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Understanding the functional role of membrane
confinements in TNF-mediated signaling by
multiscale simulations
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The interaction between TNFα and TNFR1 is essential in maintaining tissue development and

immune responses. While TNFR1 is a cell surface receptor, TNFα exists in both soluble and

membrane-bound forms. Interestingly, it was found that the activation of TNFR1-mediated

signaling pathways is preferentially through the soluble form of TNFα, which can also induce

the clustering of TNFR1 on plasma membrane of living cells. We developed a multiscale

simulation framework to compare receptor clustering induced by soluble and membrane-

bound ligands. Comparing with the freely diffusive soluble ligands, we hypothesize that the

conformational dynamics of membrane-bound ligands are restricted, which affects the

clustering of ligand-receptor complexes at cell-cell interfaces. Our simulation revealed that

only small clusters can form if TNFα is bound on cell surface. In contrast, the clustering

triggered by soluble TNFα is more dynamic, and the size of clusters is statistically larger. We

therefore demonstrated the impact of membrane-bound ligand on dynamics of receptor

clustering. Moreover, considering that larger TNFα-TNFR1 clusters is more likely to provide

spatial platform for downstream signaling pathway, our studies offer new mechanistic

insights about why the activation of TNFR1-mediated signaling pathways is not preferred by

membrane-bound form of TNFα.
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Proteins in the tumor necrosis factor (TNF) superfamily
function as indispensable ligands to trigger signaling path-
ways that are involved in not only the maintenance of tissue

homeostasis and development, but also the regulation of the
immune system1–3. They are type II transmembrane (TM) pro-
teins which are characterized by the trimeric structure with three-
fold symmetry through their C-terminal TNF homology domain
(THD)4–6. All ligands in the superfamily are initially presented on
cell surfaces, but most of them also occur as soluble variants after
their “stalk” regions (the linker between the extracellular THD and
transmembrane domains) are cleaved by metalloproteases6. With
only a very few exceptions, the TNF superfamily members form
interactions with their targets which belong to the TNF receptor
(TNFR) superfamily7. The trimeric ligands can simultaneously
bind to three receptors, leading into the formation of a ligand-
receptor complex with 3:3 stoichiometry8. It has been observed in
various systems of TNFR superfamily that the intracellular sig-
naling pathways can only be effectively activated after these TNF-
TNFR complexes are further assembled into higher-order
clusters9–13. It was also found that receptors in some cases can
even form pre-assembly on cell surface prior to ligand
binding12,14.

Among the multifaceted mechanisms that mediate receptor
clustering, the most common one is the lateral interactions
between receptors, so called the “cis-interaction”, through their
preligand binding assembly domain (PLAD)14,15. These PLAD
regions are not only functionally conserved across the TNFR
superfamily, but also do not spatially interfere with the ligand-
receptor interaction, denoted as the “trans-interaction” hereafter.
While some receptors in the TNFR superfamily can be robustly
activated by soluble ligands, others can only be activated by
ligands that are in the membrane-bound state16. More interest-
ingly, evidences show that for those receptors that failed to be
activated by soluble ligands, their activation can be rescued by
anchoring the ligands to the cell surfaces17,18. This indicates that
the cellular environments and membrane confinement of TNF
ligands play an essential role in modulating the receptor clus-
tering. However, it is not fully understood what the underlying
mechanism of this observation is.

Intuitively, the confinement of TNF ligands on the surface of
the plasma membrane leads to their loss of both translational and
rotational degrees of freedom19,20. Comparing with the freely
diffusive soluble ligands, we hypothesize that the conformational
dynamics of membrane-bound ligands are changed by these
constraints which further affects the kinetics of ligand-receptor
interactions and clustering at cell-cell interfaces. Similarly, we
hypothesize that preassembly of TNF receptors on the surface of
the plasma membrane could also provide additional restrain to
receptor’s conformational dynamics, thus leading to higher affi-
nities for their ligands. Here, we use computational simulations to
test these hypotheses. Computational modeling holds advantages
to test variable conditions of a biomolecular system with the
mechanistic details that are unapproachable by current experi-
mental methods, not mentioning that measurements of receptor
clustering in living cells with high spatial-temporal resolutions
have only been successfully achieved in a limited number of cases.
A large variety of computational models have recently been uti-
lized to study the dynamics and functions of proteins in TNF or
TNFR superfamily21–24. Unfortunately, simulation approaches
relying on high-resolution structural details of individual pro-
teins, such as molecular dynamics (MD) simulation, have diffi-
culty reaching the timescale of ligand-receptor clustering25–30. In
contrast, simulation approaches on the lower resolution, such as
partial differentiation equations (PDE) and agent-based modeling
(ABM), aimed to describe how collective behaviors of membrane
receptors lead to spatial patterning on the subcellular level31–40.

However, molecular details of receptors are rarely incorporated in
these methods. One possibility to compensate the limitations of
computational methods on different levels is the development of
multiscale modeling technique41–45.

Given this background, a multiscale simulation framework is
constructed in this study by integrating all-atom MD simulations
with a domain-based coarse-grained (CG) diffusion-reaction
model. It was found that the activation of TNFR1-mediated sig-
naling pathways is preferentially through the soluble form of
TNFα instead of the membrane-bound form46,47. Therefore, we
applied the multiscale framework to the interaction between
ligand TNFα and its receptor TNFR1 as a test model (Fig. 1). We
compare the system in which clustering of TNFR1 is induced by
soluble TNFα (sTNFα) to the system in which clustering is
induced by membrane-bound TNFα (mTNFα). We found that
the size of clusters formed by complexes between TNFR1 and
sTNFα is statistically larger than the clusters formed by com-
plexes between TNFR1 and mTNFα. This result provides the
insight of why soluble ligand is more likely to activate TNFR1.
Our study demonstrated that the environment of cell membrane
can play an important role to regulate the spatial pattern of
ligand-receptor clustering in situ.

Results and discussions
In order to estimate how membrane confinement of TNF ligand
can affect its association with TNFR receptor, and distinguish the
cis-interaction induced by membrane-bound ligands from the cis-
interaction induced by soluble ligands, all-atom molecular
dynamics simulation was applied to study the conformational
fluctuations in five systems. The first one is the monomeric
receptor on plasma membrane (TNFR1 as shown in Fig. 2a); the
second one is the membrane-anchored ligand trimer (mTNFα as

Fig. 1 The multiscale simulation framework. TNFα ligands (red) are
initially presented on cell surfaces (mTNFα). They also occur as soluble
variants (sTNFα) after their “stalk” regions are cleaved by metalloproteases
(a). The trimeric ligands can simultaneously form “trans-interactions” with
three receptors TNFR1 (green). Additionally, two TNFR1 receptors can also
form a “cis-interaction”, through their PLAD regions (green dots) which do
not spatially interfere with the trans-binding sites (yellow dots). It was
found that the activation of TNFR1-mediated signaling pathways is more
preferred by sTNFα than mTNFα, while both forms of ligands can further
induce the aggregation of TNFR1 into nanoscale clusters through the
combination of trans- and cis-interaction. Using a domain-based coarse-
grained model and diffusion-reaction simulation algorithm, we compare the
system in which clustering of TNFR1 is induced by soluble TNFα (b) to the
system in which clustering is induced by membrane-bound TNFα (c).
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shown in Fig. 2b); the third one is the complex formed between
soluble ligand trimer and three membrane-bound receptors
(sTNFα-TNFR1 as shown in Fig. 2c); and the fourth one is the
complex formed between three membrane-bound receptors and a
trimeric ligand attached to the opposite plasma membrane
(mTNFα-TNFR1 as shown in Fig. 2d). Finally, the last system is a
cis-dimer formed by two TNFR1 on the plasma membrane
(shown in Fig. S1).

We analyzed the conformational dynamics of ligand, receptor,
and their complex formed under different conditions by MD
simulations. In detail, the values of all conformational parameters
were estimated from the five simulation systems. In addition to
the range of translational fluctuations Δh for a corresponding
membrane-bound molecule along its membrane normal (Fig. 3a),
the range of volume in the rotational phase space of the molecule
can be further characterized by three Euler angles as Δω =
Δψ × Δφ (1− cosΔθ), in which ψ is defined as the angle around
the long principal axis z′ of the protein, θ is the tilting angle
between this principal axis and the membrane normal, and φ is
defined as the angle around the membrane normal z, as shown in
Fig. 3b. The distributions of all these parameters were derived for
each system based on the molecular conformations generated
along the corresponding trajectory. The range of each parameter
was then simply approximated as twice the standard deviations of
its distributions. We assume this simplified calculation can cap-
ture the basic dynamic features of the ligand-receptor systems,
although a thorough estimation of configurational volumes
should involve more rigorous but computationally more expen-
sive method such as thermodynamic integration, which is beyond
the scope of current study.

The specific distributions of conformational fluctuations along
both translational and rotational degrees of freedom are plotted
from Fig. 3c–f for the four simulation systems illustrated in Fig. 2.
Detailed ranges of all conformational parameters were calculated
from these distributions and can be found in the supporting
information as Table S2. The figures show that the profiles of

distributions in different systems are highly distinguishable. For
instance, comparing with other three systems, the simulation of
membrane-bound TNFR1 monomer forms wide distribution
along all four conformational degrees of freedom, as shown by
green curves in the figures. In contrast, the distributions of
conformational angles ψ and φ become much narrower when
TNFR1 receptors form complex with soluble TNFα, as shown by
the red curves in Fig. 3c, e respectively. This can be explained by
the fact that all three receptors in the complex are tethered to the
membrane (Fig. 2c), leading into multiple degrees of constraints
to conformational fluctuations.

Similarly, the dynamics of trimeric ligand TNFα shows narrow
distributions along conformational angles ψ and φ, as shown by
the blue curves in Fig. 3c, e respectively. This is also due to the
fact that all three subunits of the ligand are tethered to the
membrane (Fig. 2b), thus causing higher level of confinements.
Finally, additional restrictions to the conformational dynamics
were introduced after both ligand and receptors are anchored to
membrane in the mTNFα-TNFR1 complex (Fig. 2d). This is
confirmed by the much narrower distributions along the tilting
angle θ and the translational fluctuations h were obtained, as
shown by the black curves in Fig. 3d, f respectively. Another
feature is that the entire ligand-receptor complex sits more
upright at the interface of two plasma membranes, which is
indicated by the small tilting angle (black curve in Fig. 3d). As a
result, the complex can rotate along the membrane normal more
easily, leading into the wide distribution of conformational angle
φ (black curve in Fig. 3c). Moreover, due to the small tilting angle,
the long principal axis z′ of the complex is almost aligned to the
membrane normal, leading into the similar profiles in the dis-
tributions between conformational angles ψ and φ (black curves
in Fig. 3c, e). Taken together, the simulation results illustrate that
the conformational dynamics of ligand, receptor, and their
complex are closely regulated by different degrees of membrane
confinements.

Additionally, we also compared the conformational fluctua-
tions of TNFR1 in the monomeric state with the conformational
fluctuations when it is in the cis-dimer. The specific distributions
along both translational and rotational degrees of freedom are
plotted in Fig. S2, and detailed ranges of these conformational can
be found in the supporting information as Table S3. The figures
show that the distributions of monomeric TNFR1 are highly
distinguishable from the distributions of dimeric TNFR1. More
specifically, the simulation of TNFR1 cis-dimer forms narrower
distributions along the conformational angles φ and b θ than the
simulation of monomeric TNFR1, as shown by the red and black
curves in Fig. S2a, b, respectively. This can be explained by the
fact that cis-dimerization provides additional constraints to the
conformational fluctuations of the receptor. As a result, TNFR1 in
a cis-dimer might be less flexible and thus more prone to interact
with the ligand.

After calculating the ranges of above conformational dis-
tributions and incorporating them into the equations in the
Methods, we derived the binding rates for both ligand-receptor
trans-interactions and cis-interactions between receptors under
different states. The binding constants of trans-interaction
between soluble TNFα and TNFR1 (sTNFα-TNFR1) were
adopted from the data in previous literatures, in which the
association rate equals 1.1 × 109M−1 min−1 and the affinity
equals 1.9 × 10−11M−1 48. We converted these experimental
measurements into the units used in our domain-based diffusion-
reaction simulations based on a curve-fitting procedure imple-
mented in our previous studies49,50. This gives an association rate
of 0.04 ns−1 with a distance cutoff of 18 Å and a dissociation rate
of 3.48 × 10−13 ns−1. Based on the calculated ranges of con-
formational parameters in Eq. (1), we further derived the

Fig. 2 The all-atom structural models of four specific cellular systems.
The conformational dynamics of ligand and receptor in these systems was
analyzed by molecular dynamics simulations. The first system is the
monomeric receptor TNFR1 on plasma membrane (a). The second system
is the membrane-anchored TNFα ligand trimer (b). The third system is the
complex formed between soluble ligand trimer and three membrane-bound
TNFR1 receptors (sTNFα-TNFR1) (c). Finally, the last system is the complex
formed between three membrane-bound TNFR1 receptors and a trimeric
ligand TNFα which transmembrane regions are attached to an opposite
plasma membrane (mTNFα-TNFR1) (d).
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association rate for the trans-interaction between membrane-bound
ligand and receptor (mTNFα-TNFR1), which equals 0.1 ns−1. This
result suggests that membrane confinement of the ligand facilitates
its association to receptor due to the loss of conformational entropy.
The association rate of trans-interaction between membrane-bound
ligand and receptor is thus accelerated. Consequently, the binding
affinity of the interaction further becomes 2.5 times stronger than
the soluble ligand.

Unfortunately, detailed binding constants of cis-interactions
between TNFR1 receptors have not been quantitatively char-
acterized. As a result, a typical range of diffusion-limited rate
constants from 105M−1s−1 to 107M−1s−1 was selected to
represent the associate rate of cis-interaction in solution51. We
converted these values into the units used in our domain-based
diffusion-reaction simulations based on the curve-fitting proce-
dure and further derived the 2D association rates of cis-interac-
tion between two membrane-bound receptor monomers based on
the calculated ranges of conformational parameters in Eq. (2).
This gives the range of association rate from 4.7 × 10−4 ns−1 to
4.7 × 10−6 ns−1. Moreover, based on the calculated ranges of
conformational parameters in Eqs. (3) and (4), we derived the
association rates of cis-interaction between two sTNFα-TNFR1
complexes and between two mTNFα-TNFR1 complexes, respec-
tively. Interestingly, our calculations show that the association
rates of cis-interaction between two sTNFα-TNFR1 complexes

range from 9.6 × 10−3 ns−1 to 9.6 × 10−5 ns−1, while the asso-
ciation rates of cis-interaction between two mTNFα-TNFR1
complexes range from 1.0 × 10−1 ns−1 to 1.0 × 10−3 ns−1.

Above results indicate that ligand binding might facilitate the
cis-interaction between receptors, while the binding of
membrane-bound ligands can make this cis-interaction even 10
times faster. The results can also be explained by an alternative
possibility that the cis-interactions between monomeric TNFR1
facilitate ligand binding, while the membrane confinement of
ligands can make this process even faster. Both mechanisms are
due to the extra entropy loss after both ligand and receptor are
constrained at the cell interface. In addition to association rates,
the range of dissociation rate for the cis-interaction was taken
between 10−9 ns−1 and 10−13 ns−1. Taken together, our tests
cover the wide spectrum of dissociation constants from milli-
molar (mM) to nanomolar (nM), which binding affinities are
within the typical range of ligand-receptor interactions in cell
signaling systems52. All detailed values of our calculated binding
rates and affinities can be found in Table S4 for both sTNFα-
TNFR1 and mTNFα-TNFR1 systems. Given these binding
parameters, the clustering of TNFR1 induced by soluble or
membrane-bound TNFα was simulated by domain-based diffu-
sion-reaction algorithm. Practically, association between a TNFα
and a TNFR1 is triggered if the distance between their trans-
binding sites is below the cutoff value. The probability to form a

Fig. 3 The distributions of conformational parameters derived from molecular dynamic simulations. These parameters include: the translational
fluctuations of proteins along membrane normal, h, as shown in a, and three Euler angles which characterize the rotational phase space, as illustrated in
b. The distributions of the angle around the long principal axis z′ of the protein ψ are shown in c as indexed by curves with different colors. the distributions
of the tilting angle between this principal axis and the membrane normal θ are shown in d; and the distribution of the angle around the membrane normal z
φ are shown in e. Similarly, detailed distributions of translational fluctuations are shown in f for proteins in four modeled systems.
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trans-interaction is further determined by calculated association
rate. Relatively, the probability to break a ligand receptor inter-
action in a TNFα-TNFR1 complex is regulated by the trans-dis-
sociation rate. In parallel, if the distance between the cis-binding
sites of two TNFR1 is below the cutoff, association between these
two receptors will be triggered, which probability is determined
by the cis-association rate. Relatively, the probability to break two
TNFR1 is regulated by the cis dissociation rate introduced above.

Other parameters in the simulations are specified as follows. The
total length of a single simulation trajectory is 0.2 s (2 × 108ns) with
a time step of 10 ns. In the mTNFα-TNFR1 system, the length of
each side along the two square surfaces is 577.3 nm. In the sTNFα-
TNFR1 system, the same size was set for the surface at the bottom
of the simulation box, while the height of the box is 100 nm.
Additionally, the surface density of ligands and receptors is on the
order of ~102mol/µm2, which is within the typical range of
experimental observation in T cells53. In specific, there are 50 tri-
meric TNFα ligands and 150 TNFR1 receptors in both sTNFα-
TNFR1 and mTNFα-TNFR1 simulation scenarios. Based on the
precise boundary element method54, the translational and rotational
diffusion coefficients of TNFα in solvent were set to 72.6 μm2/s and
0.34°ns−1, respectively. On the other hand, the two-dimensional
diffusions of TNFR1 and TNFα on plasma membrane are con-
sidered to be much slower due to the constraints of lipid bilayers. As
a result, translational diffusion coefficient of 10μm2/s and rotational
diffusion coefficient of 1°ns−1 were used based on our previous MD
studies55. Moreover, we assume that diffusions of a TNFα-TNFR1
complex on membrane surface or interface are even slower, with
translational and rotational coefficients of 5 μm2/s and 0.28°ns−1,
respectively. When the size of a cluster continues to grow, its dif-
fusions will become further slower and finally stop if it contains
more than two full-size signaling complexes. Finally, 20 simulation
trajectories were carried out for each system in both sTNFα-TNFR1
and mTNFα-TNFR1 scenarios to attain statistically meaningful
results. All these trajectories were started from different randomly
generated initial configurations.

After the termination of all these simulations, the number of
ligand-receptor trans-interactions, the number of clusters and the
size of each cluster were counted for each trajectory. Our calcu-
lated results are summarized as histograms in Fig. 4 under dif-
ferent association and dissociation rates of cis-interactions. The
left, middle and right columns of the figure indicate different
association rates used in each simulation, as denoted at the top of
each column. Dissociation rates used in the simulations are
indexed at the bottom of each plot. Data in the figure were col-
lected from the last 2 × 107ns of the corresponding simulation
trajectories with an update of every 5 × 104ns. Given the fact that
20 independent trajectories were carried out for each condition,
all bars in the histograms of Fig. 4 corresponds to the statistical
average of the last 8000 data points along the simulations. The
average numbers of trans-interactions between ligands and
receptors are shown by the upper row of Fig. 4, as highlighted by
the red frame. The black bars represent the interactions formed
by soluble ligands, while the striped bars represent the interac-
tions formed by membrane-bound ligands. Interestingly,
although the binding rates of trans-interactions under all condi-
tions were fixed at the experimental value, our simulations show
that the numbers of trans-interactions actually formed in various
systems can be affected by the corresponding cis-interactions.
Specifically, we found that the lower association rate of cis-
interactions results in the higher number of trans-interactions. In
other words, fast association between receptors prevents them
from forming trans-interactions with their ligands.

Moreover, the average and maximal size of clusters formed
along simulations are shown in by the middle and lower rows of
Fig. 4, as highlighted by the yellow and blue frames respectively.

The size of a cluster formed by ligand-receptor complexes is
defined by the number of proteins which can be connected
together through either trans or cis-interactions. A trimeric TNFα
is counted as one protein, while a TNFR1 is also counted as one
individual protein in a cluster. For instance, the schematic of a
cluster shown in Figure S3 contains 4 ligand trimers (red) and 12
receptors (green). As a result, the size of the cluster is 16. Fur-
thermore, the average size of clusters from a simulation trajectory
is calculated as the average value of all clusters in the system.
Relatively, the maximal size of clusters is the size of the largest
cluster found in a given system. In all different combinations of
cis-binding rates, Fig. 4 suggests that the clusters formed in
sTNFα-TNFR1 system (black bars) are systematically larger than
the clusters formed in mTNFα-TNFR1 system (stripe bars). The
analysis from MD simulations suggests that after receptors form
complexes with membrane-bound ligands, their lateral associa-
tion can be strengthened. Surprisingly, our simulation results
indicate that this enhanced cis-interaction plays a negative role in
regulating ligand-receptor clustering. Detailed mechanism
underlying this observation will be speculated below.

The kinetic profiles of receptor clustering were further com-
pared between the sTNFα-TNFR1 and mTNFα-TNFR1 scenarios.
For both scenarios, we selected the systems in which the asso-
ciation rates were fixed at 4.7 × 10−5 ns−1 and the dissociation
rates were fixed at 1.0 × 10−11 ns−1. The obtained kinetic patterns
are illustrated in Fig. 5 as a function of simulation time. The
profiles of membrane-bound ligands are shown by the black
curves, while the profiles of soluble ligands are shown by the red

Fig. 4 The results from domain-based diffusion-reaction simulations
under different values of cis-interactions. Because binding constants of cis-
interactions between TNFR1 receptors have not been experimentally
characterized, different combinations of association and dissociation rates
were tested in the domain-based simulations. For each combination,
20 simulation trajectories were carried out. We calculated the average
number of ligand-receptor trans-interactions (red frame), as well as the
average (yellow frame) and maximal (blue frame) size of clusters obtained
from each combination after all simulations were terminated. The left, middle
and right columns indicate the specific values of association rate, while
dissociation rates used in the simulations are indexed at the bottom of each
plot. The data derived from sTNFα-TNFR1 and mTNFα-TNFR1 systems are
represented by black and striped bars, respectively.
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curves. All curves in the figure were averaged over all 20 trajec-
tories. We first plotted the numbers of trans-interactions in
Fig. 5a. The figure indicates that the system of mTNFα-TNFR1
simulation scenario reached equilibrium faster than the system of
sTNFα-TNFR1 simulation scenario, which is based on the fact
that the membrane confinement of ligands enhances its associa-
tion with receptors. However, at the end of the simulations,
slightly more trans-interactions were formed in the sTNFα-
TNFR1 system than the mTNFα-TNFR1 system, as reflected in
the histograms of Fig. 4. Additionally, the numbers of cis-inter-
actions formed between monomeric receptors and formed
between ligand-bound receptors were plotted in Fig. 5b, c,
respectively. Figure 5b shows that in both systems, the number of
cis-interaction between monomeric receptors reached a maximal
level at the beginning and dropped to 0 by the end of the
simulations. In the meantime, the numbers of cis-interaction
between ligand-bound receptors increased and reached equili-
brium, as shown in Fig. 5c. This suggests that the cis-interactions
between ligand-bound receptors competed with the cis-interac-
tions between monomeric receptors and then became dominant
in the simulations after more and more receptors engaged with

ligands. Different from the mTNFα-TNFR1 system, the mono-
meric cis-interaction in the sTNFα-TNFR1 system reached a
much higher level and then decayed more slowly, while the cis-
interactions between ligand-bound receptors in the sTNFα-
TNFR1 system also reached equilibrium more slowly. Finally,
the average and maximal size of clusters formed along simula-
tions are shown in Fig. 5d, e, respectively. The figures show that
while the kinetics of clustering in the sTNFα-TNFR1 system is
slower, larger clusters were obtained at the end of the simulations
than the mTNFα-TNFR1 system. It is worth mentioning that the
size of clusters observed in our simulations is directly comparable
to a recent single-molecule image experiment12.

As we mentioned earlier, TNFR1 can preassemble on cell
surface via PLAD regions prior to ligand binding. This ligand-
independent dimerization of receptors has been recently observed
by fluorescence resonance energy transfer (FRET)56,57. In order
to address this issue, we adopted an alternative simulation
strategy in which TNFα were not included at the beginning, but
only introduced into the system after the simulations reached 9.5
× 107 ns. Therefore, during the first 9.5 × 107 ns monomeric
receptors had the opportunity to preassemble before they expose
to ligands. The total length of simulation trajectories using this new
strategy is 0.3 sec (3 × 108ns), consisting the first 9.5 × 107 ns for
receptor preassembly and the next 2.05 × 108 ns for ligand-induced
receptor clustering. The detailed kinetic patterns generated from
this alternative model are summarized from Fig. 5f–j. Especially,
Fig. 5g shows the rapid increase of cis-interactions between
monomeric receptors before they exposed to ligands. This dimer-
ization of TNFR1 monomers on cell surface, however, decayed soon
after the introduction of ligands, whereas the numbers of ligand-
induced cis-interactions started to increase, as shown in Fig. 5h.
This result demonstrates that the preassembled receptors have been
suppressed by the cis-interactions between ligand-bound receptors.
In terms of the differences between the sTNFα-TNFR1 and
mTNFα-TNFR1 systems, similar phenomena were observed:
smaller clusters were more likely to form by receptors if they
engaged with membrane-bound ligands (Fig. 5i, j). Our tests
thereby confirmed that in receptor preassembled systems, sTNFα-
TNFR1 complexes still has the higher probability to form large
clusters than mTNFα-TNFR1 complexes.

In the sTNFα-TNFR1 simulation system, decreasing the height
of the simulation box will increase the concentration of soluble
ligand in the extracellular space, leading to the result that ligands
and receptors are more likely to interact with each other and form
larger cluster size. On the contrary, increasing the height of the
simulation box will decrease the concentration of soluble ligand
in the extracellular space, resulting in smaller cluster size. In our
current sTNFα-TNFR1 system, the height of the box is 100 nm,
while in the current mTNFα-TNFR1 system, the distance
between the two lipid bilayers equals 8 nm. Therefore, if we apply
simulation of sTNFα-TNFR1 to a system which height is identical
to the distance between two lipid bilayers in the mTNFα-TNFR1
system, we need to lower the height in our current simulation
box, which means the concentration of soluble ligand will further
increases. As a result, the soluble ligands will have a higher
probability to interact with receptors, resulting in even larger size
of sTNFα-TNFR1 clusters.

Some representative snapshots were selected from the simu-
lations to visualize the spatial process of clustering. Specifically,
the initial, middle and final configurations along a trajectory of
sTNFα-TNFR1 simulation scenario were plotted in Fig. 6a, b and
c, respectively. Relatively, the initial, middle and final configura-
tions along a trajectory of mTNFα-TNFR1 simulation scenario
were plotted in Fig. 6d–f, respectively. The comparison of the
final configurations confirmed that clusters formed by sTNFα-
TNFR1 complexes can be remarkably larger than the clusters

Fig. 5 The comparison of kinetic profiles between simulations of soluble
ligand and membrane-bound ligand. We compare the kinetic profiles
averaged from sTNFα-TNFR1 system (red) with mTNFα-TNFR1 (black)
system as a function of simulation time. These profiles include the average
numbers of trans-interactions (a) among different trajectories; the average
numbers of monomeric (b) and ligand-bound cis-interactions (c) among
different trajectories; and the average (d) and maximal (e) size of clusters.
Moreover, we tested an alternative starting model in which the ligand-
receptor interactions were turned off at the beginning so that monomeric
TNFR1 receptors can preassemble. The kinetic profiles from this alternative
starting model were also plotted as a function of simulation time, including
the average numbers of trans-interactions (f) among different trajectories;
the average numbers of monomeric (g) and ligand-bound cis-interactions
(h) among different trajectories; and the average (i) and maximal (j) size of
clusters.
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formed by mTNFα-TNFR1 complexes, as highlighted by the red
dashed circle in Fig. 6c. Moreover, we found that these clusters
are organized into hexagonal lattice through the combination of
three-fold symmetry in trimeric TNFα ligand and the two-fold
symmetry of the cis-interaction between TNFR1 receptors. This
spatial pattern was also previously suggested by others based on
their experimental evidences13. The specific configurations of
some large clusters formed by sTNFα-TNFR1 complexes in dif-
ferent trajectories were selected and plotted in Figure S4. The size
of the first selected cluster equals 36, consisting of 9 ligand trimers
and 27 receptors, as shown in Figure S4a. The size of the second
selected cluster equals 30, consisting of 8 ligand trimers and 22
receptors, as shown in Figure S4b. The size of the third selected
cluster equals 33, consisting of 9 ligand trimers and 24 receptors,
as shown in Figure S4c. The figure indicates that hexagonal lattice
like structures were formed in all three clusters.

We compared the cluster size distribution in sTNFα-TNFR1
system to the distribution in mTNFα-TNFR1 system, as shown in
Fig. 6g. The distributions were derived by counting the number of
proteins in each cluster at the end of all trajectories and summed
from all combinations of cis-binding rates. The probability dis-
tribution of sTNFα-TNFR1 system is shown by red dots as a

function of cluster size, while the probability distribution of
mTNFα-TNFR1 system is shown by black dots. Given the loga-
rithmic scale of the y-axis, the figure indicates that the distribu-
tions of cluster size in both systems can be fitted by a single
exponential function. Moreover, the size distribution functions
confirm that mTNFα-TNFR1 system tend to have higher prob-
ability to form clusters with smaller sizes. On the other hand,
clusters formed by sTNFα-TNFR1 complexes have the feasibility
to grow into much larger sizes. A student’s t-test was also per-
formed to the two distributions. Both systems contain more than
4 × 103 clusters. The average size of clusters formed in sTNFα-
TNFR1 system equals 13.6 and the standard deviation of the
distribution is 5.1. The average size of clusters formed in mTNFα-
TNFR1 system equals 12.1 and the standard deviation of the
distribution is 3.8. The calculated t-score equals 14.5 and the
corresponding P-value is lower than 0.00001. As a result, the null
hypothesis that no difference exists between two sets can be
rejected with a 95% confidence interval, which suggests that the
size of clusters induced by soluble ligands is significantly larger
than the clusters induced by membrane-bound ligands and this
difference is statistically meaningful. Unfortunately, the difference
between sTNFα-induced and mTNFα-induced clustering have
not been previously reported. It would be interesting if this
computational observation can be validated by experimental
approaches such super-resolution imaging.

The mechanism underlying our observation that larger clusters
are preferred in sTNFα-TNFR1 system than mTNFα-TNFR1
system is speculated as follows. In detail, the differences in
clustering are regulated by the binding rates of trans- and cis-
interactions. These rates are mediated by the conformational
fluctuations of ligand and receptor, while membrane confine-
ments can bring additional constraints to the systems. The higher
ratio of conformational fluctuations embedded in the mTNFα-
TNFR1 system, as reflected in Eq. (4), leads into the result that
the cis-interaction between receptors becomes much more
strengthened after they engage with membrane-bound ligands,
comparing with the cis-interaction between monomeric receptors
before ligand binding. As a result, complexes between membrane-
bound TNFα and TNFR1 are more easily to aggregate and then
kinetically trapped in these rapidly formed small clusters. Unlike
mTNFα-TNFR1 system, the clusters formed by TNFR1 and
soluble TNFα are more variable. Reflected by the relatively lower
ratio of conformational fluctuations embedded in Eq. (3), the cis-
interaction between ligand-bound TNFR1 receptors is less
strengthened. Moreover, the association between sTNFα and
TNFR1 is relatively slower due to the higher degrees of freedom
in the soluble ligand. This leads to the result that a slower but
more dynamic equilibrium can remain throughout the simulation
in which clusters have higher probabilities to be reorganized.
Consequently, this higher level of dynamics ensures that small
clusters in sTNFα-TNFR1 system are more likely to dissolve,
merge and grow into clusters with larger size.

In many various cellular signaling systems, it has been revealed
that the formation of high-order ligand-receptor aggregates can
promote a threshold-like signal response in which the signaling
pathways can only be turned on under a persistent and high dose
of external stimulation58. In the case of TNFα-mediated signaling
pathways, the assembly of TNFα-TNFR1 clusters further provides
spatial platform to downstream signaling molecules such as TNF
receptor 1 associated protein with death domain (TRADD)59 or
TNF receptor associated factors (TRAF)60 through the interactions
with receptor’s cytoplasmic region. While TRAF’s C-terminal
domain maintains interactions with TNFR1, its N-terminal regions
function as the platform of poly-ubiquitination61. The ubiquiti-
nation leads to the degradation of IκB which is an inhibitory factor
of nuclear factor kappa-light-chain-enhancer of activated B cells

Fig. 6 The representative snapshots and cluster size distributions
generated by domain-based diffusion-reaction simulations. Some
representative snapshots were selected from the simulations to visualize
the spatial process of clustering. Specifically, the initial (a), middle (b) and
final (c) configurations along a trajectory in sTNFα-TNFR1 system are
compared with the initial (d), middle (e) and final (f) configurations along a
trajectory in mTNFα-TNFR1 system. We found that large clusters can be
organized into hexagonal lattice, as highlighted by the red dashed circle.
Finally, we compared the cluster size distributions (g) in sTNFα-TNFR1
system (red) to the distribution in mTNFα-TNFR1 system (black). Given the
logarithmic scale of the y-axis, the distributions of cluster size in both
systems can be fitted by a single exponential function, whereas the clusters
formed by sTNFα-TNFR1 complexes have the feasibility to grow into
larger sizes.
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(NF-κB)62,63. NF-κB is an important transcription factor regulates
the stimulation of inflammatory responses64–67. Degradation of
IκB by ubiquitination can released NF-κB from cytoplasm to cell
nucleus and further turn on its target genes. Using a hybrid
computational model which combines diffusion-reaction algo-
rithm with stochastic simulation of chemical reactions, we recently
showed that the oscillatory responses in NF-κB signaling network
were maintained only when receptors were assembled into clusters
with reasonably large sizes68. Considering our simulation results
suggest binding of soluble TNFα is more likely to trigger the for-
mation of large ligand-receptor clusters than membrane-bound
TNFα, current study therefore provides insights about why the
activation of TNFR1-mediated signaling pathways is preferentially
through the soluble form of TNFα instead of the membrane-
bound form.

In living systems, binding of TNFα to TNFR1 can not only
activate proinflammatory NF-κB pathway, but also can lead to
cell death by triggering apoptosis and necroptosis signaling69.
However, cell death signaling is typically inhibited by protein
complexes such as a TRAF2 trimer and a single cellular inhibitor
of apoptosis-1 (cIAP1) or cIAP2 E3 ligase molecule70. Moreover,
TNFα binds to another member in TNFR superfamily, TNFR2, in
addition to TNFR1. Different from TNFR1, TNFR2 only
responds to membrane-bound TNFα, but not its soluble form71.
Interestingly, it has been found that the signaling outcome of
different TNFR1-mediated pathways can be modulated by
TNFR2. For instance, activation of TNFR2 can lead to a sig-
nificant depletion of cytosolic TRAF2-cIAP1/2 complexes, thus
switching the TNFR1-mediated signaling to cell death72. We
speculate that the differences in TNFR1 and TNFR2’s responds to
membrane-bound and soluble ligands are resulted from the
conformational dynamics of the two receptors, which further
affects the kinetics of their ligand binding and clustering. This can
be tested by our multiscale simulations in the future. It is also
possible to extend our current hybrid model to study the crosstalk
between TNFR1-mediated proinflammatory and apoptosis sig-
naling pathways, differentiate the signaling outcomes induced by
membrane-bound or soluble TNFα, and understand the interplay
between TNFR1 and TNFR2-mediated signaling. Finally, our
methods can be applied to study clustering of ligand-receptor
complexes for other members in TNFR superfamily, which can be
classified into two categories16. Members in the first category,
including TNFR1, are robustly activated by soluble ligands, while
members in the second category, such as 4-1BB, CD27, CD40 and
CD95, only response to membrane-bound ligands. This might be
resulted from the difference between soluble ligand-induced and
membrane-bound ligand-induced clustering for each specific
receptor in the superfamily. A systematic test using our compu-
tational simulation in the future can help understanding the
underlying mechanisms.

In summary, we compared receptor clustering induced by
soluble ligands to receptor clustering induced by the same
ligands, but confined on the membrane surface. Specifically, using
the interactions between ligand TNFα and receptor TNFR1 as an
example, we first analyzed the conformational dynamics of two
systems: sTNFα-TNFR1 and mTNFα-TNFR1, by all atom MD
simulations. We found that membrane confinement of ligands
introduces extra constraints not only to their own fluctuations,
but also to the entire ligand-receptor complexes. This loss of
conformational entropy in turn enhances the trans-interaction
between receptors and membrane-bound ligands, as well as the
cis-interactions between two mTNFα-TNFR1 complexes. Conse-
quently, the results from our domain-based diffusion-reaction
simulations indicate that much smaller clusters will be formed if
TNFα ligands are confined on cell surface. In contrast, the clus-
tering triggered by soluble TNFα is more dynamic, and the size of

clusters formed after simulations is consistently larger. This
provides explanation to the experimental observation in which
TNFR1 was preferentially activated by soluble TNFα. Our study,
therefore, demonstrated the impact of ligand confinement on
dynamics of receptor clustering.

Methods
A domain-based diffusion-reaction simulation for TNF ligand-receptor clus-
tering. Recent experimental discoveries suggested that TNFα can induce the
clustering of TNFR1 on plasma membrane of living cells12. We applied a diffusion-
reaction algorithm to simulate this process73. The algorithm is based on a domain-
based coarse-grained model74. In this coarse-grained model, the molecular geo-
metry of TNF ligand and receptor was specifically designed to describe their cor-
responding structural arrangement. For an example, the THD domain of each
subunit in a trimeric TNF ligand75 is represented by a spherical rigid body which
radius equals 3 nm. Subsequently, three rigid bodies in a ligand trimer are spatially
constricted together with a three-fold symmetry. On the other hand, there are four
consecutive repeats of cysteine-rich domains (CRDs) in the extracellular regions of
receptors TNFR14. These four CRD domains are also coarse-grained into spherical
rigid bodies and further straightly aligned into rod-like shape. The radius of each
CRD rigid body equals 2 nm. Additionally, TNFα and TNFR1 are allowed to form
a trans-interaction, while two TNFR1 are allowed to form a cis-interaction. As
shown by the yellow dots in Fig. 1a, binding sites for the trans-interaction are
assigned to each ligand subunit, as well as on the surface of the second domain in
each receptor. Similarly, as shown by the blue dots in Fig. 1a, binding sites for the
cis-interactions are assigned on the surface of the first domain in each receptor.
Moreover, the cis-binding sites are on the opposite side of trans-binding sites, so
that they can coexist to allow high-order aggregation of ligand-receptor complexes.

Given the model representation, we designed two scenarios to explicitly
estimate how membrane confinement of TNFα ligands impacts TNFR1 receptor
clustering. These scenarios specifically compare the receptor clustering induced by
soluble ligands to the receptor clustering induced by membrane-bound ligands.
The system of soluble ligands (sTNFα) was first constructed in the first scenario. As
shown in Fig. 1b, the plasma membrane of a cell is represented by the bottom
surface of a three-dimensional simulation box, while the space above the plasma
membrane represents the extracellular region. As the initial configuration of
simulation, TNFR1 receptors are randomly placed on the plasma membrane, while
TNFα ligands are distributed in the extracellular region. In contrast, the system of
membrane-bound ligands (mTNFα) was constructed in the second scenario. As
shown in Fig. 1c, the interface between two cells and is modeled as two layers of flat
surfaces overlapping on top of each other. Receptors are randomly placed on the
lower bound of the interface, while their ligands form random distributions on the
opposite side of surface layer.

Following the initial configuration, the dynamics of the system is evolved as
follows. Within each simulation time step, ligands and receptors are first selected
by random order for stochastic movements. Specifically, the probability and
amplitude of translational and rotational movements are determined by the
corresponding diffusion coefficient of each ligand and receptor. Diffusions of
TNFR1 are confined within plasma membrane. On the other hand, the sTNFα in
the first scenario are free to move throughout the simulation box, while the mTNFα
in the second scenario are only allowed to diffuse within plasma membrane.
Periodic boundary condition is applied to move the molecules along x and y
directions of both lipid bilayer in the second scenario. As for the movements of
ligands along z direction in the first scenario, they will be bounced back if moving
beyond the top of the simulation box or below the plasma membrane. If a ligand
binds to a receptor, the entire complex will move as a single unit either on plasma
membrane as in the first scenario, or on the cell interface as in the second scenario.
Similarly, if two receptors form a lateral dimer, they will also move together. After
diffusions, new interactions could form among receptors or between ligands and
receptors under their newly updated configuration, while preexisting bonds might
be broken. We analyze the binding kinetics of all trans- and cis-interactions in the
system, based on their association and dissociation rates as described in the next
section. The iteration of above diffusion-reaction process will not be terminated
until the end of simulations or the spatial patterns in corresponding system reach
equilibrium.

Linking trans- and cis- binding rates between membrane-bound and soluble
systems. In above domain-based simulation, each TNFα ligand in the first sce-
nario can freely diffuse along three translational and three rotational degrees of
freedom in the extracellular region. In contrast, in the second scenario, diffusions
of ligands are constricted in the plasma membrane, which is a two-dimensional
system. This restriction of motions can cause unneglectable impacts on kinetic
properties of binding between ligands and receptors. Unfortunately, the kinetics of
binding between proteins in these 2D membrane environments is difficult to
measure with current experimental techniques. While association rates are closely
regulated by molecular diffusion and thus are concentration dependent and sen-
sitive to different cellular environments, dissociation rates are fully relied on the
strength of interactions, especially the short-range interactions, between residues
cross the interfaces of a protein complex76. Therefore, it is reasonable to assume
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that membrane confinements only affect the process of association between ligand
and receptor, but not their dissociation. Based on our previous theoretic analysis
using statistical thermodynamics77,78, we can estimate the effects of membrane
confinement on conformational fluctuations of ligand and further on the binding
to its receptor. In detail, the relation between the association rate of a trans-
interaction formed at cell interface and the rate of the same interaction formed in
solution has the following form.

ktranson ðLM=RMÞ
ktranson ðLS=RSÞ

¼ 8π2 ´ ðΔωLM=RM
´ΔhLM=RM

Þ
ðΔωLM

´ΔhLM Þ ´ ðΔωRM
´ΔhRM

Þ ð1Þ

In Eq. (1), LM, RM, LS and RS stand for the membrane-bound ligand, membrane-
bound receptor, soluble ligand and soluble receptor, respectively. LM/RM and LS/RS
indicate a ligand-receptor complex formed through the trans-interaction at 2D cell
interface or in 3D solution, respectively. The parameter Δh represents the range of
conformational fluctuations for a corresponding membrane-bound molecule along its
membrane normal, while Δω corresponds to the volume in the rotational phase space
of the molecule after membrane confinement. The association rate of protein
interactions in solution can be easily measured by traditional experimental approaches
such as surface plasmon resonance (SPR). As a result, by analyzing the values of
conformational parameters in above equation, we will be able to calculate the
association rate of ligand-receptor interaction at 2D cell interface.

In addition to the trans-interaction, the cis-interactions can be formed in real
cellular environments between TNFR1 which are also anchored on plasma
membrane. With the same mechanism, the association rate of a cis-interaction
formed between TNFR1 on 2D cell surface can be linked to the rate of the same
interaction formed in 3D solution by the following equation.

kcisonðRM � RMÞ
kcisonðRS � RSÞ

¼ 8π2

ðΔωRM
´ΔhRM

Þ ð2Þ

In Eq. (2), RM-RM and RS-RS indicate a cis-dimer formed between two
membrane-bound TNFR1 receptors or a cis-dimer formed between two soluble
TNFR1 receptors, respectively. Moreover, we speculate that the conformational
dynamics of receptors in their monomeric state is different from the ligand-bound
states. Intuitively, there are less constraints in the dynamics of a monomeric
receptor, comparing to a ligand-receptor complex in which all three receptors are
tethered to plasma membrane. This difference in the configurational entropy
between monomeric and ligand-bound receptors can further affect the association
rate of their cis-interactions. As a result, we can theoretically derive the 2D
association rates of a cis-interaction between two ligand-bound receptors from the
2D association rates of a cis-interaction between two monomeric receptors, which
can be calculated from Eq. (2). Finally, the membrane-bound ligands can result in
additional constrains to the complex relative to the soluble ligands. At cell interface,
both ends of a complex formed by mTNFα and TNFR1 are anchored to lipid
bilayers. Consequently, the association rate of a cis-interaction between ligand-
bound receptors at cell interface should also be distinguishable from the association
rate of a cis-interaction between ligand-bound receptors formed on a single layer of
plasma membrane. Specifically, association rates for these two types of cis-
interactions can be written by the following two equations.

kcisonðLS=RM � LS=RMÞ ¼ kcisonðRM � RMÞ ´
ðΔωRM

´ΔhRM
Þ

ðΔωLS=RM
´ΔhLS=RM

Þ ð3Þ

kcisonðLM=RM � LM=RMÞ ¼ kcisonðRM � RMÞ ´
ðΔωRM

´ΔhRM
Þ

ðΔωLM=RM
´ΔhLM=RM

Þ ð4Þ

The symbol LS/RM− LS/RM in Eq. (3) indicates a cis-dimer formed between two
complexes in which ligands are soluble and only receptors are on the plasma
membrane (sTNFα-TNFR1), while the symbol LM/RM− LM/RM in Eq. (4) indicates
a cis-dimer formed between two complexes in which both ligands and receptors are
attached on the plasma membrane in cell interface (mTNFα-TNFR1). Having these
association rates, we can calculate the dissociation rates based on the binding
affinity of the corresponding trans- or cis-interactions. All these rate constants will
in turn be fed into the domain-based diffusion-reaction simulation. Therefore, all-
atom MD simulations were utilized to sample the conformational space of ligand
and receptor under different conditions, so that the values of all conformational
parameters in above equations can be estimated in order to calculate the relevant
association rates.

Deriving conformational dynamics of membrane-bound systems by MD
simulations. The atomic coordinates of trimeric THD domains from TNFα were
obtained from the crystal structure with PDB id 3ALQ. Because no experimental
structure is currently available for the complex between TNFα and TNFR1, the
initial structure of the complex, except their corresponding transmembrane
domains and linker regions, was adopted from the computational model that was
previously built by Xie’s group79. For monomeric TNFR1, there are two experi-
mental structures available. Comparing to the one with PDB id 1NCF which was
used in our simulations of TNFR1 cis-dimer, the last CDR domain in the other
with PDB id 1EXT is structurally more complete. Additionally, the model of
TNFα-TNFR1 complex was previously constructed on the basis of TNFR1 (PDB
id 1EXT) and TNFα-TNFR2 complex (PDB id 3ALQ). To be consistent with the

simulations of TNFα-TNFR1 complex, we decided to adopt the atomic coordi-
nates of TNFR1’s extracellular domains from 1EXT. It is worth mentioning that
the receptor in 1EXT exists as an anti-parallel dimer, which is not compatible with
the parallel assembly observed in 1NCF. This anti-parallel binding interface was
not included in the following simulations. Moreover, the structure of TNFα-
TNFR1 complex could also be modeled by using the crystal structure of TNFβ-
TNFR1 complex (PDB id 1TNR) as a basis to guide the superposition of trimeric
TNFα. However, because the structures of TNFα-TNFR2 and TNFβ-TNFR1
complexes share high similarity, we believe the model outcome should be inde-
pendent to alignment method.

Subsequent to the extracellular regions, the transmembrane domains of TNFR1
and mTNFα in the relevant systems were built as standard α-helices, and the linker
regions between the transmembrane and extracellular domains of the ligand and
receptor were modeled by the online server, I-TASSER80 and ModLoop81. The
transmembrane domain of each receptor was further embedded in a lipid bilayer
comprised of around 500 POPC molecules. Similarly, the three transmembrane
domains of a mTNFα ligand were also inserted in a lipid bilayer comprised of
around 500 POPC molecules. Moreover, a model of double lipid bilayers was built
to hold the mTNFα-TNFR1 complex. The average distance between the two lipid
bilayers equals around 8 nm. Finally, counter-ions (Na+, Cl−) were added in all
above systems to neutralize the net charge in the simulation box and to maintain
an appropriate ionic strength (0.1 M).

Atomistic simulations were carried out using GROMACS with the
CHARMM36m force field for proteins, CHARMM36 force field for lipids and
TIP3P water. Initially, the systems were energy minimized with the algorithm of
steepest descent until the maximum force was lower than 1000 kJ mol−1 nm−1 on
each atom. Then the systems were equilibrated under NVT and NPT conditions for
6 ns respectively, with a position restraint applied to all heavy atoms of the
proteins, so that the solvent (water/lipids) was able to re-orient themselves around
the protein. Covalent bonds were constrained using the LINCS algorithm, and an
integration time step of 2 fs was used together with the leapfrog integrator. A cutoff
of 12 Å was used for van der Waals interactions, and electrostatic interactions were
calculated with the particle mesh technique for Ewald summations, also with a
cutoff of 12 Å. Temperature and pressure are controlled using the v-rescale
thermostat (τT = 0.1 ps) and the Parrinello-Rahman barostat (τP = 0.1 ps),
respectively. A 400 ns trajectory was generated for the TNR1 monomer, while a
300 ns trajectory was generated for the mTNFα trimer. For the mTNFα-TNFR1
system in which the complex was restrained by two membranes bilayers, the
production run was performed for 300 ns. For the sTNFα-TNFR1 system with a
single membrane bilayer, a 500 ns trajectory was generated. Finally, for the system
with a cis-dimer of TNFR1, a 300 ns trajectory was generated. In summary, the
total all-atom MD simulation time for this study is 1.8 microseconds. An overview
of the simulation systems in this study can be found in Table S1.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All the source data and relevant information can be obtained by contacting the
corresponding author upon reasonable request.

Code availability
All the source codes for domain-based diffusion-reaction simulation can be found in the
GitHub repository: https://github.com/xiaopuren/membraneTNFaR1.
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