around the object of interest). For fast
performance, YOLOv2 divides images into grids, in which each segment can only contain the centroid of a single object.

fnet fnet was developed by the group of Gregory Johnson for artificial labelling of bright field/transmitted light images20. In the original work,
fnet generated pseudo-fluorescent images of different organelles in individual image stacks, increasing the multiplexing capability and
reducing phototoxicity. As a U-Net type network, it performs supervised learning and requires the bright field/transmitted light images
and fluorescence images as input. Originally designed for 3D images, we deploy a variant that can be used for artificial labelling of 2D
images.
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series and trained supervised DL networks to reflect varying cell
sizes and densities. All networks showed good performance for
semantic segmentation, as indicated by high intersection-over-
union (IoU, see Supplementary Note 1, Table 3) values for all
time points (IoU > 0.75) (Supplementary Fig. 2a). For instance
segmentation, however, the model performance varied strongly.
While instance segmentations of U-Net, CARE and pix2pix
worked well for early time points and thus low cell density
(Fig. 2b), individual cells in crowded regions could not be

resolved using basic image post-processing (i.e. thresholding).
This led to a successive decrease in the recall value over imaging
time and therefore a decreasing number of correctly identified
cells (Supplementary Fig. 2a). The best counting performance at
low and high cell densities was achieved using StarDist, which
correctly identified 87% of the cells for the entire test dataset
(Table 3). However, as StarDist assumes star-convex shaped
objects, the accuracy of the predicted cell shape decreases with
increasing cell length (and thus axial ratio), rendering this

Fig. 2 Segmentation of bacterial images using open-source deep learning approaches. a Overview of the datasets used for image segmentation. Shown
are representative regions of interest for (i) S. aureus bright field and (ii) fluorescence images (Nile Red membrane stain), (iii) E. coli bright field images and
(iv) fluorescence images of B. subtilis expressing FtsZ-GFP47. b Segmentation of S. aureus bright field and membrane-stain fluorescence images using
StarDist9. Bright field and fluorescence images were acquired in the same measurements and thus share the same annotations. Yellow dashed lines
indicate the cell outlines detected in the test images shown. c Segmentation of E. coli bright field images using the U-Net type network CARE14 and GAN-
type network pix2pix18. A representative region of a training image pair (bright field and GT mask) is shown. d Segmentation of fluorescence images of B.
subtilis expressing FtsZ-GFP using U-Net and SplineDist42. GT= ground truth. e Segmentation and tracking of E. coli cells during recovery from stationary
phase. Cells were segmented using StarDist and tracked with TrackMate45,46. f Plots show the mean (line) and standard deviation (shaded areas) for all
cells in seven different regions of interest (colour-coded). Morphological features were normalised to the first value for each track. Scale bars are 2 µm
(a, d), 3 µm (b, c) and 10 µm (e).

Table 2 Metrics to evaluate model performance.

Metric Description

Intersection-over-Union (IoU) The IoU metric reports on the overlap of output and ground truth segmentation masks. Higher overlap represents
a better agreement between the model output and ground truth.

Precision and recall These metrics are used to quantify the performance of instance segmentation or object detection. Precision is a
measure for the specificity and describes which fraction of the detected objects are correctly detected/assigned.
Recall, on the other hand, describes the sensitivity, i.e. how many objects out of all objects in the dataset were
detected.

(mean) average precision ((m)AP) This metric is used to evaluate model performance in object detection and classification tasks. It describes the
models’ ability to detect objects of individual classes (AP) or all classes (mAP) present in the dataset. To obtain
the average precision, precision and recall values for the individual object classes are calculated at different
detection thresholds. mAP is calculated by averaging all single-class AP values.

Structural similarity (SSIM) The SSIM value quantifies how similar two images are with respect to pixel intensities and intensity variations. As
it is calculated locally using a defined windows size, it provides a similarity map that allows to identify regions of
high or low similarity.

Peak-signal-to-noise ratio (PSNR) The PSNR metric compares the signal to noise ratio of images with lower signal-to-noise to the high SNR
counterpart based on the pixel-wise mean squared error. It is often used to compare the results of image
compression algorithms, but can also be applied to evaluate model performance on paired test data.
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network less suited for morphometry of elongated rod-shaped
cells (Supplementary Fig. 2b). Using a multi-label U-Net (ML-U-
Net, trained to detect cell cytosol and boundary) instead of a
single-label U-Net provided the best compromise between
instance segmentation performance and proper prediction of cell
morphology. This notebook uses training data, in which each
label (here cell boundary and cytosol) is visualised by a different
grey value. Such training data can be generated using Fiji macros
that we provide in our repository, and which also allow to obtain
instance segmentation from the network output. Applying the
trained ML-U-Net to time-lapse videos allows to extract single-
cell instances that can subsequently be tracked using e.g.
TrackMate45,46 (Supplementary Video 3).

Next, we were interested in the performance of DL networks
for the segmentation of complex fluorescence data. Although
typical images used for segmentation show high contrast
(fluorescent membrane stains, phase-contrast images), images
with complex fluorescence distributions or low signal represent a
significant challenge. Fluorescence images of B. subtilis cells
expressing FtsZ-GFP47 show a bimodal intensity distribution with
the characteristic localisation in the septal region and diffusing
FtsZ monomers that produce dim labelling of the cytosol
(Fig. 2d). Growth for several cell cycles results in the multi-
cellular chains of B. subtilis and microcolony formation,
providing a dataset with increasing cell density and a large
number of cell-to-cell contacts. When we tested different
networks for this challenging dataset, we found that U-Net and
pix2pix provided well segmentable predictions at low to medium
cell density (Fig. 2d, Supplementary Fig. 2c, d). However, these
networks also suffered from undesired cell merging at high cell
densities, leading to reduced recall and precision values
(Supplementary Fig. 2c, d). As for segmentation of E. coli bright
field images, StarDist and its variant SplineDist42 showed high
recall and precision values also for mid- and high-density regions,
while the multi-label U-Net preserved cell morphology at slightly
lower instance segmentation accuracy (Supplementary Fig. 2d). In
contrast to StarDist, SplineDist is not limited to convex shapes,
which makes it a good candidate network for the segmentation of
curved bacteria (e.g., Caulobacter crescentus). Nevertheless,

SplineDist is computationally more expensive, and thus takes
longer to train.

As another example for cell tracking, we trained a StarDist
model to detect stationary E. coli cells (bright field images) that
resume growth upon addition to agarose pads (Fig. 2e). Applying
this model to time-lapse data and tracking individual cells over
time (Supplementary Video 4) allows to extract morphological
features such as cell area or circularity. Our analysis revealed that
the cell area (and thus also the volume) increases with growth,
while the circularity only decreases slightly (Fig. 2f). This might
indicate that bacteria expand in all directions during lag phase, in
contrast to exponentially growing cells that mainly elongate
(Supplementary Video 3). Of note, StarDist models can be
directly applied within the Fiji TrackMate plugin, making cell
tracking straight-forward and convenient46.

Finally, and motivated by generalist approaches such as
Cellpose10, we were interested in whether a single StarDist model
is capable of performing all the segmentation tasks shown in
Fig. 2b-d. We thus trained a model on pooled training data and
evaluated its performance (Supplementary Fig. 3). Although
bright field and fluorescence images differ significantly, the
obtained ‘all-in-one’ model showed similar precision and recall
values compared to the specialist models (Supplementary Table 4).
However, it also shows the same limitations, such as incomplete
predictions for long and curved bacteria (Supplementary Fig. 3).
For cells with suitable morphology, StarDist allows segmenting
large images with thousands of cells, as shown for live, rod-
shaped Agrobacterium tumefaciens cells imaged at various
magnifications (Supplementary Fig. 4). It also demonstrates that
DL segmentation models can perform well on images with low
signal and a noisy background.

Object detection and classification. To explore the potential of
object detection for microbiological applications, we employed an
implementation of YOLOv212 for two distinct tasks: Identifica-
tion of cell cycle events such as cell division in bright field images
(Fig. 3a) and antibiotic phenotyping of bacterial cells based on
membrane and DNA stains (Nile Red and DAPI, respectively)

Fig. 3 DL-based object detection and classification. a A YOLOv2 model was trained to detect and classify different growth stages of live E. coli cells (i).
“Dividing” cells (green bounding boxes) show visible septation, the class “Rod” (blue bounding boxes) represents growing cells without visible septation
and regions with high cell densities are classified as “Microcolonies” (red bounding boxes). (ii) Three individual frames of a live cell measurement.
b Antibiotic phenotyping using object detection. A YOLOv2 model was trained on drug-treated cells (i). The model was tested on synthetic images
randomly stitched from patches of different drug treatments (ii). Bounding box colours in the prediction (iii) refer to the colour-code in (i). Vesicles (V,
orange boxes) and oblique cells (O, green boxes) were added as additional classes during training. Mecillinam-treated cells were misclassified as MP265-
treated cells (red arrows). Scale bars are 10 µm (a, overview), 3 µm (lower panel in a and b) and 1 µm (b, upper panel).
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(Fig. 3b) (Supplementary Table 5). These labels are commonly
used to study antibiotic action, as they are easy to use and also
facilitate live-cell staining of bacterial cells48.

We chose YOLOv2 due to its good performance in a recent
study, in which a network was trained to classify cell nuclei in
fluorescence images34. For growth stage classification of live E. coli
cells in bright field images we used the same dataset employed for
segmentation (Fig. 2c). Here, we wanted to discriminate between
rod-shaped cells, dividing cells, and microcolonies (defined as 4+
cells in close contact) (Fig. 3a i) using a training and test dataset
that we annotated online (https://www.makesense.ai/) or locally
(LabelImg)49 (see methods).

Due to the small size of bacterial cells, we initially investigated
the influence of the object size on the performance of YOLOv2.
Since object detection networks rescale input images to a defined
size, the relative object size changes with size of the region of
interest. When we trained our model on large images, we
encountered missed objects, wrong bounding box positioning or
false classifications (Supplementary Video 5). To quantify this
effect, we determined recall and precision values as well as mean
average precision (mAP, see Supplementary Note 1 and Table 2)
for the test dataset (Table 1, Supplementary Table 6). mAP
represents the common metric for object detection, taking into
account model precision and recall over a range of object
detection thresholds12. For object detection challenges (e.g.
PASCAL visual object classes (VOC) challenge50, well-
performing models typically yield mAP values in the range of
0.6–0.8). However, for our large-FoV growth stage classification
dataset, we obtained a mAP of 0.386, with a size-dependent
performance for the different classes (APMicrocolony > APdividing >
AProd (non-dividing)) (Supplementary Table 6). Smaller images
resulted in improved network performance (mAP= 0.667) with
classification of the majority of cells in the image (Fig. 3a,
Supplementary Video 6). Knowing the size-dependent perfor-
mance is important for the design of an object detection
experiment. If the focus is on the detection of large structures,
such as microcolonies, the YOLOv2 model can be trained on
large fields of view. However, small regions of interest or higher
optical magnification should be used if small objects are to be
detected. Object density is another parameter that affects the
performance of YOLOv2 models. As YOLOv2 uses a grid-based
approach for object detection, in which each grid region can only
hold one object, very close objects (i.e. non-dividing cells at t= 0
in Fig. 3a or dividing cells at t= 19 min, yellow arrows) are not
resolved. Instead, only one bounding box of the corresponding
class is predicted. Thus, object density should be considered as a
limiting factor when planning to train a network for object
detection. When applied to time-lapse recordings of growing E.
coli cells, the model facilitates identification of class transitions,
e.g. from rod-shaped (non-dividing) cells to dividing cells and at
later time points to microcolonies (Fig. 3a ii, Supplementary
Video 6).

As a second task for object detection, we explored its suitability
for antibiotic phenotyping (Fig. 3b). In antibiotic phenotyping,
bacterial cells are classified as non- or drug-treated cells based on
cell morphology and subcellular features (commonly DNA and
membrane stains). This facilitates the assignment of a mode of
action to antibiotics or potential candidate compounds, being a
promising tool in drug discovery3,48. To explore whether object
detection networks can be used for this purpose, we generated a
dataset of images including membrane- and DNA-labelled E. coli
cells grown in the absence or presence of antibiotics. We used five
different antibiotics that target different cellular pathways (Fig. 3b,
Supplementary Table 7). Nalidixate blocks DNA gyrase and
topoisomerase IV, thus stalling DNA replication. Mecillinam and
MP265 (a structural analogue of A22) perturb cell morphology by

inhibiting peptidoglycan crosslinking by PBP2 or MreB poly-
merisation, while rifampicin and chloramphenicol inhibit tran-
scription and translation, respectively. As additional classes, we
included untreated cells (control), membrane vesicles and oblique
cells. The latter class represents cells that are only partially
attached to the surface during immobilisation. Such cells can be
identified by a focus shift and are present in all growth conditions
(Fig. 3b i). Further examples for each class are provided in
Supplementary Fig. 5.

We trained a YOLOv2 model on our annotated dataset and
tested its performance on images containing cells treated with
different antibiotics (stitched images, see methods) (Fig. 3b ii/iii)
or images that only show one condition similar to the training
dataset (Supplementary Fig. 6). The YOLOv2 model showed a
comparable performance for both datasets with mAP values of
0.66 (stitched image dataset) and 0.69 (individual conditions),
indicating a good generalisability of our model. Hereby, the AP
values for the different classes varied substantially, ranging from
0.21 (vesicles) to 0.94 (control) (Supplementary Table 8). Poor
prediction of membrane vesicles is likely caused by their small
size, which agrees with the observations made for growth stage
prediction. Intermediate AP values are observed when antibiotics
induce similar morphological changes, as it is the case for
mecillinam (AP= 0.605) and MP265 (AP= 0.526). This led to
misclassification between these classes (Fig. 3b, red arrows,
Supplementary Fig. 6), indicating that both treatments result in a
highly similar phenotype.

This similarity allowed us to test whether YOLOv2 can identify
antibiotic modes of actions in unseen images. We omitted MP265
data during model training, but included images of MP265-
treated cells in the test data. Due to their similar phenotype
MP265-treated cells should hence be predicted as Mecillinam-
treated. This was indeed the case, as shown by the high mAP
value (0.866) and specificity (recall= 0.961) (Supplementary
Fig. 6b), demonstrating the applicability of object detection
networks for mode-of-action-based drug screening.

Denoising. As denoising approaches allow for faster and more
gentle imaging14,15,35,51, we consider them as powerful tools for
bacteriology. To test their applicability to bacterial data, we
recorded paired low and high signal-to-noise ratio (SNR) images
of an H-NS-mScarlet-I52 fusion protein in live E. coli cells. H-NS
decorates the bacterial nucleoid homogeneously under nutrient-
rich growth conditions and maintains nucleoid association after
chemical fixation53. This allows the study of chromosome orga-
nisation and dynamics, an important field of bacterial cell biol-
ogy. We trained the CARE and N2V models on image pairs
acquired using chemically fixed cells to prevent motion blur in
the training dataset (Supplementary Table 9). We found that both
parametric and DL-based approaches strongly increased the SNR
of noise-corrupted images, as indicated by the peak signal-to-
noise ratio (PSNR) and structural similarity index (SSIM)54

(Fig. 4a). These metrics are commonly used to assess SNR and
quality of image pairs, with higher values representing improved
performance (Supplementary Note 1, Table 2). Under the con-
ditions tested, we obtained the best results using the supervised
network CARE (SSIM= 0.897 ± 0.005, PSNR= 36.1 ± 0.09)
(Table 3). Next, we applied the trained models to denoise live-cell
time series recorded under low-SNR conditions (Fig. 4b, Sup-
plementary Video 7). This led to an apparent increase in SNR,
and intensity analysis revealed a 20x lower photobleaching rate as
indicated by the exponential intensity decay time t1/2 (Fig. 4c).

However, the performance of the different denoising
approaches in fast live cell measurements could not be assessed
by the standard PSNR and SSIM metrics because of the lack of
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paired high-SNR images. As noise reduces contrast and structural
information content in images, subsequent image frames in low-
SRN time series should exhibit higher signal variation than in
their high-SNR counterparts. We therefore speculated that
calculating the structural similarity between successive image
frames (e.g. between frame 1 and frame 2, frame 2 and frame 3,
etc.) could report on denoising performance for live-cell time
series (Fig. 4d). In fact, all denoising approaches significantly
increased SSIM values while preserving relative intensities over
time (Supplementary Fig. 7a).

As all the previous models were trained on fixed-cell data, the
results on live-cell data could be compromised by potential
fixation artefacts. Because N2V is self-supervised, it was possible
to train it directly on the live-cell data. Hence, we could compare
the performance of a N2V model trained on fixed-cell images

with the one trained on live-cell images. This resulted in high
structural similarity throughout the time series (Supplementary
Fig. 7b), indicating that no artefacts were introduced by training
on fixed-cell data. Similar observations were made when
comparing the fixed-cell N2V and CARE models. Analysis of
raw and denoised (CARE) time series of chemically fixed cells
showed a constant SSIM value of 0.96 in the subsequent-frame
analysis (Supplementary Fig. 7c). This indicates that the high
contribution of shot-noise under low-SNR conditions for this
target can be overcome by the denoising method. Of note, the
SSIM value obtained in fixed-cell measurements is higher than for
denoised live-cell time series (0.82) (compare Fig. 4d and
Supplementary Fig. 7c). To test whether this effect is caused by
nucleoid dynamics (Supplementary Video 7), we recorded a time
series under high-SNR imaging conditions using a small region of

Fig. 4 Image denoising for improved live-cell imaging in bacteriology. a Low and high signal-to-noise ratio (SNR) image pairs (ground truth, GT) of fixed
E. coli cells, labelled for H-NS-mScarlet-I. Denoising was performed with PureDenoise (parametric approach), Noise2Void (self-supervised DL) and CARE
(supervised DL). Structural similarity (SSIM) maps compare low-SNR or predictions to ground truth (GT) high-SNR data. b 10 s interval representative time
points of a live-cell measurement recorded at 1 Hz frame rate, demonstrating CARE can provide prolonged imaging at high SNR using low-intensity images
as input. t1/2 represents the decay half time. c Intensity over time for different imaging conditions providing low/high SNR images shown in a/b.
d Structural similarity between subsequent imaging frames was calculated for raw and restored time-lapse measurements (Methods). e Denoising of
confocal images of MreB-sfGFPsw expressing E. coli cells, imaged at the bottom plane (i). Outlines show cell boundaries obtained in transmitted light
images (ii). (ii) Transmitted light image and SSIM maps generated by comparison of raw or denoised data with the high SNR image. (iii) Tracks of MreB
filaments (colour-coded) and overlaid with the average image (grey) of a live-cell time series. Violin plots show the distribution of track duration (f) and
speed (g) for the high SNR, low SNR (raw) and denoised image series, with mean values denoted by circles and percentiles by black boxes. Note that the
distribution in g was cut at a max speed of 150 nm/s, excluding a small number of high-speed outliers but allowing for better visualisation of the main
distribution. h Denoising of FtsZ-GFP dynamics in live B. subtilis. Cells were vertically trapped and imaged using the VerCINI method47. Details are restored
by Noise2Void (N2V), rainbow colour-coded images were added for better visualisation. Values in a and e represent mean values derived from 2 (a) and 5
(e) images and the respective standard deviation. c, d Show mean values and respective standard deviations from 3 measurements. f, g Show tracking
results from individual time series. Scale bars are 1 µm (a, b, e i) and 0.5 µm (e iii and h).
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interest. High SNR imaging leads to lower noise contribution and
higher SSIM values for subsequent image frames, but induces
strong photobleaching that leads to a rapid drop in structural
similarity over time (Fig. 4b, Supplementary Fig. 7d). However,
the first SSIM value of the high-SNR time series (representing the
similarity between frame 1 and frame 2) is close to the
corresponding SSIM value of the denoised low-SNR time series.
This indicates that (i) the model provides optimal denoising
performance and (ii) the lower SSIM values in live-cell
measurements originate from nucleoid dynamics rather than
representing denoising artefacts.

To probe the limits of denoising approaches, we recorded
confocal images of E. coli cells chromosomally expressing MreB-
sfGFPsw55. MreB forms filaments, which show processive move-
ment along the inner membrane (Fig. 4e)56–58. Imaging the
bottom plane of the cells, this movement can be tracked in order
to determine filament speed, an analysis that is commonly
performed in MreB studies. We speculated that processive
movement represents a good readout for model performance,
and trained a CARE model on paired low-SNR/high-SNR data.
The trained model, as well as the parametric denoising using
PureDenoise, improved the SNR and structural similarity,
although to a smaller extent compared to the HNS-mScarlet-I
nucleoid dataset (Fig. 4a, Table 3). To test model performance on
live-cell time series, we tracked MreB filaments using
TrackMate45,46. High SNR movies show long tracks and a
filament speed of 17 nm/s, which is in good agreement with
reported values59, while tracking raw data resulted in significantly
shorter tracks and higher filament speed (Fig. 4f/g). Surprisingly,
DL-based denoising did not restore track length and speed, which
we account to model hallucinations that are caused by the high
contribution of shot noise at this low SNR (Fig. 4f/g). This leads
to strong frame-to-frame intensity fluctuations which obscure
processive filament movement (Supplementary Video 8). As
PureDenoise can integrate temporal information during the
denoising process, shot-noise contribution is reduced, leading to
more sensible restoration results, i.e. processive filament motion
similar to the high SNR measurements (Fig. 4e–g, Supplementary
Video 8).

As another example, we denoised time-lapse images of FtsZ
treadmilling in live B. subtilis cells. These movies were recorded
in vertically aligned cells using the so-called VerCINI approach
(Fig. 4h) and contributed to study the critical role of FtsZ
treadmilling in cell division47,60. As the constant movement of
FtsZ-GFP renders acquisition of low and high SNR image pairs
difficult, we used the self-supervised N2V method for the
denoising task. Here, denoising emphasises subtle details that
are difficult to be identified in the raw image data (Fig. 4h). This
allows for long time-lapse imaging of FtsZ dynamics with
enhanced image quality (Supplementary Video 9).

Artificial labelling. Artificial labelling can be very useful for
bacterial imaging, as it increases the multiplexing potential and
circumvents phototoxicity. Because of their much smaller size,
bacteria provide less structural information in bright field images
than eukaryotic cells (Fig. 5a). However, we regard the cell
envelope as a promising target for artificial labelling, as exact cell
shape determination is of interest for morphological studies (e.g.
for antibiotic treatments) or in the context of spatial positioning
of target molecules in individual cells61,62. This is even more
valuable if super-resolution information is obtained. To explore
whether such information can be extracted using DL, we recorded
different training datasets. The first dataset includes bright field
and corresponding diffraction-limited widefield fluorescence
images, in which the E. coli membrane is stained by the lipophilic

dye Nile Red (Fig. 5a, i). For the second dataset, we acquired
super-resolved PAINT images63,64 together with bright field
images (Fig. 5a ii). For both datasets, we tested a 2D version of
fnet20, as well as CARE. For the diffraction-limited dataset, both
networks were able to predict pseudo-fluorescence images from
bright field images, with fnet showing slightly better performance
(SSIMfnet= 0.88 ± 0.06, SSIMCARE= 0.83 ± 0.05) (Fig. 5a,
Table 3). This is not surprising as fnet was designed for artificial
labelling, while the good performance of CARE demonstrates the
versatility of this network. Similar values were obtained for the
super-resolution dataset (Fig. 5a, Supplementary Fig. 8), with
predictions showing good agreement also on the sub-diffraction
level (see cross-section as inset in Fig. 5a). Additionally, although
trained on fixed cells, the model can also be used to predict highly
resolved membrane signal in live-cell time series (Supplementary
Video 10).

We then wanted to know how well our model generalises, i.e.
whether it can predict the super-resolved membrane of bacteria
grown in the presence of different antibiotics (see methods). Both
fnet and CARE models successfully predicted the membrane stains in
drug-treated cells (SSIMfnet= 0.85 ± 0.07, SSIMCARE= 0.85 ± 0.05,
averaged over all treatments) (Table 1), indicating that it detects
image features independent from the cell shape (Supplementary
Fig. 8). The increased resolution and contrast in membrane
predictions allow to map the positioning of subcellular structures
(here, the nucleoid) with higher precision (Fig. 5b). This typically
requires the acquisition of multi-colour super-resolution images64,
which is more intricate and time-consuming.

Fig. 5 Artificial labelling of E. coli membranes. a fnet and CARE predictions
of diffraction-limited (i) and PAINT super-resolution (SR) (ii) membrane
labels obtained from bright field (BF) images. GT= ground truth. Values
represent averages from five test images and the respective standard
deviation b Pseudo-dual-colour images of drug-treated E. coli cells. Nucleoids
were super-resolved using PAINT imaging with JF646-Hoechst64.
Membranes were predicted using the trained fnet model.
CAM=Chloramphenicol. Scale bars are 2 µm (a) and 1 µm (b).
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Resolution enhancement. Super-resolution membrane images can
also be obtained by training a supervised DL network on paired
low-resolution/high-resolution image datasets14,16,17,22. Here, we
used structured illumination microscopy (SIM)65 to record mem-
brane images of dye-labelled live E. coli and S. aureus cells. SIM
images are reconstructed from a set of images recorded at different
grid positions and angles, which hence requires higher light doses
than a single widefield image. As acquisition of such image sets is
only required during the network training, but not during its
application, super-resolution prediction reduces the light dose and
also increases the achievable temporal resolution17. Training of two
CARE models on paired low/high-resolution images of E. coli and
S. aureus using the ZeroCostDL4Mic notebook provided models
that facilitate robust prediction of SIM images from single widefield
snapshots (Fig. 6). Here, contrast and resolution of predictions
agreed well with reconstructed SIM images (Supplementary
Video 11), as shown for cross sections along single E. coli and S.
aureus cells (Fig. 6a, b iii). To evaluate the quality of super-
resolution images, we used SQUIRREL, which detects reconstruc-
tion artefacts in super-resolution images66. This analysis yielded
similar errors for neural network predictions compared to SIM
reconstructions, both for E. coli (resolution-scaled Pearson coeffi-
cient of 0.898 ± 0.018 (SIM) vs 0.907 ± 0.018 (prediction)) and S.
aureus (0.957 ± 0.012 (SIM) vs 0.963 ± 0.010 (prediction))

(Supplementary Fig. 9). SSIM values between predictions and GT
SIM images were determined as 0.84 ± 0.03 (E. coli) and 0.92 ± 0.01
(S. aureus). Estimating the spatial resolution using image
decorrelation67 verified the very good agreement between the pre-
dicted (137 ± 7 nm for E. coli and 134 ± 5 nm for S. aureus images)
and reconstructed SIM images (122 ± 2 nm for E. coli and
134 ± 1 nm for S. aureus images) with the expected 2x increase in
resolution (308 ± 24 nm for E. coli and 289 ± 5 nm for S. aureus
widefield images). This strategy is hence well suited to perform
single-image super-resolution microscopy17 in bacterial cells.

Discussion
In this work we demonstrate the potential of open-source DL
technology for the analysis of bacterial bioimages. We employ
popular DL networks that were developed by the open-source
research community and are implemented in, but not limited to,
the user-friendly ZeroCostDL4Mic platform22. We used the
notebooks as they are provided by the platform, except for the
ML-U-Net notebook, which was added to the ZeroCostDL4Mic
repository in the frame of this work. This enabled us to perform a
variety of different image analysis tasks, such as image segmen-
tation, object detection, image denoising, artificial labelling and
the prediction of super-resolution images (Fig. 1). The perfor-
mance of the networks for each task is provided in Table 3, while
a summary on the employed networks and their advantages/
disadvantages for bacterial bioimage analysis can be found in
Table 4.

Using the datasets that we provide, well-performing models
can be trained within the time course of hours (see Supplemen-
tary Tables 3, 5, 9-11). Depending on the network, several tens of
input images were sufficient, showing that valuable models can be
generated even with a limited dataset size and thus moderate
effort in data curation. As multiple DL networks exist for each
specific tasks (in particular for cell segmentation), and the per-
formance of these networks can vary strongly depending on the
images to be analysed68, there is a need for user-friendly imple-
mentations that enable researchers to test the different networks
and identify the best-performing network for a particular dataset.

Testing different segmentation networks, we found that Star-
Dist and SplineDist are well suited to segment small rod-shaped
and coccoid bacteria in bright field and fluorescence images
(Fig. 2, Supplementary Figs. 3 and 4), while U-Net and pix2pix
performed better for elongated cells at low to mid cell density.
The performance at higher densities could be improved by pre-
dicting cell boundaries and cytosol using a multi-label U-Net,
followed by post-processing of the network output. Integrated
into the ZeroCostDL4Mic environment, this notebook allows
streamlined training and evaluation of models that can not only
provide better segmentation results, but could also be used to
discriminate between different object classes.

Having a closer look at the input data can already give indi-
cations about which network might be more or less suited for the
segmentation task (Table 4, Supplementary Note 2). In our
experience, the networks explored in this work are well suited to
segment images recorded under standard conditions (e.g. expo-
nential growth phase, regularly shaped cells, narrow size dis-
tribution). However, they might be of limited use or require large
training datasets for more specialised cases, e.g. studying fila-
mentation, irregularly shaped cells or biofilms. In such cases, we
refer to DL networks developed for the particular segmentation
task28–32.

Instance segmentations can subsequently be used for down-
stream applications such as tracking cell lineages or morpholo-
gical changes. If this is not already included in the network32,33,
segmentation masks can be used with TrackMate, which was

Fig. 6 Prediction of SIM images from widefield fluorescence images.
Widefield-to-SIM image transformation was performed with CARE for
a live E. coli (FM5-95) and b S. aureus (Nile Red) cells. Shown are
diffraction-limited widefield images (i) and the magnified regions (ii)
indicated by yellow rectangles in (i). WF=widefield; NN= neural network
output. (iii) Line profiles correspond to the red lines in the WF images and
show a good agreement between prediction and ground truth (bottom
panel). Scale bars are 10 µm (i), 1 µm (ii) and 0.5 µm (iii).
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recently updated for the use of DL technology46 (Supplementary
Video 3). The convenient use of StarDist and Cellpose segmen-
tation models directly within TrackMate allows for integrative
image analysis of time-lapse data. In this work we tracked E. coli
cells during release from stationary phase, showing that cells
simultaneously expand along the long and short axis (Fig. 2e/f,
Supplementary Video 4). For very dense and exponentially
growing cells, however, the use DL-based tracking approaches
should be favoured, as they strongly reduce erroneous linking of
neighbouring cells upon cell division32,33.

For object detection, we successfully trained models to detect
and discriminate cells in specific growth stages (Fig. 3a) or treated
with different antibiotics (Fig. 3b). To obtain good YOLOv2
models, the field of view size has to be chosen so that the relative
object size matches the networks’ receptive field. Analysis of
larger images could be obtained by tiling strategies or by
employing other networks13. Next to their use in post-acquisition
image analysis, trained models can also be integrated into smart
imaging pipelines in which the microscope system autonomously
decides when and/or how to image a particular region of interest.
Triggers can be the presence (or dominance) of a specific class34

or the occurrence of class transitions (for example, initiation of
cell division). We anticipate this to be particularly powerful for
studying rare events, as smart acquisition strongly reduces data
waste and data curation time34,69. At the same time, AI-based
antibiotic profiling holds great promise for drug-screening
applications and antibiotic mode-of-action studies. Although
trained on a limited dataset, the YOLOv2 model was able to
discriminate between different antibiotic treatments based on its
phenological fingerprint (Fig. 3b). We demonstrated that it could
already be used for drug screening applications, as it was able to
predict a similar mode of action (rod-to-sphere transition) for
MP265-treated cells when trained on Mecillinam-treated cells
(Supplementary Fig. 6b). As training an object detection network
only requires drawing of bounding boxes and no intensive feature
design, it can be used straightforwardly by researchers new to this
field, especially as membrane and DNA stains are widespread and
easy to use. However, we think that the predictive power can be
further improved by adding more fluorescence channels, such as
indicator proteins that for example report on membrane integrity
or the energetic state of the cell. This will result in comprehensive
models that can be employed for automatic screening of large
compound libraries3 and might contribute to the discovery of
novel antimicrobial compounds, which is desperately needed to
tackle the emerging antibiotic resistance crisis70.

As denoising represents a universally applicable strategy51, it
can be used for any type of sample or microscopy technique.
Here, supervised DL networks are the preferred choice (Fig. 4), if
well-registered image pairs can be acquired. This is mostly the
case for static or slow-moving targets, but acquisition of training
data on fixed specimens represents a good alternative14. However,
we note that this requires proper controls to exclude fixation
artefacts (as we have done in previous work64,71 (Supplementary
Fig. 7c)), as these could be learned by the model and erroneously
introduced into live-cell data during prediction. For our H-NS-
mScarlet-I dataset, we observed a strong increase in image quality
and SNR (Fig. 4a). CARE (supervised DL) expectedly out-
performed N2V (self-supervised) and PureDenoise (parametric)
on our test dataset. Using the trained CARE model on labelled E.
coli nucleoids in fast-growing cells revealed both high nucleoid
complexity and dynamics on the second time-scale (Supple-
mentary Video 6). We observed high-density regions which
dynamically move within the area populated by the nucleoid.
Such ‘super-domains’ were reported in previous studies72,73,
eventually representing macrodomains or regions of orchestrated
gene expression.T
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At very low SNR, denoising approaches have to be used with
caution and require proper controls. Even though we observed a
significant increase in SNR for single MreB images (Fig. 4e), time-
lapse videos of processive MreB filament movement revealed
strong hallucinations (Supplementary Video 8). These halluci-
nations arise from structural reconstruction of shot noise and led
to artefactual particle tracking results (Fig. 4f/g). The superior
performance of PureDenoise (multi-frame denoising) shows that
at present parametric approaches can outperform DL-based
approaches on data with temporal correlation. However, we
anticipate that DL-based multi-frame denoising strategies, as they
exist for video denoising74, will be adapted for bioimage analysis
in the near future.

When the acquisition of high-quality data is challenging and
no paired high-SNR images are available, self-supervised net-
works such as Noise2Void can be employed51. We show this for
time-series of FtsZ-GFP in vertically aligned B. subtilis cells47, in
which the gain in SNR allows following subtle FtsZ structures
during their treadmilling along the cell septum (Fig. 4h, Supple-
mentary Video 9). Thus, even without access to high-SNR ground
truth data, denoising can substantially increase image quality in
challenging live-cell data. Concluding, we see the largest benefit of
denoising in long-term microscopy experiments and capturing of
fast dynamics. These experiments are strongly limited by pho-
totoxic effects, photobleaching, and in temporal resolution,
parameters that are improved by denoising approaches. We
recommend performing suitable controls and avoiding applica-
tion to data with excessively low SNR.

We further showed that artificial labelling and prediction of
super-resolution images strongly increase the information con-
tent of bacterial bioimages. The introduced specificity and
improved spatial resolution are particularly useful to study bac-
terial cells, in which most processes occur on scales close to or
below the diffraction limit of light. Training a CARE model on
paired bright field and super-resolution membrane images
allowed us to artificially label membranes with subpixel accuracy
(Fig. 5a). This enables determination of cell size and shapes
(morphological analysis) with higher precision, which can be
important to describe and compare (deletion) mutants, drug-
treated cells or cells grown under different environmental
conditions75. Correlation of labelled structures to the artificial
membrane stain further allows to study intracellular target loca-
lisation with high accuracy compared to a bright field image
overlay (Fig. 5b). Additionally, as artificial labelling does not
require a fluorescent label, it opens up a spectral window for other
fluorescent targets increasing multiplexing capabilities. Using
membrane stains, DL can be efficiently used to increase the
spatial resolution, as we showed by predicting SIM membrane
images from a diffraction-limited fluorescence signal using CARE
and fnet. The enhanced resolution can improve downstream
applications such as analysis of cell cycle stages in spherical
bacteria76. As bright field or fluorescence membrane images are
part of basically any study including microscopy data, we think
that artificial labelling and prediction of super-resolution images
can be very useful for the bacterial research community.

As a general but important note, DL models are highly specific
for the type of data on which they were trained22. Evaluating the
model on ground truth data is thus essential to validate model
performance, identify potential artefacts and avoid a replication
crisis for DL-based image analysis68. As it is difficult to generate
models with good generalisation capabilities, even slightly varying
image acquisition parameters can transform a model from a good
performer to a source of artefacts. Such parameters include dif-
ferent magnifications (pixel sizes), variations of the focal plane,
illumination patterns, camera settings, and many more. However,
even if pretrained models do not provide satisfying results, they

can be used for transfer-learning, which can strongly accelerate
the training and increase model performance. Collecting pre-
trained models in model zoos (such as the BioImage model zoo77:
https://bioimage.io/) can create a database encompassing a variety
of species, microscopy techniques and experiments. This database
can be used by the researchers to explore potential DL applica-
tions and apply pretrained models to their own research using
designated platforms9,14,22,24,43. Together with easily accessible
DL networks and shared datasets (for ours see Supplementary
Table 2), this work can support researchers to familiarise them-
selves with DL and find an entry point into the DL universe.

Methods
Segmentation of E. coli bright field images. E. coli MG1655 cultures were grown
in LB Miller at 37 °C and 220 rounds per minute (rpm) overnight. Working cul-
tures were inoculated 1:200 and grown at 23 °C and 220 rpm to OD600 ~ 0.5–0.8.
For time-lapse imaging, cells were immobilised under agarose pads prepared using
microarray slides (VWR, catalogue number 732-4826) as described in de Jong
et al., 201144. Bright field time series (1 frame/min, 80 min total length) of 10
regions of interest were recorded with an Andor iXon Ultra 897 EMCCD camera
(Oxford instruments) attached to a Nikon Eclipse Ti inverted microscope (Nikon
Instruments) bearing a motorised XY-stage (Märzhäuser) and an APO TIRF
1.49NA 100x oil objective (Nikon Instruments). To generate the segmentation
training data, individual frames from different regions of interest were rescaled
using Fiji (2x scaling without interpolation) to allow for better annotation and to
match the receptive field of the network. Resulting images were annotated
manually using the freehand selection ROI tool in Fiji. For quality control, a test
dataset of 15 frames was generated similarly. Contrast was enhanced in Fiji and
images were either converted into 8-bit TIFF (CARE, U-Net, StarDist) or PNG
format (pix2pix).

To track cells during their release from stationary phase, we immobilised cells
from an ON culture as described above. Time series of multiple positions were
recorded at 2 min interval (40 min in total). To account for the small size of the
cells, we used an additional tube lens (1.5x) to reduce the pixel size to 106 nm. To
obtain the training dataset, we recorded stationary phase cells directly after
immobilization and additionally annotated selected individual frames from the
time series.

Data pre- and post-processing for cell segmentation using the multi-label
U-Net notebook. In order to improve segmentation performance, we employed a
U-Net that is trained on semantic segmentations of both cell cytosol and bound-
aries. To generate the respective training data, annotated cells were filled with a
grey value of 1, while cell boundaries were drawn with a grey value of 2 and a line
thickness of 1. Together with the fluorescence image, this image was used as
network input during training. During post-processing, cell boundaries were
subtracted from predicted cell segmentations, followed by thresholding and
marker-based watershed segmentation (Fiji plugin “MorpholibJ”)78. Pre- and post-
processing routines are provided as Fiji macros and can be downloaded from the
DeepBacs github repository.

Segmentation of S. aureus bright field and fluorescence images. For S. aureus
time-lapse experiments overnight cultures of S. aureus strain JE2 were back-
diluted 1:500 in tryptic soy broth (TSB) and grown to mid-exponential phase
(OD600= 0.5). One millilitre of the culture was incubated for 5 min (at 37 °C) with
the membrane dye Nile Red (5 μg/ml, Invitrogen), washed once with phosphate
buffered saline (PBS), subsequently pelleted and resuspended in 20 μl PBS. One
microlitre of the labelled culture was then placed on a microscope slide covered
with a thin layer of agarose (1.2% (w/v) in 1:1 PBS/TSB solution). Time-lapse
images were acquired every 25 s (for differential interference contrast (DIC)) and
5 min (for fluorescence images) by structured illumination microscopy (SIM) or
classical diffraction limited widefield microscopy in a Deltavision OMX system
(with temperature and humidity control, 37 °C). The images were acquired using 2
PCO Edge 5.5 sCMOS cameras (one for DIC, one for fluorescence), an Olympus
60×1.42NA Oil immersion objective (oil refractive index 1.522), Cy3 fluorescence
filter sets (for the 561 nm laser) and DIC optics. Each time-point results from a
Z-stack of 3 epifluorescence images using either the 3D-SIM optical path (for SIM
images) or classical widefield optical path (for non-super-resolution images).
These stacks were acquired with a Z step of 125 nm in order to use the 3D-SIM-
reconstruction modality (for the SIM images) of Applied Precision’s softWorx
software (AcquireSRsoftWoRx v7.0.0 release RC6), as this provides higher quality
reconstructions. A 561 nm laser (100 mW) was used at 11–18W cm−2 with
exposure times of 10–30 ms. For single-acquisition S. aureus experiments, sample
preparation and image acquisition were performed as mentioned above but single
images were acquired. To generate the training dataset for StarDist segmentation,
individual channels were separated and pre-processed using Fiji9,43. Nile Red
fluorescence images were manually annotated using ellipsoid selections to
approximate the S. aureus cell shape. Resulting ROIs were used to generate the
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required ROI map images (using the “ROI map” command included in the Fiji
plugin LOCI) in which each individual cell is represented by an area with a unique
integer value. Training images (512 × 512 px²) were further split into 256 × 256
px² images, resulting in 28 training images pairs. 5 full field-of-view test image
pairs were provided for model quality control. For segmentation dataset of S.
aureus bright field images, we used the ROI masks created for Nile Red fluores-
cence image segmentation, as both images were acquired in parallel.

Segmentation of live B. subtilis cells. B. subtilis cells expressing FtsZ-GFP (strain
SH130, PY79 Δhag ftsZ::ftsZ-gfp-cam) were prepared as described in Whitley et al.,
202147. Strains were taken from glycerol stocks kept at −80 °C and streaked onto
nutrient agar (NA) plates containing 5 μg/ml chloramphenicol then grown over-
night at 37 °C. Liquid cultures were started by inoculating time-lapse medium
(TLM) (de Jong et al., 2011)44 with a single colony and growing overnight at 30 °C
with 200 rpm agitation. The following morning, cultures were diluted into che-
mically defined medium (CDM) containing 5 μg/ml chloramphenicol to OD600=
0.1, and grown at 30 °C until the required optical density was achieved47. All
imaging was done on a custom built, 100X inverted microscope. A 100x TIRF
objective (Nikon CFI Apochromat TIRF 100XC Oil), a 200 mm tube lens (Thorlabs
TTL200) and Prime BSI sCMOS camera (Teledyne Photometrics) were used
achieving an imaging pixel size of 65 nm/pixel. Cells were illuminated with a
488 nm laser (Obis) and imaged using a custom ring-TIRF module operated in
ring-HiLO79. A pair of galvanometer mirrors (Thorlabs) spinning at 200 Hz pro-
vides uniform, high SNR illumination. The raw data analysed here were acquired
and analysis of that raw data presented in Whitley et al., 202147. These data have
now been reanalysed using cell segmentation methods discussed. Slides were
prepared as described previously. Molten 2% agarose made with CDM was poured
into gene frames (Thermo Scientific) to form flat agarose pads, then cut down to
thin 5 mm strips. 0.5 μl of cell culture grown to mid-exponential phase
(OD600= 0.2–0.3) was spotted onto the agarose and allowed to absorb (~30 s). A
plasma-cleaned coverslip was then placed atop the gene frame and sealed in place.
Before imaging, the prepared slides were then pre-warmed inside the microscope
body at least 15 min before imaging. Time-lapse images were then taken in TIRF
using a custom built 100x inverted microscope. Images were taken at 1 s exposure,
1 frame/min at 1–8W/cm2 47. Videos were denoised using ImageJ plugin
PureDenoise35 then lateral drift was corrected using StackReg80.

To create the training dataset, 10 frames were extracted from each time-lapse
~10 frames apart. This was to ensure sufficient difference between the images used
for training. Ground truth segmentation maps were generated by manual
annotation of cells in each frame using the Fiji/ImageJ LabKit plugin lab (https://
github.com/juglab/imglib2-labkit). This process assigns a distinct integer to all
pixels within a cell region, and background pixels are labelled 0. A total of 4,672
cells were labelled across 80 distinct frames to create the final training dataset.

Confocal imaging for denoising of E. coli time series. E. coli strain CS01 carrying
a chromosomal H-NS-mScarlet-I protein fusion (parental strain NO34) was grown
in LB Lennox at 25 °C and shaking at 220 rpm. To generate the training dataset,
cells were fixed chemically using a mixture of 2% formaldehyde and 0.1% glutar-
aldehyde. Fixed or live cells were immobilised under agarose pads poured into gene
frames following the protocol by de Jong et al.44. Imaging was performed on a
commercial Leica SP8 confocal microscope (Leica Microsystems) bearing a 1.40
NA 63x oil immersion objective (Leica Microsystems). To increase optical sec-
tioning, the pinhole size was set to 0.5 airy units and 512 × 512 px² confocal images
(45 nm pixel size) were recorded. Emission was detected with HyD detectors in
standard operation mode (gain 100, detection window 570–650 nm). For the
training dataset, a two-channel image of the same structure was recorded in frame
sequential mode using different settings for low (0.03% 561 nm laser light, no
averaging) and high SNR images (0.1% 561 nm laser light, 4x line averaging),
respectively. For live-cell time series, the field of view was reduced to 256 × 256 px²
to allow for fast acquisition of high SNR images at ~0.8 Hz. Low SNR time series
were recorded at similar frame rate by including a lag time. Similar settings were
used for the MreB denoising dataset, except that sfGFP was excited with 488 nm
and fluorescence was detected between 495 nm and 560 nm. To increase optical
sectioning even further to optimized observation of processive MreB movement,
the pinhole size was set to 0.3 airy units.

B. subtilis VerCINI microscopy. The raw data analysed here were acquired and
analysis of that raw data is presented in Whitley et al. 202147. These data have now
been reanalysed using the denoising methods described. Silicone micropillar wafers
were nanofabricated and used to prepare agarose microholes as described in
Whitley et al., 202147. Molten 6% agarose was poured onto the silicone micropillars
and allowed to set, forming an agarose pad punctured with microscopic holes. The
agarose pad was then transferred into a gene frame, and agarose surrounding the
micro-hole array was cut away. Concentrated liquid cell culture at mid-exponential
phase (OD600= 0.4) was loaded onto the pad and centrifugation using an
Eppendorf 5810 centrifuge with MTP/Flex buckets loaded individual cells into the
microholes. The pad was then washed to remove unloaded cells. This repeated
several times until a sufficient level cell loading was achieved. Cells were imaged at
1 frame/second with continuous exposure for 2 min at 1–8W/cm2 47. Image

denoising was performed using the ImageJ plugin PureDenoise35 and lateral drift
was then corrected using StackReg80.

E. coli cell cycle classification. Classification of rod-shaped, dividing and
microcolonies was performed using the time series described in section ‘Segmen-
tation of E. coli bright field images’. Individual frames from several time series were
used for training. To generate the training dataset, individual frames spread over
the entire time series (typically frames 1, 15, 30, 55 and 80) were converted into
PNG format. For the large field-of-view model, the entire image was used, while
images were split into 4 regions of 256 × 256 px² size for the small field-of-view
model. Images were annotated using LabelImg49. The final training dataset con-
tained 25 (100 for small field-of-view) annotated patches, and dataset size was
increased 4x during training using data augmentation implemented in the Zer-
oCostDL4Mic YOLOv2 notebook (rotation and flipping).

E. coli antibiotic phenotyping. E. coli strain NO3455 was grown in LB at 32 °C
shaking at 220 rpm overnight. Working cultures were inoculated 1:200 in fresh LB
and grown to mid-exponential phase and antibiotics were added at the con-
centration and for the time listed in Supplementary Table 7. Antibiotic stock
solutions were prepared freshly 5-10 min before use. Cells were fixed using a
mixture of 2% formaldehyde and 0.1% glutaraldehyde, quenched using 0.1%
sodium borohydrate (w/v) in PBS for 3 min and immobilised on PLL-coated
chamber slides (see Spahn et al. 2018 for details64). Nucleoids were stained using
300 nM DAPI for 15 min. After three washes with PBS, 100 nM Nile Red in PBS
was added to the chambers and confocal images were recorded with a commercial
LSM710 microscope (Zeiss, Germany) bearing a Plan-Apo 63x oil objective (1.4
NA) and using 405 nm (DAPI) and 543 nm (Nile Red) laser excitation in sequential
mode. Images (800 × 800 px²) were recorded with a pixel size of 84 nm, 16-bit
image depth, 16.2 μs pixel dwell time, 2x line averaging and 1 airy unit pinhole size.

Four to eight confocal images were used to generate the training dataset,
depending on the cell count per image (for example, only few cells are present per
image for nalidixate-treated cells, while many cells were present for
chloramphenicol treatment). Each image was converted to PNG format, split into 4
non-overlapping patches (400 × 400 px²) and patches were annotated online using
makesense.ai81. Annotations were exported in PASCAL VOC format. Next to the 5
antibiotic treatments and control conditions, vesicles and partially attached cells
were added as additional classes (“Vesicles” and “Oblique”, respectively), resulting
in a total of eight classes. Synthetic test data was generated by randomly stitching
200 × 200 px² patches of different drug treatments and the control condition. Small
patches were manually cropped from images that were not seen by the network
during the training. In total, 32 test images were generated this way and annotated
online using makesense.ai81 as described above. Additionally, 400 × 400 px² image
patches of previously unseen images (drug treatments and control) were annotated
using LabelImg49.

Artificial labelling of E. coli membranes. PAINT super-resolution images of E.
coli membranes were recorded as described elsewhere64. In brief, cells were grown
in LB at 37 °C and 220 rpm, fixed in mid-exponential phase (OD600= 0.5) using a
mixture of 2% formaldehyde and 0.1% glutaraldehyde, immobilised on poly-L-
Lysine coated chamber slides and permeabilised with 0.5% TX-100 in PBS for
30 min. 400 pM Nile Red in PBS was added and PAINT time series (6,000–10,000
frames) were recorded on a custom built setup for single-molecule detection
(Nikon Ti-E body equipped with a 100x Plan Apo TIRF 1.49 NA oil objective)
using 561 nm excitation (~1 kW/cm²) or a commercial N-STORM system with a
similar objective and imaging parameters. Two image datasets were recorded using
either a 1x or 1.5x tube lens (158 and 106 nm pixel size, respectively). PAINT
images were reconstructed using Picasso v.0.2.8 and v.0.3.382 and exported at
different magnifications (8x for 158 nm pixel [19.8 nm/px] and 6x for 106 nm pixel
size [17.7 nm/px]). Corresponding bright field images were scaled similarly in Fiji
without interpolation and registered with the PAINT image. Multiple 512 × 512 px²
image patches were extracted from these images and used for model training. For
artificial labelling in drug-treated cells, cells were exposed to the following anti-
biotics: 100 μg/ml rifampicin for 10 min, 50 μg/ml Chloramphenicol for 60 min,
2 μg/ml Mecillinam for 60 min. Further sample preparation and imaging was
performed similar to untreated cells.

Prediction of membrane SIM images in live E. coli and S. aureus cells. For
widefield-to-SIM prediction experiments overnight cultures of E. coli strain DH5α
were back-diluted 1:500 in LB and grown to mid-exponential phase (OD600= 0.3).
One millilitre of the culture was incubated for 10 min (at 37 °C) with the mem-
brane dye FM5-95 (10 μg/ml, Invitrogen), washed once with PBS, subsequently
pelleted and resuspended in 10 μl PBS. One microliter of the labelled culture was
then placed on a microscope slide covered with a thin layer of agarose (1.2% (w/v)
in 1:1 PBS/LB solution). Image acquisition was performed as mentioned in section
“Segmentation of S. aureus bright field and fluorescence images”.

To generate the paired training dataset for super-resolution prediction, raw SIM
images were averaged to obtain the diffraction limited widefield image, while the
in-focus plane of the SIM reconstruction was used as corresponding high-
resolution image. The dataset was curated by removing defocused images and
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images with low signal resulting in reconstruction artefacts. In total, 55 training
and five test image pairs were used for E. coli. For S. aureus, this resulted in 94
training and five test image pairs.

Data augmentation. As a general strategy to increase training dataset sizes, we
used data augmentation22,83 for all DL learning tasks performed in this study using
mostly image rotation and flipping.

Calculation of the multiscale structural similarity index (SSIM). Performance
of several DL approaches (e.g. CARE) was accessed by calculating the multiscale
structural similarity index (here denoted as SSIM) between the source/predicted
image and the ground truth image54 (see Supplementary Note 1). Since back-
ground is suppressed efficiently by most networks and is thus over-
proportionally contributing to the average per-image SSIM value (leading to an
over-optimistic value), we determined the SSIM only within the outlines of
bacterial cells. For this, ROIs were generated in Fiji by thresholding the high
SNR image or time series average image. For denoising of live-cell time series
lacking ground truth data (e.g. N2V), we determined the SSIM value over time
by comparing each image frame to the subsequent image frame of the time series
(thus termed subsequent-frame SSIM). A low SSIM value thus depicts a high
frame-to-frame variation.

Tracking analysis using TrackMate. To track exponentially growing cells (Sup-
plementary Video 3) and cells transitioning from stationary to lag phase (Sup-
plementary Video 4), we used the ‘mask image detector’ in DL-capable version of
TrackMate46. No thresholding was used on the detected labels and the LAP tracker
was used with 10 px linking distance and segment gap closing (5 px). To track
MreB filaments, we used the LoG detector with a radius of 0.25 μm (0.5 μm dia-
meter) and varying thresholds for low SNR, high SNR and denoised time series.
Linking distance was set to 0.2 μm using the simple LAP tracker.

SQUIRREL analysis. To access artefacts in super-resolution prediction from
widefield data we used the SQUIRREL algorithm implemented in the Fiji NanoJ
plugin66,84. This way, the predictions of 5 WF images and the respective SIM
ground truth images were analysed. SQUIRREL calculates a diffraction limited
image from super-resolution images to compare them with the corresponding low-
resolution ground truth image. Resulting error maps give rise to reconstruction and
in this case also prediction artefacts.

Statistics and reproducibility. For the majority of datasets, multiple images or
time series were recorded in a single imaging session. It was ensured that the
acquired data is representative by the different expert laboratories contribution to
this work. For object detection (drug-treated cells) and artificial labelling (super-
resolution), images from 2–3 independent experiments were included in the
training and test dataset. Information about the number of training images and/or
cell count per image is provided in the Supplementary Information and the Sup-
plementary Data 1. The latter also includes the individual values used for statistical
analysis.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Datasets and models generated in this work can be downloaded via Zenodo (see
Supplementary Table 2), while further documentation on sample preparation, data pre-
processing, training parameters and example images can be found on our GitHub
repository (https://github.com/HenriquesLab/DeepBacs/wiki).

Code availability
Notebooks can be accessed via the ZeroCostDL4Mic repository (https://github.com/
HenriquesLab/ZeroCostDL4Mic/wiki). Macros for image pre- and postprocessing for
the Multi-label U-Net can be found in the DeepBacs repository (https://github.com/
HenriquesLab/DeepBacs/wiki).
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