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A global microbiome survey of vineyard soils
highlights the microbial dimension of viticultural
terroirs
Alex Gobbi1, Alberto Acedo 2, Nabeel Imam2, Rui G. Santini3, Rüdiger Ortiz-Álvarez 2,

Lea Ellegaard-Jensen 4, Ignacio Belda 2,5,6✉ & Lars H. Hansen 1,6

The microbial biodiversity found in different vitivinicultural regions is an important deter-

minant of wine terroir. It should be studied and preserved, although it may, in the future, be

subjected to manipulation by precision agriculture and oenology. Here, we conducted a global

survey of vineyards’ soil microbial communities. We analysed soil samples from 200 vine-

yards on four continents to establish the basis for the development of a vineyard soil

microbiome’s map, representing microbial biogeographical patterns on a global scale. This

study describes vineyard microbial communities worldwide and establishes links between

vineyard locations and microbial biodiversity on different scales: between continents, coun-

tries, and between different regions within the same country. Climate data correlates with

fungal alpha diversity but not with prokaryotes alpha diversity, while spatial distance, on a

global and national scale, is the main variable explaining beta-diversity in fungal and pro-

karyotes communities. Proteobacteria, Actinobacteria and Acidobacteria phyla, and Archaea

genus Nitrososphaera dominate prokaryotic communities in soil samples while the overall

fungal community is dominated by the genera Solicoccozyma, Mortierella and Alternaria.

Finally, we used microbiome data to develop a predictive model based on random forest

analyses to discriminate between microbial patterns and to predict the geographical source of

the samples with reasonable precision.
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W ine is a multi-billion dollar market of high cultural and
economic value1. Since the start of wine history2, the
place of origin is a major factor driving wine purchase

decisions, followed by competitive prices and brands. Wine-
makers rely on the concept of terroir to explain the uniqueness of
their wine in terms of taste and flavour. Terroir was originally
used in Burgundy in the 1930s as a marketing tool to differentiate
between wines3, but it now goes beyond the wine sector and is
used to explain the distinctive regional characteristics of other
high-value products, especially those where microbial fermenta-
tion has taken place, such as cheese, coffee and cocoa4,5. Today,
the concept of wine terroir has spread around the world, and
wine-producing countries are trying to regulate it with the legal
definition of appellations of origin. For example, 139 American
viticultural areas have been recognised in California (USA) alone6

and 90 in Spain7. Consequently, protecting the integrity of this
classification system is of paramount importance to producers,
distributors, retailers and consumers8. Thus, a major aim is to
establish the scientific basis of wine terroir, which relies on
multiple dimensions such as local edaphic, climatic, human and
biotic factors that contribute to modifying the quality and traits of
the resulting wines9. Among them, the specific microbial biodi-
versity associated with the vineyard’s location is reported to be a
key aspect associated with biogeographical patterns and directly
involved in vine growing, grape quality and winemaking10.
However, it is still not clear whether the concept of wine terroir
finds a reliable biological signature in vineyard’s microbiota, and
we still do not know its significance at different spatial scales:
from local to national and continental scale.

In the wine milieu, pioneering studies conducted by11–13 based
on high-throughput sequencing (HTS), revealed microbial bio-
geography associations across multiple viticulture areas. These
biogeographical patterns have subsequently been confirmed in
other places such as Catalonia in Spain14 and in Italy’s Cannonau
wine region15. Studies into the microbial biodiversity of vineyards
also provide relevant insights into the impacts of agricultural
management and soil quality16–18. Furthermore, Bokulich1 and
Knight19 have shed light on the associations between the
microbial and the metabolic fingerprint of wine produced in
different wine regions. In this regard, Belda et al.20 described
distinctive and clustered metabolic patterns for wine-related
yeasts depending on their geographical origin. Understanding the
links between the unicity of a wine’s metabolic profile and all the
factors affecting the grapes is valuable to the viticulturist, and
supports the ancient concept of terroir. Within this complex and
multifaceted concept, the microbiome of vineyards has been
shown to be a unique and integrative biomarker10,21 that affects
wine quality both indirectly (by affecting vine health and phy-
siology) and directly as the main reservoir of autochthonous
fermentative microbiota. A comprehensive review on this topic is
given by Belda and colleagues22. The role of the vineyard’s
microbiota in nutrient cycling, plant health, and in all stages of
the wine production process, highlights the potential applied
impact of microbial terroirs. This could serve as a biological
objective for future biotechnological applications on targeted
regional programmes for pathogens treatment or disease resis-
tance promotion23 and, contribute to define biomarkers for
monitoring and protecting the biological determinants of wine
regions. To achieve these goals, more knowledge is needed on the
global vineyard microbiome (at the taxonomic and functional
level), how it interacts with biotic and abiotic factors and
anthropogenic interventions. In this context, soil biodiversity
remains one of the most recognised parameters linked to the
concept of sustainable agriculture24–26. Since wine grapes are one
of the most dramatically affected crops in the current global
change scenario17, understanding patterns in the microbial

community composition of vineyard soils worldwide can poten-
tially advance strategies to manage the sustainability of
vitiviniculture.

This study applied an HTS amplicon library sequencing
approach to conduct a global survey of the topsoil microbial
communities of vineyards in 13 countries, including locations of
different wine regions and with different weather conditions, in
an endeavour to establish the basis for the development of a
global vineyard soil microbiome map. Further modelling efforts
on different scales, will provide a better understanding of the role
of microbes in connecting vineyard terroir with wine quality.
Based on the evidence described by Bokulich1, Burns12, Knight19

and Zarraonaindia11 between 2013 and 2015, we hypothesised
that, although there could be a core microbiome shared between
different locations, the link between distinctive microbial com-
munities and specific wine regions is a concept that can be
extended to a global scale and can be exploited to distinguish and
discriminate between different vineyards location worldwide.
Therefore, the aim of this study is to describe the microbial
communities of vineyards through amplicon sequencing tech-
nology and to build a new microbiome statistical tool to exploit
these differences based on a random-forest predictive model. The
model we built permits tracing the origin of a given soil sample
based only on its microbial community composition allowing a
better understanding of the biogeographical basis and the
microbiome boundaries of vitivinicultural terroirs.

Results
Diversity patterns and taxonomic composition of the global
vineyard soil microbiome. The Shannon Index for prokaryotes
(H′P) and fungi (H′F) are presented in Fig. 1 as the average value
for each country. H′P ranged from 7.2 (Germany) to 9.9 (Hun-
gary, Croatia and Argentina), while H′F ranged from 4.1 (Hun-
gary and Argentina) to 6.7 (Texas, USA). An analysis was
performed on possible correlations between the Shannon Index in
all the different samples and selected meteorological and climatic
parameters such as the average maximum temperature and pre-
cipitation data prior to sample collection, and long-term climatic
data such as the average temperature and rainfalls over the same
period. The correlation analyses displayed a significant positive
result when fungal H′F was analysed in light of short and long-
term average temperature (r= 0.38 and r= 0.4 respectively) and
with short-term rainfall (r= 0.52); contrary, no strong correla-
tions (r > |0.3 | ) were detected between prokaryotic alpha diver-
sity (H′P) and any short-/long-term climate data. Interestingly,
while the correlation between H′F and, short- and long-term
average temperature were consistent, only short-term rainfall
correlates with fungal H′F alpha diversity. It is important to
notice also that the correlation between the short-term average
rainfalls, measured close to the sampling, and the long-term
average rainfalls within the same period correlate with an
r= 0.38. This could explain also the different trends that we see
between H′F and short vs long-term rainfalls conditions (Sup-
plementary Data 2) and can be due to sporadic local events in
that particular vintage or to the different location of the
meteorological station providing the data.

Based on their taxonomical annotations, among the 45
prokaryotic phyla identified in these samples, 12 showed relative
abundances above 1% in at least one of the 13 countries.
Proteobacteria occurred with the highest relative abundances for
all 13 countries, with values varying between 18.8% (Portugal)
and 32.5% (Argentina). Actinobacteria were the second most
abundant bacterial phylum in most of the countries except
Croatia, Germany and Italy where Acidobacteria replaced
Actinobacteria as the second most abundant bacterial phylum,
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while elsewhere it was the third most represented phylum.
Additionally, Planctomycetes (Spain and USA), Bacteroidetes
(France, Hungary and Croatia) and Chloroflexi (Portugal) showed
a relative abundance above 10%, and together with Verrucomi-
crobia, Firmicutes and Gemmatimonadetes consistently showed a
considerable relative abundance, with values above 5%. The
archaea phylum Crenarchaeota (dominant genus Nitrososphaera)
showed a large relative abundance variation in the 13 countries,
with the main values detected in Portugal (10.9%), Chile (12.5%)
and Germany (29.5%), while the values in the other countries
ranged between 1.6 and 8.2%. These results are summarised in
Fig. S1a.

In the evaluation of fungal taxa detected with relative
abundances above 1%, Solicoccozyma (sin. Cryptococcus), when
present, was the dominant genus in eight of the 13 countries. The
relative abundance of Solicoccozyma in Argentina, Chile, South
Africa, Italy and Croatia ranged from 13.4 to 39.3%. In the
countries where Solicoccozyma was not dominant (Australia,
Denmark, Germany and Portugal), Fusarium and Cladosporium
were the most dominant. In Portugal and South Africa, Fusarium
had a relative abundance of up to 10% of the total fungal
communities. Denmark almost exclusively displays a high
abundance of Acremonium. Other abundant fungal taxa can be
seen in Fig. S1b.

The results outlined in the following section identified the
common core microbiota across the vineyard soils and the
fractions unique to different areas and are summarised in Fig. 2.
The evaluation of the core microbiota, which were consistent
across the vineyards regardless of their geographical distance,
produced a list of ubiquitous genera (129 prokaryotic and 24
fungal) present in all the countries and in at least 80% of all the
samples from each country (Fig. 2a and Supplementary Data 6).
From this list, the global prevalence was explored, at different

relative abundance levels, of the most widespread distributed
genera among the prokaryotic and fungal populations (Fig. 2b).
Among the dominant prokaryotic genera were Nitrososphaera
(Archaea), Rhodoplanes, Kaistobacter, Bacillus and Streptomyces
due to their prevalence at relative abundance values higher than
1%; all these taxa appeared in other papers as normally retrieved
in soil and involved in nitrogen cycling, carbon fixation and
organic matter degradation27–32. Some of them were specifically
associated with different types of management (conventional or
organic) and future studies confirming their implications could
become a predictive signature of the vineyard management
system used32. Similarly, the main dominant representatives of
the core fungal communities were Solicoccozyma, Morteriella and
Alternaria which are mainly involved in degrading organic
matter33–36. Figure 2b suggests that there was a more diverse and
balanced core within the dominant bacteria genera than within
the fungal core microbiota, where just three genera seemed to
dominate the populations in a substantial proportion of the
samples.

Spatial distance determines the similarity of microbial com-
munities in vineyard soils at different scales. Even assuming a
certain bias due to batch effect as described in section 2.6, the
effect of spatial distance in the composition and structure of
microbial communities was visible (Fig. 3) and statistically sig-
nificant (p value < 0.001). Based on the current visualisation,
there was a consistent clustering for the individual countries
represented in the dataset in both the prokaryotic (Fig. 3a) and
fungal communities (Fig. 3b). On a national scale, the most
represented country was Spain (n= 86) and it was analysed for
regional differences. The cluster distribution once again high-
lighted the different regions sampled (Fig. 3c, d).

Fig. 1 Coverage of the study. The countries highlighted in green are represented in the study’s dataset. The two isothermal lines define the range for
optimal conditions for grapevine cultivation (isothermal source: https://www.thirtyfifty.co.uk/spotlight-climate-change.asp). Each panel shows the
country, the number of samples (n) and information about the average maximum temperature (Tmax) and the level of precipitation (Prec) up to 2 weeks
before sample collection. Finally, H′P and H′F define the Shannon Index for the prokaryotic and fungal community respectively.
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The effect of spatial distance on different scales were evaluated
using PERMANOVA. The results were consistent with the initial
hypothesis confirming an impact of spatial distance on microbial
communities in vineyard soils. This was more evident when
reducing the scale from a global comparison between continents
(prokaryotic: R2= 0.08, p= 0.001; fungal: R2= 0.09, p= 0.001),
countries (prokaryotic: R2= 0.16, p= 0.001; fungal: R2= 0.21,
p= 0.001), and political regions within a country (prokaryotic:
R2= 0.27, p= 0.001; fungal: R2= 0.25, p= 0.001) (Supplemen-
tary Data 7).

The impact of geographical distance at different scales
(continent, country and region) was significant in all instances
except between a few neighbouring underrepresented countries or
regions (i.e. Italy and Croatia for 16S or Germany and Denmark
for ITS); in order to improve the resolution of the analyses,
meteorological data prior to harvest were included as an
additional constraint. This effect could be seen when looking at
the variance partitioning RDA analyses performed (displayed in
Fig. S2), where the use of an additional constraint helped resolve
closely related countries. However, as observed in the above-
mentioned PERMANOVA analysis, it is important to highlight
that the variance explained by spatial distance was higher than the
variance explained by meteorological data (average maximum
and minimum temperatures and precipitation) in the composi-
tion of microbial communities, regardless of the scale (Supple-
mentary Data 7). In this context, we assumed that considering
additional constraints (e.g. soil physicochemical properties and
long-term climate effect) would increase the resolving power of
this approach.

For a practical demonstration of the effect of geographical
distance in determining the structure of microbial communities
in vineyard soils as a key consideration when defining wine
terroirs, a predictive model was developed based on random
forest analyses. The objective was to trace the origin of a certain
soil sample based solely on its microbiome composition. The
fitted models for each level (country or continent), sequencing
type (ITS or 16S) and inclusion of weather variables had test set
accuracies of between 80.0% and 93.3%. Test set accuracies for the
final models are presented in Supplementary Table 2. The
continent-level models were more accurate compared with
country-level models, regardless of the inclusion of weather
conditions in the analysis. However, quite notably, the inclusion
of weather variables did not seem to have a large effect on test set
accuracy, when used in conjunction with sequencing data.

Figure 4 shows the confusion matrix reporting the predictions
from the trained models. As mentioned above, the reasonable
accuracy of the fitted models resulted in a high rate of coincidence
between the actual and predicted origins of the samples, with a
similar performance of prokaryotic and fungal-based models.
Figure 4b shows the taxonomical identity of the 20 best predictor
phylotypes. As shown in Fig. S3, weather data did not have a large
effect on test set accuracy, and microbial variables remained the
main predictors in these mixed models.

Discussion
This work provides new insights into the microbial community of
vineyard soils worldwide such as the correlation between
microbial diversity and environmental factors, the impact of

Fig. 2 Evaluation of core microbiota. a Co-occurrence of different genera constituting the core microbiome at continent-level for the prokaryotic (left) and
fungal (right) community visualised with Venn diagrams; b Heatmaps for the top 25 genera shared between continents for the prokaryotic (left) and fungal
communities (right), including information on their relative abundance and prevalence.
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spatial distance on a multi-scale perspective, the identification of
a global core-microbiome (Supplementary Data 6) and the
development of a prediction model by analysing amplicon data
for bacterial 16S rRNA gene and fungal ITS region sequencing
from different wine-producing countries. The PCoA plots con-
firmed the link between spatial distance and microbial commu-
nity in vineyards on global and regional scales. There has been
few evidences of this on a regional scale in California37,38, New
Zealand19, Chile39, Italy15,40 and Australia41. The present study
extends the concept of biogeographical correlations in the vine-
yard, within the framework of microbial terroir21, to a global
scenario. Spatial distance has a strong effect on shaping the
microbial community of vineyard soils from different countries,
with few clusters overlapping possibly due to the relatively high

variance between the microbial community retrieved from dif-
ferent vineyards in the same country. This led to the suggestion
that there is a hierarchy within spatial distances, with the general
trend being the further the distance, the more diverse the com-
munity. The present study confirmed the regional-scale clustering
when looking at the samples from Spain (Fig. 2c, d). This was the
case for bacteria and fungi on an international scale but was even
more noteworthy when looking at the distribution within the
same country. This suggests that the use of microbial information
is a sensitive parameter for discriminating between more closely
located communities when confounding factors are reduced.

When taking into account the correlations between Shannon
Index, calculated at the national level, and the short and long-
term weather conditions at the sampling location around the

Fig. 3 PCoA plots of beta diversity based on CLR. Fig. 3a, b represent the national-scale samples ordination for prokaryotes (a) and fungal communities
(b); Fig. 3c, d represent the national-scale samples ordination for prokaryotes (c) and fungal communities (d) on a subset of samples from Spain.

Fig. 4 Random forest results at national scale including only microbial data. The top charts show the 20 best predictors for prokaryotic (a) and fungal (b)
communities; the bottom charts show the confusion matrixes for the prokaryotic (c) and fungal communities (d).
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harvest, results have shown some trends consistent with the
existing literature. A positive correlation between temperature
and fungal diversity is expected due to the direct and indirect
effects represented by a lower pH and a positive effect on
microbial-rate metabolism42. In a similar way, the positive cor-
relation between rainfalls and fungal diversity could be explained
by changing resource availability and influencing microbial
metabolic activity43. Furthermore, Větrovský et al. in 201944

showed that, among different environmental factors, the climate
is a strong driver of fungal diversity, which tends to increase with
latitude (while other studies suggested the opposite i.e. Arnold
et al. in 201045) but have a wider range of distribution in the
temperate area included in this study. Specifically, the strongest
drivers they identified were the mean temperature of the driest
quarter (generally recorded in summer which corresponds to the
timing of our sampling) and precipitation seasonality which was
also recorded in our study. The positive correlation between
fungal diversity and rainfall is also supported by Tedersoo et al.46

that in 2014 described the relations between a global fungal dis-
tribution and environmental factors in different biomes.

At a taxonomic level, Proteobacteria and Acidobacteria have
previously been identified as the most abundant bacterial phyla
within soils47, including topsoil studies carried out in
vineyards11,37,41. In agreement with such observations, Proteo-
bacteria was the most abundant phylum in all 13 countries
evaluated. The widespread occurrence of Crenarchaeota members
in these samples is in agreement with the detection of this
archaeal phylum in a range of environments around the world,
such as agricultural fields, sandy soil, forest soil, contaminated
soil and the rhizosphere48,49. However, while the relative abun-
dance fraction of this phylum is typically reported as representing
up to 5% of the total prokaryotic community50,51, it was found in
10 of the 13 countries in values exceeding 5%, with an emphasis
on samples from Chile (12.6%) and Germany (29.4%). The high
abundance of Crenarchaeota seen here in samples from Germany
(Fig. S1) has also been identified by52, but in their case in samples
of acidic forest soil. In contrast to the present observation, studies
of soil samples from Chilean vineyards have previously reported
relative abundances of Crenarchaeota below 0.1%39. For Cre-
narchaeota, the ammonia-oxidising archaea (AOA) Nitroso-
sphaera was the main genus detected in all the countries surveyed
in this study. This genus has been observed by53 to significantly
respond to agricultural management practices. In the present
study, this taxon was also one of the best predictors from the
random forest model.

Of the fungi, Solicoccozyma (mostly known as Cryptococcus)
was the dominant genus in eight out of the 13 countries and the
best predictor in the random forest model considering fungal
community alone. It belongs to the group of oxidative basidio-
mycetous yeasts and has been found to be associated with the
phyllosphere, grapes and soil54 involved in wood-
decomposition55. Cryptococcus, Saccharomyces (Spain and USA)
and Candida, Hanseniaspora and Pichia (these last three genera
were not identified in the samples in the present study) provide
most of the diversity of the frequently isolated yeast species
related to grape or isolated from fermented grape juice56. Studies
have shown that Cryptococcus are not severely affected by fun-
gicides, which may explain their higher abundance in
vineyards57,58. Some of the other main fungal taxa identified in
the present samples also contained documented plant pathogens
at a lower resolution level. Fusarium, detected among the domi-
nant taxa in Australia, Denmark, Germany, Portugal and South
Africa, is recognised as containing many plants pathogenic and
fruit spoilage species59. However, the detection of these potential
phytopathogens does not directly indicate plant infection because

the success of microorganisms to affect plant health relies on
whole soil and rhizosphere microbial interactions60 and strain-
specific virulence factors that cannot be retrieved with amplicon
sequencing. In Australia, the presence of soil-borne Fusarium has
been also detected among the dominant taxa on leaves61.

Based on the random forest results, both 16S and ITS abun-
dances showed good predictive power for the geographical region.
Overall, accuracies were 83 and 86% on a national scale for the
prokaryotic and fungal communities respectively (Supplementary
Table 2). These results included the list of the best predictor taxa,
some of which are also known to play an ecological role in
vineyards, such as Nitrososphaera and Cryptococcus, which also
appeared as the most dominant taxa within the prokaryotic and
fungal core communities (Fig. 3b). The few occasions on which
the confusion matrix gave a misprediction could be attributed to
several factors; one was due to the approximation applied to
overcome the different coverage of the US states represented in
the dataset. In fact, although all the samples from the United
States of America were considered to be from a single country,
they were collected in three different states (California, Oregon
and Texas) which increased the dispersion and group variance
leading to a model mistake. Finally, apart from all the regional
signatures described above, it should be also highlighted that a
core microbiome could be identified across vineyard soils, as
previously described in other global surveys62,63.

To conclude, this study has provided new insights into
microbial biogeographical correlations, quantifying them on dif-
ferent scales for the first time to our knowledge. This concept was
extended to a global scale, showing a hierarchical effect that is
valuable on continental, national and regional scales. The level of
the resolution reached here, together with some other evidence
reported at a local (inter-block and intra-block) scale64, suggests
that the microbiome should be considered as an important
variable in identifying agricultural sites for the definition of
homogeneous functional zones such as basic terroir units. These
should represent the smallest area for which it is possible to
objectively describe the effect of the environment on plant phy-
siology and agricultural production, and which could be differ-
entially managed. Since the microbial terroir appears to be
dependent on several different factors, from geography to climate,
soil characteristics and vineyard management, there is a thread
that links them all and this must be sought in the hidden
dynamics of their microbial communities. Thus, the use of
microbial information, as a way of discriminating between vine-
yards in different countries, provides the first applicative use of
this technology and tools for improving the accuracy and
representativeness of the microbial map by adding new samples
in the future. The random forest model developed ultimately
confirmed this study’s initial hypothesis that spatial distance
determines the microbiota to such an extent that it can be used to
predict the origin of a vineyard’s soil. This is therefore another
argument supporting the definition of appellations of origins,
both in legal and marketing terms. Finally, these results should
encourage further explorations of the significance and limits of
the microbial aspect of agricultural terroirs, since they provide a
baseline for guiding future studies in the field. In this sense, we
should make explicit the main limitations of our work which,
indeed, still represent the knowledge gaps that should be
addressed in future studies in agreement with the recommenda-
tions of the International Organization of Vine and Wine (OIV)
on its recent resolution OIV-VITI 655-202165: (i) the importance
of soil physical-chemical properties, farming practices, and long-
term climate data in shaping the vineyard microbiome; (ii) the
role of plant–soil–microbe interactions in filtering the microbiota
which finally occupies the rhizosphere; (iii) the identification of
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keystone taxa and the role of facilitators and competitors in
promoting a resistant and resilient soil microbiome in vineyards.

Methods
Materials. This study involved a microbial amplicon-based survey created with
previously unpublished data combined from two different datasets. The data in this
study originated partly from the MICROWINE project but also included private
data from Biome Makers Inc. obtained with BeCrop® Technology. This project
involved a total of 252 topsoil samples from 200 vineyards collected close to
harvest. These samples were thus collected by different people around the globe
between 2015 and 2018. Although there were some differences in the sampling
scheme, storage conditions and sample processing, a general description of this
protocol follows: all samples were bulk-topsoil, collected in sterile tubes at a depth
of between 0 and 10 cm. The MICROWINE samples consisted of five samples
collected and DNA sequenced for each field. The Biome Makers’ samples consisted
of pooled bulk-topsoil from three random spots in each field, and DNA was then
extracted and sequenced for this composite sample. The shipment conditions of the
soil samples were either −20 °C or non-refrigerated, followed by −20 or −80 °C as
the storage temperature in the laboratories until DNA extraction. DNA extractions
were performed using bead beating-based DNA extraction kits such as the Dneasy
Powerlyzer Powersoil Kit (Qiagen) for the BeCrop® platform (patent publication
number: WO2017096385, Biome Makers) and the FAST-DNA Spin Kit for Soil
(MP-Biochemical) for the MICROWINE project. A complete overview of all the
samples used in this study and their relative origin is given in Supplementary
Data 1. The use of bead beating-based kits, such as those included in this study,
ensured that the results produced were comparable and also allowed the recovery
of the highest biodiversity within soil samples66.

Dataset. The sequencing dataset obtained, made of 504 samples equally divided
between 16S and ITS, was representative of 252 soil samples collected in 200
locations across 13 different countries on four continents, with the intention of
covering most of the dominant areas for grapevine cultivation (Fig. 1). These 13
countries represent more than 83% of total wine production worldwide27. The
collection time, close to the harvest period, allowed the dataset to be built in a way
that was strongly dependent on the geography and included vintage-related
parameters such as average maximum and minimum temperatures and pre-
cipitation measured for the two weeks prior to sample collection. Analyses of the
microbial composition on a country-level scale were performed using the samples
from Spain, the country with the highest number of samples (n= 86) from 12 wine
regions. A total of 84770 non-redundant amplicon sequence variants (ASVs) for
16S and 33254 for ITS were obtained.

Weather information were retrieved from World Weather Archive (https://
www.worldweatheronline.com/) with the closest reference point chosen based on
the GIS coordinates identifying the samples and reported in Supplementary Data 1.
Long-term climatic data are retrieved from World Climate Archive (http://
www.worldclimate.com/) with the closest reference point chosen based on the GIS
coordinates identifying the samples and reported in Supplementary Data 1.

The data are publicly available via European Nucleotide Archive (ENA) under
the following study accession number: PRJEB40350.

Library preparation. The same variable regions were investigated in both datasets
(MICROWINE and Biome-Makers) for 16S and ITS with a few differences in the
primer sequences. A complete description of the primers is given in Supplementary
Table 1. All PCR reactions were prepared using UV-sterilised equipment and
negative controls were run alongside the samples. Furthermore, PCR conditions,
such as the number of cycles, annealing temperature, thermocycler and Master Mix
composition, changed between samples from different projects. The libraries for
both MICROWINE datasets (16S and ITS) were prepared using a two-step PCR, as
described by67 and28 Biome Makers samples were obtained amplifying the 16S
rRNA V4 region, while the ITS were obtained by amplifying the ITS1 region using
BeCrop® custom primers (patent WO2017096385). All libraries were prepared
following the two-step PCR Illumina protocol and these were subsequently
sequenced on an Illumina MiSeq instrument (Illumina, San Diego, CA, USA) using
2 × 251 paired-end reads for the MICROWINE samples and 2 × 301 paired-end
reads for the Biome Makers samples.

Bioinformatics. All the data produced and collected were subsequently analysed
using QIIME2 v2019.768, as described in ref. 28. Reads from the 16S rRNA gene
produced following the MICROWINE and Biome Makers protocol were collected
and processed using DADA2 single-read analyses69. The phylogenetic tree was
calculated based on the insertion fragment plugin to reduce the batch effect from
using two different primer sets70. Taxonomy was assigned using a Naive Bayes
classifier71 trained with Greengenes v13_872. ITS sequences were analysed using a
DADA2 single read without merging. Denoised reads were used to build a phy-
logenetic tree using MAFFT73 and subsequently taxonomy was assigned using a
Naive Bayes classifier trained with the UNITE database (full alignment)74. The
frequency tables for 16S and ITS were rarefied to 10,000 high-quality reads per
table and used for all subsequent analyses of diversity and composition.

Statistics and reproducibility. Alpha diversity was calculated using the Shannon
Index and tested with a Kruskal–Wallis test with adjustment for multiple testing.
Alpha diversity correlation with the short-term weather parameters and long-term
climatic data was performed using Pearson’s correlation coefficient on Microsoft
Excel. An arbitrary threshold of r= 0.3 was considered relevant if supported by a p
value lower than 0.05. These results are reported in Supplementary Data 2. Beta
diversity was calculated based on unweighted UNIFRAC75. Kruskal’s non-metric
scaling was used to perform a principal coordinate analysis based on UNIFRAC
distances between samples. The results were plotted, labelling samples by country
and continent. These groupings were tested with PERMANOVA. All the infor-
mation about the explained variance for the different groups of variables, with
PERMANOVA scores, is reported in Supplementary Data 3. To assess the global
core microbiome, taxa were preselected if they were detected in each continent.
This was visualised as a Venn diagram using the Venn Diagram R package76. These
‘core’ taxa were evaluated on a continuum of abundances and prevalences and
plotted as a heatmap as per ref. 77. For subsequent analyses, taxa that had fewer
than 20 non-zero abundances in the whole dataset were aggregated into an ‘others’
variable. A zero replacement was also performed using Bayesian inference with a
Dirichlet prior and multiplicative adjustment to maintain other proportions78.

A redundancy analysis (RDA) was performed using a centred log-ratio (CLR) of
16S and ITS abundances, constrained by the country or continent from where the
samples came. Additionally, weather conditions (specifically average minimum and
maximum temperatures and precipitation) at sampling were used as conditioning
variables for RDA. The RDA analysis was conducted using the vegan R package
(Oksanen et al.79).

The predictive potential of the microbiome for the geographical region was
assessed using random forests. Models were fitted using CLR-transformed 16S and
ITS abundances as predictors and country or continent as an outcome. Additional
random forests were fitted using weather variables (as mentioned above) in
conjunction with abundances as predictors. Subsequently, 75% of the dataset was
randomly selected and used for repeated cross-validation, using a grid of values for
hyper-parameters (Supplementary Data 4). Models were selected for the highest
accuracy in the test set (remaining 25% of the dataset). Country and continent-level
confusion matrices were generated for the test set (Supplementary Data 5). Feature
ranking was performed using the Gini index. Random forests were fitted using the
ranger R package80. All the analyses were performed in the R programming
environment (R Core Team81) and Qiime2 v2019.768. The limitation of this
approach is that convenience sampling may affect the generalisability of this model.
However, this does not affect the conclusion of this study as it aims to train a
model to distinguish between source locations given microbiome data rather than
predicting new samples' microbial composition. Additional constraints such as soil
physicochemical properties and vineyard management system have not been
included in this project and this limits the conclusions we could draw to those
reported in this study.

When combining datasets from different studies, the impact of what is known
as batch effect bias needs to be addressed. The database in this study was composed
of samples from several countries (see the detailed list of samples included in this
study in Supplementary Data 1), and although they were produced in a similar way,
confounding factors could be expected in the global distribution. The batch effect is
a very common bias, especially in meta-analytical studies82, that can influence the
results and subsequently the conclusions. This risk is even higher when the same
type of sample is compared, while the effect is lower when different types of
samples are analysed together, as reported by several meta-analyses82–84. With
regard to the 16S rRNA gene analyses, an algorithm called SEPP70 was chosen that
has been shown to dramatically reduce the bias due to the use of different primers
or to the amplification of different hypervariable regions. This method is not
applicable to ITS analyses, since the lack of a high-quality phylogenetic tree will
affect the results more than a traditional pipeline. For ITS, a single-read DADA2
approach with basic filters was used instead that has been shown to represent one
of the best approaches for amplicons so far85 and has also previously been used86.

On a global scale, alpha diversity was measured using the Shannon Index, which
is relatively stable against the batch effect from the different primers used. This is
because it also accounts for evenness in the ASVs distribution and is not solely
based on their presence/absence87. Furthermore, once singletons are removed, its
entropy coverage adjustment accounts for unobserved taxa caused by an uneven
coverage of the countries88. Another approach was to compare the co-occurrence
pattern within the whole database after taxonomy assignment at different
taxonomical ranks87. In fact, two ASVs that have a different nucleotide sequence,
coming from different regions of the same gene marker, could be assigned to the
same taxa, despite some differences that can occur in relative abundance.

Reporting Summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The sequencing data are available via European Nucleotide Archive (ENA) under the
following study accession number: PRJEB40350. The authors declare that the other data
supporting the findings of this study are available in the Supplementary Information file
and Supplementary Data 1–7.
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