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Neurocomputational mechanisms underlying the
subjective value of information
Ariel X.-A. Goh1,2, Daniel Bennett3,4, Stefan Bode5 & Trevor T.-J. Chong 1,2,6,7✉

Humans have a striking desire to actively seek new information, even when it is devoid of any

instrumental utility. However, the mechanisms that drive individuals’ subjective preference

for information remain unclear. Here, we used fMRI to examine the processing of subjective

information value, by having participants decide how much effort they were willing to trade-

off for non-instrumental information. We showed that choices were best described by a

model that accounted for: (1) the variability in individuals’ estimates of uncertainty, (2) their

desire to reduce that uncertainty, and (3) their subjective preference for positively valenced

information. Model-based analyses revealed the anterior cingulate as a key node that

encodes the subjective value of information across multiple stages of decision-making –

including when information was prospectively valued, and when the outcome was definitively

delivered. These findings emphasise the multidimensionality of information value, and reveal

the neurocomputational mechanisms underlying the variability in individuals’ desire to phy-

sically pursue informative outcomes.
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Seminal studies in information processing have shown that
humans and other animals consistently pursue information
even if it cannot be utilised to improve future outcomes1–8.

This is in striking contrast with traditional theories of reward
maximisation, which propose that information is only valuable
when it has instrumental utility (i.e., is useful for obtaining other
rewards or primary reinforcers) that outweighs its costs9. Several
frameworks suggest that the intrinsic value of information may be
quantified along multiple dimensions, including the capacity of
that information to (1) reduce uncertainty; and (2) generate
desirable beliefs (i.e., its expected valence)10,11. Although there is
considerable data on how the brain estimates these features, most
current models assume that such estimates are computed in a
similar manner across participants. Importantly, however, indi-
viduals vary widely both in their subjective estimates of uncer-
tainty, and their desire for positively valenced information1,5.
These elements together modulate the importance, or subjective
value, that individuals place on the information, and their desire
to physically pursue it12. However, the neural mechanisms
underlying this individual variability remain unclear.

At the core of many current theories of information-seeking is
the axiom that the desire to seek information reflects a desire to
reduce uncertainty1,5,10,13 (although see14,15). Such frameworks
define the value of information as the amount of uncertainty (or
entropy) that it has the capacity to reduce1,5,12,16. Typically,
uncertainty is defined according to the Shannon entropy of beliefs
—a function from information theory that stipulates a fixed
relationship between entropy and objective outcome
probabilities17. However, the assumption that individuals per-
ceive uncertainty in a fixed manner is at odds with behavioural
observations that individuals vary widely in their preference to
reduce it1,5,18. Despite the fact that perceived uncertainty lies at
the core of many extant models of information value, an out-
standing question is how individuals vary in their subjective
estimates of uncertainty, and their tolerance of it.

Debate has also centred on how information value is driven by
its expected valence. In general, humans exhibit a bias towards
obtaining information that they expect will be positive versus
negative. For example, individuals may prefer to remain ignorant
about results from a medical test when the outcome may be
potentially negative versus positive19,20, or about the value of
their stock portfolio in a downward-trending market6. However,
models of uncertainty reduction predict that any information that
reduces uncertainty should have value, regardless of its expected
valence3,4,21. This is consistent with findings that rats and
humans prefer early information about an upcoming electric
shock even if it is unavoidable7, and that there is an overall
preference for information regardless of whether it conveys a
positive or negative outcome1,11. The issue of how the valence of
information modulates information value is therefore yet to be
definitively addressed.

In determining how individuals subjectively value information,
a useful approach is to examine the sacrifices that they are willing
to incur in exchange for it. To date, the majority of studies have
asked participants to decide on the amount of money they would
be willing to sacrifice in return for information1,5,6 (although
some have used temporal delays22). A limitation of monetary and
temporal costs is that, in either case, a small initial increment of
each cost substantially discounts the willingness of individuals to
choose the information at hand. Similarly, individual differences
in price elasticity (i.e., marginal value of money) also affect pre-
ference for information, thereby impairing the ability to measure
individual differences in the value of information itself23. These
factors could potentially reduce the sensitivity of models to cap-
ture individual differences in information valuation1. An alter-
native cost that has been shown to discount rewards more

gradually and incrementally is physical effort24–29, which may
offer a sensitive approach to examining cost-benefit trade-offs in
acquiring information.

Neuroimaging studies have shown that information-seeking is
associated with activation in brain regions often implicated in
reward-based decision-making3,4,30. These include the ven-
tromedial prefrontal cortex (vmPFC)12,22, orbitofrontal cortex
(OFC)2,6,31; anterior cingulate cortex (ACC)32,33; and ventral
striatum (VS)6,12,32. Importantly, few studies have focussed on
the processes underlying the subjective estimates of information
value12, particularly across its multiple dimensions (such as how
individuals estimate and tolerate uncertainty, and how they
value positively valenced information). Consequently, it remains
unclear which areas encode the value of information across
multiple stages of decision-making: from the prospective
valuation of information to be received, to the actual delivery of
the information itself. This is an important question, given that
areas that are fundamental to information-seeking behaviour
may be predicted to hold representations of subjective infor-
mation value in a similar manner across multiple stages of the
decision process.

In this model-based neuroimaging study, we applied a novel
information-seeking paradigm to determine the neurocomputa-
tional mechanisms underlying the subjective value of information
across its component dimensions. Participants in our study had
to decide how much physical effort they were willing to invest for
advanced information about an unchangeable lottery outcome.
Importantly, information in our task was non-instrumental,
which allowed us to separate the intrinsic value of information
from any potential utility to alter future outcomes. We system-
atically varied the initial probability of winning the lottery on
each trial, which allowed us to examine the effect of both
uncertainty and expected valence on the desire to seek informa-
tion. By estimating the subjective value of information across
multiple stages of decision-making—from when it was pro-
spectively evaluated to when it was definitively delivered—we
were able to determine the brain regions critical to
information value.

To anticipate our results, our computational models revealed
that the best-fitting model of information value incorporated
three key parameters: the sensitivity of individuals to uncertainty;
the subjective value of reducing that uncertainty; and the sub-
jective value of positive over negatively valenced information.
Critically, fMRI data revealed that a single node within the
anterior cingulate cortex encoded the subjective value of infor-
mation both when prospectively valued, as well as when the
outcome related to that information was actually delivered.

Results
The critical task was an information-seeking paradigm, in which
participants had to decide how much physical effort they were
willing to invest in return for non-instrumental information
(Fig. 1). We operationalised physical effort as the amount of force
exerted on a hand-held dynamometer, and defined six different
effort levels as proportions of each individual’s maximum volun-
tary contraction (MVC, as defined at the beginning of the study).
Twenty-six young, healthy adults performed this task while being
scanned with fMRI. To confirm the efficacy of our effort manip-
ulation, and to accurately model each individual’s sensitivity to
effort costs, participants performed a standard physical effort-
discounting task outside the scanner25,27,34. The information-
seeking task in the scanner and the effort-discounting task were
closely matched in their effort requirements and overall
task structure, and were performed in counter-balanced order
(see “Methods”).
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Behavioural results
Effort-discounting task. In the effort-discounting task, participants
had to choose between a fixed, low-effort/low-reward baseline
versus a more lucrative offer (Fig. 1a). The low-reward option
involved exerting minimal effort (Level 1) to earn 1 cent. In
contrast, the more lucrative offer required individuals to exert an
equal or higher level of effort (Level 1–6) to earn 2 to 10 cents.
We performed a mixed-effects logistic regression on choice data
by modelling the fixed effects of: (1) the Effort and (2) Reward of
the more lucrative offer, and (3) Task Order (effort discounting vs
information-seeking first); and allowed random intercepts for
participants. As expected, the probability of choosing the more
lucrative offer was greater with decreasing Effort (χ2(1) = 169.50,
β=−3.25, p < .001; Fig. 2a), and increasing Reward (χ2(1) =
94.65, β= 3.47, p < .001; Fig. 2b). The order in which participants
completed the tasks did not influence choice (χ2(1) = 0.62,
β= 0.49, p= .43). Overall, this confirmed the efficacy of our
effort manipulation.

Information-seeking task. In the information-seeking task, parti-
cipants were presented with a lottery on every trial, the outcome
of which was determined by the majority colour amongst a set of
nine black or red cards. If the majority of cards belonged to a
predesignated winning colour (e.g., black), participants would win
10c; otherwise, they would win nothing (Fig. 1b). At the begin-
ning of the trial (the ‘Scenario’ event), participants were shown a
subset of cards from the full set of nine, and had the option to
either: (1) gain advanced information about the ultimate outcome
of the lottery (the ‘informative’ option), or forego such infor-
mation, and wait until the end of the trial to discover the outcome

(the ‘non-informative’ option). Choosing either option required
the exertion of effort. Importantly, however, the non-informative
option required only minimum effort (Level 1), whereas the
informative option required effort that was equal to or greater
than the non-informative option (Levels 1–6). Furthermore, we
emphasised to participants that the outcome of each lottery was
predetermined, and that their decisions could not influence those
outcomes. Thus, any information gained by effort was entirely
non-instrumental, as it only affected participants’ certainty
regarding the lottery outcome.

During the ‘Scenario’ event, we systematically varied the number
and proportion of revealed cards, which allowed us to manipulate
both the initial level of uncertainty (maximal when Pr(win) = 0.50,
and minimal when Pr (win) = 0.0 or 1.0), and the expected valence
of information (positive when Pr (win) > 0.50, and negative when
Pr (win) < 0.50). Participants registered their preference for the
informative or non-informative option through a button press with
their left hand (‘Choice’). Participants were provided with a motor
cue that mapped onto the corresponding response, with mappings
randomly assigned on each trial. If they chose the informative
option, they were required to exert the required level of effort
(‘Effort’). We then revealed the full card set (‘Reveal’), before
providing them with the monetary outcome (‘Outcome’). If they
chose the non-informative option, participants had to exert the
minimum amount of effort. No further information was provided,
however, and participants had to wait for the final ‘Outcome’ event
for the lottery outcome to be revealed.

To verify that effort had a comparable effect on discounting
information value as it did on reward, we conducted a mixed-
effects logistic regression, with participants as a random effect, in

Fig. 1 Trial structure for the effort-discounting, and information-seeking tasks. a In the effort-discounting task, participants chose between a fixed low-
reward/low-effort baseline (left of screen), and a variable high-reward offer (right of screen) associated with an equal or higher level of effort. Effort was
indicated as the height of a target line on a vertically-oriented force bar. Participants received real-time feedback of their force exertion, before the outcome
of their choice was revealed. b In the information-seeking task, participants had to decide whether they were willing to invest effort to obtain advanced
information regarding an unchangeable lottery outcome. Each lottery involved a set of nine red or black cards, and participants won the lotteries in which
the majority of the cards belonged to a predesignated winning colour (here, black). In the ‘Scenario’ event, participants were presented a subset of cards,
and were asked whether they were willing to invest effort to reveal the identity of the remaining cards. Higher effort levels were depicted further to the right
of a horizontal force bar. They were told that their choices would not alter the final outcome of the lottery, which was predetermined. At the ‘Choice’ event,
participants could either choose to reveal the remaining cards for that effort level (‘Y’), or remain ignorant about the remaining cards for minimum effort
(‘N’). If participants chose to reveal the cards, they exerted their chosen level of effort (the ‘Effort’ event), and the hidden cards were revealed (the ‘Reveal’
event). If participants chose not to reveal the cards, they exerted minimal effort, and the same starting configuration of cards as in the ‘Scenario’ event was
displayed. The final outcome of the lottery was presented at the end of the trial (‘Outcome’). Δt indicates jitters of 3–6 s.
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which we modelled the fixed effects of five factors. We modelled
the Prior Probability of Winning (Pr (win)), as well as its squared
value (Pr (win)2) given that the effect of Pr (win) on choice was
hypothesised a priori to be concave down (i.e., minimal when
uncertainty was low; and maximal when uncertainty was high).
We also examined whether participants simply estimated
information content based on the raw amount of visual
information on the screen (the number of cards initially
revealed), which served as a rough proxy for the mathematically
defined amount of information. Including this regressor allowed
us to ensure that participants were actually considering the
amount of information, rather than solely adopting a simpler
heuristic whereby they sought information if there were fewer
cards initially displayed. Finally, as in the effort-discounting task,
we analysed the effects of Effort requirements, and Task Order.

This regression showed that participants chose the informative
option less often with increasing Effort (χ2(1) = 56.12, β = −2.59,
p < .001; Fig. 2c). In addition, they chose information more often as
the probability of winning increased (Pr(win), χ2(1) = 108.94, β =
5.87, p < .001). Furthermore, they chose the informative option least
often when uncertainty was minimal, and most often when
uncertainty was maximal (Pr(win)2, χ2(1) = 116.90, β = −5.76,
p < .001; Fig. 2d). Finally, they were less likely to choose the
informative option as more cards were initially revealed (χ2(1) =
49.07, β = −0.77, p < .001). As for the effort-discounting task, Task
Order was not significant (χ2(1) = 0.04, β = 0.11, p = .84).

Together, these logistic regressions confirmed that: (1) effort
monotonically discounted both monetary reward and information
value; (2) the value of an informative option was greater when the
lottery outcomes were more uncertain; and (3) the value of
information was greater when the expected valence of information
was positive. Next, we applied a computational model of choice to
determine how information itself was subjectively valued.

Computational modelling results. Our computational modelling
focused on determining whether choices were best described by
models that captured individual differences in the sensitivity to
uncertainty, the desire to reduce that uncertainty, and the valence
of information. To obtain estimates of information-valuation
parameters that were independent of estimates of effort-
discounting parameters, we jointly modelled choice data from
both tasks simultaneously.

Effort discounting. To obtain a precise estimate of subjective
value, we took as our starting point a set of canonical effort-
discounting functions, which considers that the subjective value
of an option is a function of the reward on offer discounted by the
effort involved in obtaining it. We modelled each participant’s
choices in the effort-discounting task using three commonly
applied functions that capture the simplest canonical patterns of
effort discounting—linear, concave (parabolic), and convex

Fig. 2 Behavioural choice data for the effort-discounting and information-seeking tasks. a, b Proportion of trials in the effort-discounting task in which
participants chose the High Reward option (Pr(HR)), as a function of the (a) effort and (b) reward on offer. The red lines indicate the condition median, and
the boxes extend over the interquartile range (25th to 75th percentile). The whiskers extend to the largest value no further than 1.5 times the interquartile
range. Outliers (i.e., those whose data lie beyond 1.5 × the interquartile range) are indicated by red ‘+’s. (c, d) Preference for the informative option in the
information-seeking task (Pr(Info)), plotted as a function of: (c) effort, and (d) the prior probability of winning, Pr(Win). Triangles depict group means, and
error bars one standard error of the mean.
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(hyperbolic)—with previous work showing that parabolic func-
tions tend to provide the best fit in dynamometer-based effort-
discounting tasks24,25,35–38:

Linear : VðOÞt ¼ RðOÞt � ke � EðOÞt ð1Þ

Parabolic : VðOÞt ¼ RðOÞt � ke � EðOÞ2t ð2Þ

Hyperbolic : VðOÞt ¼
RðOÞt

1þ ke � EðOÞt
ð3Þ

In these equations, the subjective value (V) of an option, O, on
a given trial, t, is a function of its reward (R), and associated effort
(E, the proportion of MVC required). The effort itself is scaled by
a subject-specific effort-discounting parameter, ke, with higher
values indicating a greater aversion to effort.

Information seeking. In the information-seeking task, we built on
these models of effort discounting by incorporating the added
value of information into the functions for subjective value. We
took the ke values defined from the effort-discounting task to
determine the sensitivity of individuals to effort in the
Information-Seeking task. For each of the three effort-discounting
functions, we tested three main model families, which together
comprised seven separate models (Fig. 3).

Model Family 1. This family comprised a single control model,
which assumed that non-instrumental information has no value (as
predicted by traditional reward maximisation theories). Such the-
ories state that the only reward available is the expected monetary
value of that option, R (i.e., 10 ¢ / 2 = 5 ¢ for all trials). Thus, the
control models for the information-seeking task were identical to
those for the effort-discounting tasks above, with R = 5.

Model Family 2. A second model family assumed that the value of
information is driven by its content. Recall that the content of
information is traditionally quantified based on its capacity to reduce
uncertainty, which is in turn operationalised in terms of the entropy
of beliefs17,39. Thus, this family postulates that the content of infor-
mation (I) has some intrinsic value that varies across individuals, and
that this variability can be captured by a subject-specific parameter
that reflects the preference of individuals to reduce uncertainty
(ki, −∞ < ki < ∞), with positive values indicating a greater preference
for information, and negative values a lower preference. The term ki ∙
I therefore represents the subjective value that an individual places on
reducing uncertainty within the environment. The value of a given
option on a given trial can then be considered the effect of the
expected monetary reward on offer, added to ki ∙ I.

VðOÞt ¼ Effort discounting functionþ ki � IðOÞt ð4Þ
This family comprised three specific models, each of which

tested competing hypotheses on how information is subjectively
valued:

Model 2.1. Shannon entropy model—Information theory
formally defines the information content of an option, I(O), as
the reduction in uncertainty (quantified as the entropy of beliefs,
H), after viewing the stimulus, relative to before the stimulus was
revealed:

IðOÞ ¼ HðOÞprior �HðOÞpost ð5Þ
This family of models defined entropy according to the

Shannon entropy function17—the typical function used to
quantify information value—which assumes that the relationship
between outcome probabilities and uncertainty is constant across
individuals:1,5,12,31

Hð:Þ ¼ �∑2
j¼1PrðxjÞ � logðPrðxjÞÞ ð6Þ

where {x1, x2} represents the set of discrete outcomes (x1 = win;
x2 = loss).

Model 2.2. Rényi entropy model—A limitation of Shannon
entropy is that it is unable to account for potential variability in
individuals’ sensitivity to uncertain outcomes. For example, a
model quantifying information in terms of reduction of
Shannon entropy is constrained to treating, for all individuals, a
prior win probability of Pr(win) = 0.3 as being twice as uncertain
as a prior win probability of Pr(win) = 0.09. However, it is not
necessarily true that all participants appraise probabilities in
exactly this way. In contrast, Rényi entropy39 is a more
generalised function, which includes a weighting parameter (α)
that denotes the degree to which an individual is sensitive to
uncertainty (Fig. 4a):

Hð:Þ ¼ 1
1� α

log ∑2
j¼1PrðxjÞα

� �
; where α≥ 0 and α≠ 1 ð7Þ

As α approaches 0, all possible events are weighted more
equally, regardless of their probabilities, implying a lower
sensitivity to uncertainty. Conversely, as α approaches infinity,
entropy is increasingly determined by the events of greatest
uncertainty, indicating a greater sensitivity to uncertainty. Note
that, as α approaches 1, the function approximates the Shannon
entropy function. Rényi entropy therefore represents a more
flexible function than Shannon entropy, and is therefore capable
of capturing the variability in how individuals estimate the
uncertainty of the environment.

Model 2.3. ‘Visual information’model—Finally, we considered the
possibility that information content was not related to uncertainty at
all, but that participants simply used the number of cards on the
screen as a heuristic for the amount of information available. Here,
the value of information for an option, I(O), is simply based on the
proportion of cards that are yet to be revealed:

IðOÞ ¼ number of unknown cards
9

ð8Þ
Model Family 3. A final model family tested the hypothesis that
the value of information is driven by both its content and its
valence. Valence, W, was defined as Pr(win) − 0.5. Thus, positive
values of W indicated a higher probability of winning, and
negative values a lower probability. W was then scaled by a
parameter kw (−∞ < kw < ∞), which represented participants’
individual preference for positively valenced information, such
that kw > 0 indicated a preference for information expected to be
positive, and kw < 0 a preference for information expected to be

Fig. 3 We compared 21 different models of information value. For each of
three effort discounting functions (linear, parabolic, hyperbolic), we
compared seven different models. Model Family 1 (yellow) was a control
model, which ascribed no value to information. Model Family 2 assumed
that the value of information was driven only by its content (lighter
colours). Model Family 3 assumed that value of information was driven by
both its content and its valence (darker colours). Each of Model Families 2
and 3 tested competing hypotheses on how the content of information is
computed. Uncertainty was computed in Models 2.1/3.1 as a function of
Shannon entropy (blue), and in Models 2.2/3.2 as a function of Rényi
entropy (red). Models 2.3/3.3 tested the hypothesis that participants used
the initial number of cards as a heuristic for information content (purple).
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negative. In this family, we assumed that valence had an additive
effect on information value:

VðOÞt ¼ Effort discounting functionþ ki � IðOÞt þ kw �WðOÞt
ð9Þ

Within this family, we tested the same models of information
content as in Model Family 2 (i.e., the Shannon entropy model
(3.1), the Rényi entropy model (3.2), and the ‘visual information’
model (3.3)).
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Together, the model space therefore comprised 21 candidate
models (seven for each effort-discounting function). On every
trial for every participant, we used a softmax function to estimate
the probability of choosing the informative (I) over the non-
informative (NI) option on every trial:

PrðIÞ ¼ eβ�VðIÞ

eβ�VðIÞ þ eβ�VðNIÞ ð10Þ

where β is an inverse temperature parameter that defines each
individual’s choice stochasticity. We fit our models to data from
the effort discounting and information-seeking tasks simulta-
neously, holding ke and β constant between both tasks. All models
were fit using a hierarchical Bayesian approach, and Hamiltonian
Monte Carlo sampling as implemented in Stan40. Model
comparison was performed using the Watanabe-Akaike Informa-
tion Criterion (WAIC)41.

In keeping with previous studies, the best-fitting model (Model
3.2; Fig. 4) was one that described physical effort discounting as a
parabolic function (mean ke = 7.75; highest density interval, HDI
[6.44 9.23])24,35,42. Importantly, this model defined information
value as a function of both uncertainty reduction and expected
information valence:

VðOÞt ¼ RðOÞt � ke � EðOÞ2t þ ki � IðOÞt þ kw �WðOÞt ð11Þ

IðOÞ ¼ HðOÞprior �HðOÞpost ð12Þ

Hð:Þ ¼ 1
1� α

log ∑2
j¼1PrðxjÞα

� �
; where α≥ 0 and α≠ 1 ð13Þ

Importantly, information content was best modelled in terms
of the Rényi entropy function. Indeed, the top two models both
incorporated Rényi entropy, and differed only in their inclusion
of the valence modifier (ΔWAIC = 30.96). The best-fitting model
incorporating the Shannon entropy function was, overall, the
third best-fitting function (Δ WAIC = 66.27). The fact that the
Rényi entropy function provided the best fit indicates significant
variability in how individuals estimate uncertainty. This conclu-
sion is further emphasised by the variance of α across the group
(mean 1.22; HDI [0.22 11.74]; Fig. 4g). Furthermore, this model
also captured the variability in individuals’ desire to reduce their
estimated uncertainty, as indicated by the positive group mean for
the ki parameter (mean 3.01; HDI [2.02, 3.83]; Fig. 4h). Finally,
this model demonstrated that expected valence had a significant
effect on information value, as emphasised by the kw parameters
that were positive for all except three participants, which implies
an overall preference for information about expected positive
versus negative outcomes across the group (HDI [0.17, 1.03],
mean 0.60; Fig. 4i).

Given that this model distinguishes the value of information
content (ki) from its valence (kw), we next asked whether these
two parameters are related. A correlation analysis between all

model parameters revealed a positive correlation between kw and
ki (r = .60, p < .01, Bonferroni-Holm-corrected for multiple
comparisons; Fig. 4j; Supplementary Table 1). This indicated that
individuals with a greater preference to reduce uncertainty (i.e.,
with a higher ki) also had a greater preference for positively
valenced information (a higher kw). This significant correlation
raised the question of whether simpler models that included only
a single free parameter for information value (instead of two
separate parameters for ki and kw) could provide a better and
more parsimonious fit to the data. However, a simpler control
model containing only a single free parameter for information
performed notably worse than the winning model that included
separate parameters for kw and ki (see “Method”).

Finally, we performed a model recovery analysis to confirm the
validity of our model comparison procedure. This showed that we
were able to identify the true generative model from amongst a
set of similar competitors with an accuracy in excess of 95% for
each model (Supplementary Table 2). We also conducted a
parameter recovery analysis from the best-fitting model to ensure
that its parameters were precisely recoverable. This analysis
confirmed that we were able to accurately recover each of the five
parameters from the wining model (all p-values < .001;
Supplementary Table 3). Furthermore, posterior predictive checks
indicated a good fit between participants’ choices and model
predictions (Supplementary Fig. 1).

fMRI results. Our key imaging question was to determine whe-
ther there are common areas that encode the subjective value of
information, both when it is prospectively valued, and when it is
definitively delivered. We restricted our analyses to all voxels
within four regions of interest (ROIs) that form the core of the
reward valuation network—the anterior cingulate cortex (ACC),
ventromedial prefrontal cortex (vmPFC), orbitofrontal cortex
(OFC), and ventral striatum (VS). Whole-brain analyses were
conducted as additional, more exploratory analyses.

A cluster within the ACC encoded the prospective value of infor-
mation. First, we considered areas that were engaged during the
prospective valuation of information. Using the parameters from
our best-fitting model, we determined the subjective value of
information of the chosen option on every trial for every parti-
cipant. This comprised the value related to individuals’ preference
for uncertainty reduction (ki ∙ I, with I defined according to Rényi
entropy) added to the expected value for positively valenced
information (kw ∙ W). We took these values for every trial, and
entered them as parametric modulators, time-locked to the onset
of the Scenario event. This revealed a significant cluster within the
caudal anterior cingulate cortex (Fig. 5, red cluster; Table 1). No
activity was detected in the remaining ROIs, even at uncorrected
thresholds. At a whole-brain level, other clusters that survived

Fig. 4 Computational modelling results. a Illustration of the generalised Rényi entropy function, and its capacity to flexibly estimate an individual’s
sensitivity to uncertainty. Entropy varies with the probabilty, p, of a binary outcome—a relationship that is modulated by different values of the Rényi
weighting parameter α. As α approaches 1, this function approximates the Shannon entropy. b–d Stepwise model selection revealed that: (b) Effort
discounting was best fit by a parabolic function (P = parabolic; L = linear; H = hyperbolic); (d) The expected valence of information contributed
significantly to information value; and (d) Information content was best quantified with the Rényi entropy function (R = Rényi, in red; S = Shannon, in blue;
C = Number of cards, in purple). WAIC is presented on a deviance scale, such that lower values indicate better relative model fit. e Model comparisons
over the entire model space confirmed that Model 3.2 was the best-fitting model. The colour key is identical to (c)–(d) and Fig. 3. Control models
(assuming that information has no value) are depicted in yellow. Models incorporating an effect of information valence are depicted in darker shades, and
those without in a lighter shade. Models are ordered by goodness-of-fit (note the change in scale for the poorer fitting models depicted on the right side of
the panel). f–i Individual parameter estimates and inferred group-level parameter distributions from the best-fitting computational model for: (f) ke (effort-
discounting), (g) α (Rényi weighting parameter), (h) ki (value of information content), and (i) kw (value of information valence). Each plot visualises the
distribution that is implied by using the medians of the posterior distributions of the group-level mean and standard deviation as hyperparameters.
Parameter estimates for individual participants are presented above each distribution. j The ki and kw parameters were significantly correlated across
participants.
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correction with a voxel-wise FWE rate of 0.05 included the pri-
mary motor areas, the pre-supplementary motor area, and insula/
frontal operculum (Supplementary Fig. 2).

As a secondary analysis, we also considered those areas
involved in the subjective valuation of the effort required for the
chosen option (ke ∙ E) (Supplementary Fig. 3). This recruited a
larger, bilateral cluster encompassing both the anterior and mid-
cingulate cortices. This cluster encompassed the smaller ACC
region that encoded the subjective value of information.

We then decomposed the subjective value of the chosen
information into its component parts, and modelled separately
the value of uncertainty reduction (ki ∙ I), and the expected value
of positively valenced information (kw ∙W). This analysis revealed
a similar cluster of activity within the ACC that parametrically
varied with the value of uncertainty reduction. However, there
was no significant activity that varied with the expected value of
information valence, either within the ROIs, or at a whole-brain
FWE-corrected level. This is most likely driven by the fact that
decisions on every trial involved assessing two alternatives that
differed in the amount of uncertainty that each had the capacity
to reduce, but not in their expected information valence. Given
that a value comparison was not required for information
valence, it may be unsurprising that this value was not explicitly
represented in BOLD activity. Regardless, these analyses indicate
that the value of information was primarily signalled by a
comparison between the capacity of both the informative and
non-informative options to reduce uncertainty.

Medial prefrontal areas encoded the delivered value of informa-
tion. Next, we considered which areas were engaged during the
valuation of information when it was definitively delivered. As in
the preceding analysis, we computed the value of information as a
function of uncertainty reduction and expected valence (ki ∙ I +
kw ∙ W). In our task, uncertainty could be reduced at either the
Reveal stage (if the informative option was chosen), or the Out-
come stage (if the non-informative option was chosen). We
therefore entered ki ∙ I + kw ∙ W as a parametric modulator time-
locked to the onset of the Reveal and Outcome event, and con-
sidered activity at each of these events separately.

Interestingly, there was no significant activity at the Reveal
event within our ROIs. Across the whole brain, there was a cluster
within the right fusiform gyrus that survived voxel-wise
correction for family-wise error (pFWE = 0.001; Supplementary
Fig. 2). In contrast, activity at the Outcome event was present at
significant thresholds across a large cluster spanning the caudal
ACC. This cluster entirely encompassed the more focal ACC
cluster that was engaged during the prospective valuation of
information. Indeed, we found that activity within the ACC
cluster engaged during the earlier Scenario event varied positively
with the value of delivered information at the Outcome event
(Fig. 5b). In addition, there was a separate cluster within the
rostral (pregenual) ACC (Table 1, Fig. 5a, blue clusters). At the
whole-brain level, activity at the Outcome event was found within
areas including the right supramarginal gyrus, left inferior
temporal sulcus, and right inferior frontal gyrus (pFWE < 0.01;
Supplementary Fig. 2).

Finally, a convergent finding amongst several recent studies is
that there is a substantial overlap between the neural mechanisms
that encode information value and reward3–5. Although this was
not a principal question in our study, we did consider the effect of
reward delivery on BOLD activity at the Reveal and Outcome
stages. The main result was that the encoding of information
value and reward involved regions that partially overlapped, but
also those that were unique to each entity. The outcomes of this
analysis are summarised in Supplementary Fig. 4 and Supple-
mentary Table 5.

Discussion
Individuals vary considerably in the subjective value they place on
information, but the neurocomputational mechanisms underlying
this valuation process remain unclear. Our key result was that the
value of information depends critically on an individual’s esti-
mates of uncertainty, their desire to reduce it, as well as their
desire for positive information. Applying our computational
model to fMRI data revealed that the anterior cingulate cortex
was critical in prospectively estimating the future value of
information, as well as the subjective value of that information
when the final outcome was delivered. Importantly, a subset of
voxels within the ACC encoded value at both stages of the
decision-making process, suggesting a key role for this area in
processing information value, and guiding information-seeking
behaviour. Overall, our results emphasise the multidimensionality
of information value, and reveal the key areas involved in the
subjective valuation of information across multiple phases of
decision-making.

Several studies have consistently demonstrated that informa-
tion is intrinsically valuable, over and above any potential utility
in obtaining tangible benefits1,5,6,10,31. The majority of studies
have quantified the value of information in terms of its capacity to
reduce uncertainty. Such a metric provides useful insights into
how information signals can be used to update predictions about
the external world. However, one important assumption of these
studies is that uncertainty is estimated in a fixed manner across
participants, based on an arbitrary weighting of event prob-
abilities (i.e., according to Shannon entropy17). Importantly, we
showed that a more generalised entropy function (the Rényi
entropy39) was better able to capture the significant variability in
individuals’ sensitivity to uncertain outcomes. In addition, par-
ticipants demonstrated an overall appetite for positive
information1,5,6,10,11, but the distribution of ki values indicated
substantial variability in their desire to reduce their estimated
levels of uncertainty. This result has notable implications for
future studies on information processing, by arguing for a more
flexible approach to capture the wide range of differences in how
individuals estimate uncertainty, and their tolerance of it.

Our modelling results speak to recently proposed frameworks
of curiosity—the intrinsic desire of individuals to know, and to
actively seek out information43–46. Normative frameworks of
behaviour, such as the free energy principle, argue that organisms
have an intrinsic tendency to minimise surprise, in order to
optimise their predictions about future states of the world47,48.
The proposition that information value is related to its capacity to
reduce uncertainty fits parsimoniously into such accounts3,4,21.
More recent frameworks, however, have highlighted the multi-
dimensionality of information value, by arguing that information-
seeking is motivated, not only by the desire to reduce uncertainty,
but also by the anticipatory utility of that information12,46. Our
findings offer support to these more recent theories, by showing
that models containing a valence modifier consistently out-
performed those without. This result, that the valence of infor-
mation contributes positively to its value, is consistent with
accounts that individuals may experience a positive emotional
‘boost’ from the anticipation of a positive outcome49, which may
act as an additional source of internal motivation45 for the
individual to pursue information. Indeed, some have proposed
that this anticipatory utility may give information hedonic value
(by inducing a positive affect), while the capacity of information
to reduce uncertainty provides information with its cognitive
value (by allowing an agent to update their internal models of the
world)10.

Our data also demonstrate a strong link between separate
dimensions of information value. The vast majority of partici-
pants in our task preferred positively to negatively valenced
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information, as evidenced by the overall positive kw values across
the group. This is consistent with the overall weight of evidence in
the literature. Although individuals tend to exhibit a greater
preference for information relating to potentially positive versus
negative outcomes6,50,51, this is not universal, as some studies
have shown that individuals demonstrate the opposite
preference52,53. Across our sample, the kw parameter was sig-
nificantly positively correlated with the ki parameter, indicating
that individuals with a greater preference to reduce uncertainty
(high ki) tended to be those who had a stronger preference for
potentially positive information (high kw). This suggests that the
cognitive and hedonic values of information, though distinct
constructs, may nevertheless be closely related.

Our fMRI analyses built on previous neuroimaging studies
which focused on where and how information prediction errors
are encoded6,31. These previous studies have shown that areas of
the reward network are also sensitive to the updating of internal
predictive models to minimise uncertainty10,54. Although such
studies have provided insight into the areas that might encode
objective uncertainties in the environment, few studies have
examined which areas represent the subjective value of infor-
mation to the individual, particularly across its multiple
dimensions12. We reasoned that areas that are critical to encoding
the subjective value of information across its multiple dimensions
should represent that value similarly when decisions are pro-
spectively made, and when outcomes are actually delivered. Our
results implicated a region within the ACC as a critical node that

encodes information value at both stages, which is consistent with
recent neurophysiological data demonstrating the selectivity of
subpopulations of ACC neurons to the information signal33.

Although the activity related to information value was manifest
when the Outcome was definitively delivered, it was not evident
at the intermediate Reveal stage, when information was presented
in the absence of the explicit lottery outcome. Although spec-
ulative, one explanation relates to the potential utility of the
presented information55,56. At the initial Scenario event, the
utility of information was obviously substantial, given that it was
the key variable on which participants based their decision. At the
final Outcome event, the utility of information was central to
reinforcing the conditional relationship between any previously
delivered information, and the result of the lottery itself. In
contrast, the Reveal event was an intermediate event, at which the
veracity of any delivered information had yet to be confirmed by
receipt of the final outcome. This may have been particularly
relevant given that all participants were naïve to our paradigm,
and were unlikely to have yet formed a strong conditional rela-
tionship between the stimulus (card array) and the definitive
outcome of the lottery57–61. Of course, this interpretation that the
neural representation of information value is a function of its
utility remains to be formally addressed in future experiments.

The involvement of the ACC in computing the predicted value
of information, as well as the value of received outcomes, makes
adaptive sense. The sensitivity of the ACC to information value at
the time of the decision is consistent with previous studies

Fig. 5 A cluster within the caudal anterior cingulate cortex encoded the subjective value of prospective information, and lottery outcomes when
definitively delivered. a Clusters show activity that parametrically varied with the subjective value of information when prospectively evaluated (red), and
when the outcome was definitively delivered (blue). The cingulate cluster that encoded information value at the delivery of the Outcome entirely
encompassed the cluster that encoded the prospective valuation of information at Scenario. These results depict an analysis of all voxels within the
predefined ROIs, with significant voxels indicating those that survived cluster-wise corrections for family-wise error (FWE, p < 0.05), with a cluster-forming
threshold of p = 0.001 (uncorrected). No voxels encoded the value of information at the Reveal event. b Parameter estimates from the ACC cluster that
encoded the prospective value of information at the Scenario event (i.e., the cluster shown in red in panel (a)). The red lines denote the median parameter
estimate across the group, with the edges of each box plot indicating the 25th and 75th centiles; the whiskers extend to the most extreme data points not
considered outliers, and the outliers are indicated by red ‘+’s. *, p <0.0005.

Table 1 Areas in which activation reflected the subjective value of information of the chosen option.

Cluster pFWE k Z value x y z Area

Value of information—when prospectively valued
0.038 34 4.71 6 16 36 Caudal anterior cingulate cortex
Value of information—at outcome
<0.001 509 4.44 6 38 18 Caudal anterior cingulate cortex

3.93 4 18 30
3.87 −5 12 36

0.007 72 4.42 4 44 2 Rostral anterior cingulate
4.17 −7 42 6

Voxels survived cluster-wise corrections for family-wise error (pFWE < 0.05), with an uncorrected cluster-forming threshold of p = 0.001.
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showing that ACC activity reflects prospective information about
a chosen option62–64. In addition, our result that the ACC
represents the value of information on delivery of the outcome is
in keeping with those of separate studies showing that the ACC
indexes uncertainty65 and ‘surprise’ more generally when an
outcome becomes known66. Together, representing information
value within the same region at different stages of the decision
process may be advantageous, as the predicted value of infor-
mation within this region can then be used to compute expec-
tations about the environment, and the value of the received
outcome can then be used to update value estimates within this
same region to guide future decisions55.

Interestingly, information value in our task was not associated
with activity in our other ROIs. It is of course difficult to interpret
the absence of activity, but we note that there has been some
variability in the involvement of these areas in previous studies on
information-seeking. For example, although there is a substantial
body of work implicating the ventral striatum in processing other
types of reward, its involvement in information valuation has
been equivocal—whereas some studies on information value have
noted ventral striatal activity6,12, others have not22,31. Similarly,
although the vmPFC has been consistently implicated in reward-
related processing, such studies have tended to focus on more
tangible reinforcers (e.g., food, juice, or money67–71), and less
data are available on its role in information valuation12,22.
Importantly, information is distinct from these other reinforcers
in that it tends to be associated with high outcome variance, and
past studies have indeed shown a sensitivity of vmPFC neurons to
outcomes with higher event probabilities72. Previous studies have
implicated the OFC when non-instrumental information is
delivered6,31, but not when uncertainty is initially evoked31. The
reasons for the discrepancies between studies are not clear, and
may potentially be driven by differences in task design, or, in the
case of the ventral striatum, the lower signal-to-noise ratio in
deeper brain structures. Nevertheless, such inconsistencies indi-
cate potentially important points of difference in how informa-
tion and other types of reinforcers are processed, and should be a
focus of future work.

In summary, our findings provide insights into the neuro-
computational mechanisms underlying the subjective valuation of
information. A critical finding was that information value can be
decomposed along several dimensions that are all subject to sig-
nificant interindividual differences—including one’s sensitivity to
uncertainty; desire to reduce it; and preference for information
with an expected positive valence. Our neuroimaging data reveal
the ACC as a key region involved in the processing of informa-
tion value, both prospectively and upon receipt of the outcome
associated with that information. Together, these results inform
current frameworks of curiosity, which emphasise the intrinsic
value of information, and the desire of individuals to pursue
information for information’s sake43–46. Our study provides a
robust method to measure individual differences in information
valuation, which can potentially be used to understand deficits in
curiosity that lead to sub-optimal information-seeking behaviour,
both in healthy individuals and clinical populations who suffer
from impairments of decision-making.

Methods
Participants. We recruited 30 young, healthy adults, four of whom were excluded
for not understanding task instructions, leaving 26 participants in the final sample
(12 male, 14 female; aged 20 to 33 (M = 25.19, SD = 3.25); all right-handed). As
compensation, participants received a flat payment of AUD $30 plus an additional
amount earned from the task (M = $4.83, SD = $0.32). All participants had
normal or corrected-to-normal vision. All participants provided written informed
consent, and protocols were approved by the Monash University Human Research
Ethics Committee (ID CF16/2332-2016001170).

Materials and procedure. Participants performed two separate tasks: a physical
effort-discounting task (performed outside the scanner), and a non-instrumental
information-seeking task with physical effort costs (while being scanned). Parti-
cipants completed both tasks in a single session, with the order of tasks counter-
balanced across participants. Stimuli were presented using the Psychophysics
Toolbox implemented in MATLAB R2015b (Mathworks Inc., US). Participants
held an fMRI-compatible dynamometer (SS25LA, BIOPAC Systems, USA) in their
dominant (right) hand, and provided button responses with their non-dominant
(left) hand.

Effort calibration and familiarisation. Effort in this study was operationalised as the
amount of physical force applied to the hand-held dynamometer. To normalise
effort requirements across tasks and across individuals, effort levels were defined as
a proportion of each individual’s maximum voluntary contraction (MVC). The
MVC for each participant was defined at the beginning of the study as the max-
imum of three successive, self-paced contractions of the dominant hand24–27,73.
We then defined six levels of effort, ranging from 13% MVC (Level 1) to 78% MVC
(Level 6), at increments of 13%. Participants were familiarised with these effort
levels in a preliminary training phase, during which they had to perform a ballistic
contraction to match or exceed the required effort level on each of 24 trials (4 per
effort level). This training phase was conducted prior to each of the Effort-
Discounting and Information-Seeking tasks.

Effort-discounting task. The goal of the effort-discounting task was to estimate the
degree to which individuals were averse to investing effort in return for
reward27,29,34,42,74. By assessing this behaviour separately from the information-
seeking task, we were able to measure individual differences in effort discounting
independently of individual differences in information valuation. On each trial,
participants chose between a fixed low-reward/low-effort baseline, and a more
lucrative high-reward offer that required them to invest an equal or greater amount
of effort (Fig. 1a). The fixed baseline was always a reward of 1 cent for investing
minimal effort (Level 1), while the variable offer was the option to win a higher
reward (2, 4, 6, 8 or 10 cents) for an equal or higher level of effort (Levels 1–6). On
each trial, participants viewed the Effort and Reward levels for the two options, and
chose the option they thought was “more worth the effort”. Trials were self-paced,
and their choice was highlighted for 0.5 s. They then had 2.5 s to exert their
preferred level of effort, and were provided feedback at the end of the trial. If they
successfully reached the target effort level, they were rewarded with the stake on
offer; otherwise, they were rewarded 0 points. Each of the 6 Effort × 5 Reward
conditions was sampled four times, for a total of 120 trials, which were divided into
ten blocks to minimise the effect of fatigue.

Information-seeking task. To investigate preferences for non-instrumental infor-
mation, we developed a novel paradigm which required participants to choose
between exerting higher levels of effort to obtain predictive information about an
unchangeable lottery outcome, or exerting minimum effort and foregoing such
information (Fig. 1b). Each trial was a lottery comprising a set of nine black or red
cards. In each lottery, participants could win 10 ¢ if the majority of cards belonged
to a predesignated winning colour (e.g., black); otherwise they won 0 ¢. Impor-
tantly, the information gained by exerting higher levels of effort was entirely non-
instrumental, as it only affected participants’ certainty regarding the lottery out-
come, without affecting the outcome of the lottery itself, which was predetermined.
Participants were informed about this feature, and confirmed that they understood
that the non-instrumental nature of this information.

At the beginning of each trial, participants were shown a subset of cards from
the full set of nine (the ‘Scenario’ event)—this represented partial information
about the lottery outcome. We systematically manipulated the probability of
winning on each trial by varying the number and proportion of revealed cards. This
allowed us to manipulate both the initial level of uncertainty, as well as the
expected valence of information presented. Uncertainty was maximal when the
probability of winning (Pr(win)) was 0.5, and minimal as Pr(win) approached 0 or
1. Valence was neutral when Pr(win) = 0.5; negative when Pr(win) < 0.5; and
positive when Pr(win) > 0.5. We were thus able to separate out the effect of valence
on equivalent levels of uncertainty. For example, the uncertainty when Pr(win) =
0.9 is identical to that when Pr(win) = 0.1, but the former has an expected valence
that is positive, and the latter negative.

Pr(win) was computed as the binomial probability that the winning card colour
would be in the majority5. This probability incorporates both the number of
winning cards displayed at the Scenario event, together with all possible
combinations of cards yet to be revealed:

Prðwinjn; nreqÞ ¼ 1�∑
nreq�1
k¼0

n

k

� �
0:5n ð14Þ

where n is the number of cards remaining to be drawn, and nreq is the number of
additional winning cards required for a majority, given the number of wining cards
(nwin) already drawn:

nreq ¼
5� nwin; nwin<5

0; nwin ≥ 5

�
ð15Þ
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This computation is the Bayes-optimal approach for computing probabilities
for a binomial random variable, given the information that was available to
participants1,5.

We chose 16 starting card configurations to sample from Pr(win) at
approximately even increments (generally 0.05–0.07). This ensured that we did not
oversample card configurations that led to similar values of Pr(win). For example,
Pr(win) values between 0.64–0.69 could be the result of starting configurations
comprising 3W(inning)/2 L(osing) cards, 2W/1 L, and 1W/0 L. In such situations,
we rationalised the number of configurations by omitting some configurations (e.g.,
2W/1 L). Note that an exception to the sampling interval of 0.05–0.07 was around
Pr(win) = 0.5, in which the smallest possible increment was ± 0.14 given the nine-
card structure of the task. We also ensured that, for each positively valenced
(Pr(win)) configuration (e.g., 4W/2 L), we sampled from the corresponding
negatively valenced (1 − Pr(win)) configuration (i.e., 2 L/4W). Of the 16 starting
configurations, 7 were positively valenced, 7 were negatively valenced, and 2 were
neutral (Supplementary Table 6). Each starting configuration was presented once at
every effort level for every participant.

Participants were required to decide between one of two options—they could
either remain ignorant about the concealed cards (the non-informative option), or
choose to reveal all the cards to discover the lottery outcome (the informative
option). Choosing either option required the exertion of some degree of effort.
Importantly, however, choosing the non-informative option required individuals to
exert only minimal effort (Level 1), whereas choosing the informative option
required effort levels equal to or greater than the non-informative option (Levels
1–6). Note that the design of this task was closely matched to the effort-discounting
task, in which participants made choices between a fixed baseline and variable
offer. This included having a condition in which the informative and non-
informative options were matched in effort, as a sanity-check to confirm that
participants preferred informative over non-informative options when effort was
not a factor. It is also worth noting that, by design, there was no ambiguity
associated with the decisions that participants had to make. On each trial, both the
informative and non-informative options had the same fixed probability of
winning (i.e., each option was associated with the same combinations of cards).
Furthermore, each option was associated with a single, known outcome—the
informative option always led to the full set of cards being revealed, and the non-
informative option never did.

The Scenario was displayed for 4 s followed by a random jitter of 3–6 s.
Participants were then prompted to make a button press response indicating their
preference (the ‘Choice’ event). They were provided with a motor cue (‘Y’ for the
informative, and ‘N’ for the non-informative option) that appeared randomly on
the left or the right of the screen, and mapped onto the corresponding button press
response (e.g., in Fig. 1b, informative = left button press; non-informative = right).
This ensured that the Scenario event could isolate activity unique to decision-
making, separate from that associated with motor preparation. Participants had
two seconds in which to make their response, and their choice was then highlighted
until the end of that two-second period. Immediately thereafter, participants were
prompted to exert their chosen amount of effort within a 2.5 s window (the ‘Effort’
event). If they failed to reach the required effort level in time, they automatically
forfeited the lottery and received 0 cents. These two motor response screens
(choice + effort) were followed by a second random jitter of 3–6 s.

Participants were then shown the set of cards they chose to view (the ‘Reveal’
event). If participants chose the non-informative option, they were simply shown
the same starting configuration of cards they had seen in the Scenario event.
However, if they chose the informative option, the full set of cards was revealed for
2 s. Finally, after a further random jitter of 3–6 s, participants were provided with
the monetary outcome of the lottery (‘You won: 10 ¢’ or ‘You won: 0 ¢’; the
‘Outcome’ event). This outcome was displayed for 1 s. Note that the outcome
provided complementary information to the preceding reveal—uncertainty about
the lottery outcome was reduced during the Reveal event when the informative
option was chosen, and during the Outcome event when the non-informative
option was chosen. A further random jitter of 3–6 s was imposed between the
‘Outcome’ event, and the ‘Scenario’ event on the next trial.

To ensure that participants maintained task engagement, 5% of trials were catch
trials, in which participants had to press any button within two seconds of a white
X appearing on one of the cards. This could occur during either the Scenario or the
Reveal events. If participants were successful, they would proceed to the next trial
without penalty; failure to respond in time resulted in a penalty of 50 cents. Across
all catch trials in all 26 participants, only one participant missed a single response
(mean correct responses on catch trials across the group = 99.0%). In total, there
were three runs of 32 trials (16 initial card configurations, each sampled once for
each of the six effort levels). Participants completed a block of practice trials outside
of the scanner before completing the main task in the scanner.

Mixed-effects analyses. In addition to computational modelling (see below),
choice behaviour on the effort-discounting and information-seeking tasks were
analysed with mixed-effects logistic regression analyses using the lme4 package in
R75. For these analyses, we included random intercepts for all participants, as well
as random slopes for all within participants predictors76. p-values for omnibus tests
were computed using Wald chi-square tests with Type-III sums of squares. All
continuous predictors were z-scored prior to analysis to allow for comparison of

standardised coefficients between predictors. For all continuous regression effects,
we report a chi-square statistic, a p-value, and a standardised regression coefficient
(which can be interpreted as a change in the log-odds of the outcome variable
corresponding to a one standard deviation increase in the predictor variable).

Computational models
Defining information content and entropy. As discussed in the “Results”, the
information content of an object, I(O), was defined as I(O) = H(O)prior − H(O)post,
where H(O)prior represents the entropy of beliefs prior to the stimulus being
revealed, and H(O)post the entropy of beliefs after it was revealed. H(O)prior was
computed based on the starting card configuration presented in the Scenario
display. H(O)post for each of the informative and non-informative options were
computed based on the capacity of each option to reduce uncertainty. The infor-
mative stimuli were associated with complete resolution of uncertainty (i.e.,
H(O)post = 0), and their information content was therefore I(O)info = H(O)prior. In
contrast, non-informative stimuli had no capacity to reduce uncertainty (i.e.,
H(O)post = H(O)prior), and their information content was therefore I(O)non-info = 0.
Note that all of the details that are required to compute the information gain from
both the informative and non-informative stimuli were available to participants at
the time of making a choice.

Model fitting. The 21 candidate models were fit using a hierarchical Bayesian
approach. Choices from the effort-discounting and information-seeking tasks were
fit simultaneously, and ke and β were held constant within participants across both
tasks. Model comparisons were performed using the Watanabe-Akaike Informa-
tion Criterion (WAIC)41, a statistic for comparing models fit with hierarchical
Bayesian methods. Like other information criteria (e.g., AIC, BIC, DIC), it selects
models according to their goodness-of-fit (marginal likelihood, estimated as the
mean log-likelihood of data across posterior samples), minus a penalty for the
model’s effective complexity (estimated as the variance of the log-likelihood across
posterior samples), such that more parsimonious models are favoured over more
complex ones77.

We conducted two sets of model comparison analyses: in the first, we sought to
identify the best-fitting model overall by identifying the single model with the best
WAIC value. In the second, we sought to compare different model ‘families’ (i.e.,
those sharing features such as a common effort-discounting function or a common
information-valuation function) to identify the model features that were associated
with the best predictive performance across the entire model space. For the latter
analysis, we compared model families by taking the mean overall WAIC across
each of the models within a family.

To ensure parameters were constrained to values within an a priori plausible
range, we transformed three parameters to lie within a bounded range using the
cumulative normal distribution: 0 ≤ ke ≤ 100; 0 ≤ α ≤ 50; and 0 ≤ β ≤ 20.
Parameters were estimated using partial pooling, such that participant-level
parameters were assumed to be drawn from group-level Gaussian prior
distributions, the parameters of which were freely estimated from the data. The
specific models are detailed in the “Results” section.

Given the significant correlation between ki and kw, we performed a control
analysis to verify that they truly represented distinct constructs, rather than as
common manifestations of the same latent cognitive process. We formulated an
additional model that was identical to our best-fitting model, with the exception that it
more parsimoniously estimated ki and kw as a single parameter (i.e., the model was fit
under the constraint that ki = kw). Importantly, this control model was still
outperformed by the original two parameter model (Δ WAIC = 268.22, SE = 37.86).
This implies that ki and kw are best modelled as distinct processes, which were free to
vary independently of each other, but happened to be closely correlated.

Functional magnetic resonance imaging (fMRI)
Data acquisition. Functional MRI data were collected on a 3 Tesla Siemens Skyra
MRI scanner. Stimuli were displayed on an MRI-compatible monitor positioned at
the head of the scanner bore, and participants viewed the monitor through a mirror
mounted on a 32-channel head coil. Functional data were acquired with a T2*-
weighted gradient-echo-planar imaging (EPI) sequence using interleaved slice
acquisition (TR 2200 ms; TE 30 ms; flip angle 90°; 38 contiguous slices with a slice
thickness of 3.0 mm without an interslice gap; voxel size 3.0 mm3 on a base matrix
of 64 × 64 pixels, oriented along the AC-PC line). In each run, we collected 455
volumes, with the first eight volumes removed to allow for steady-state tissue
magnetisation. We also acquired a structural T1-weighted magnetisation-prepared
rapid gradient-echo (MPRAGE) sequence for anatomical localisation (TR 1,900 ms;
TE 2.49 ms; flip angle 9°; 192 slices with a slice thickness of 0.90 mm; voxel size 0.9
mm3 on a base matrix of 256 × 256 pixels), and gradient-echo field maps to correct
for geometric distortions caused by inhomogeneities in the magnetic field.

Pre-processing. Data pre-processing was performed with FMRIPREP version
stable78, a Nipype79 based tool. Each T1-weighted (T1w) volume was corrected for
INU (intensity non-uniformity) using N4BiasFieldCorrection v2.1.080 and skull-
stripped using antsBrainExtraction.sh v2.1.0 (using the OASIS template). Brain
surfaces were reconstructed using recon-all from FreeSurfer v6.0.181, and the brain
mask estimated previously was refined with a custom variation of the method to
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reconcile ANTs-derived and FreeSurfer-derived segmentations of the cortical gray-
matter of Mindboggle82. Spatial normalisation to the ICBM 152 Nonlinear
Asymmetrical template version 2009c83 was performed through nonlinear regis-
tration with the antsRegistration tool of ANTs v2.1.084, using brain-extracted
versions of both T1w volume and template. Brain tissue segmentation of cere-
brospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was performed
on the brain-extracted T1w using fast (FSL v5.0.985).

Functional data were slice-time corrected using 3dTshift from AFNI v16.2.0786

and motion corrected using mcflirt (FSL v5.0.9)87. This was followed by co-
registration to the corresponding T1w using boundary-based registration88 with six
degrees of freedom, using bbregister (FreeSurfer v6.0.1). Motion correcting
transformations, BOLD-to-T1w transformation and T1w-to-template (MNI) warp
were concatenated and applied in a single step using antsApplyTransforms (ANTs
v2.1.0) using Lanczos interpolation.

Physiological noise regressors were extracted applying CompCor89. Principal
components were estimated for the two CompCor variants: temporal (tCompCor)
and anatomical (aCompCor). A mask to exclude signal with cortical origin was
obtained by eroding the brain mask, ensuring it only contained subcortical
structures. Six tCompCor components were then calculated including only the top
5% variable voxels within that subcortical mask. For aCompCor, six components
were calculated within the intersection of the subcortical mask and the union of
CSF and WM masks calculated in T1w space, after their projection to the native
space of each functional run. Frame-wise displacement90 was calculated for each
functional run using the implementation of Nipype.

Analyses. Data were analysed using SPM12 (Wellcome Department of Imaging
Neuroscience, Institute of Neurology, London, United Kingdom; http://
www.fil.ion.ucl.ac.uk/spm), implemented in MATLAB. Each participant’s data
were modelled using fixed effects analyses. The effects of the experimental para-
digm were estimated for each participant on a voxel-by-voxel basis using the
principles of the general linear model (GLM). Predictor functions were formed by
modelling the onsets of the events of interest with a stick (delta) function con-
volved with the canonical haemodynamic response function. Low-frequency noise
was removed with a 128 s high-pass filter. The GLM included three regressors of
interest: the Scenario event, the Reveal event, and the Outcome event, each of
which was associated with a parametric modulator (see below). Other regressors
which were included, but not analysed, included the motor events (i.e., the Choice
and Effort events), and the onsets of the catch trials and their outcomes. The six
head motion parameters derived during realignment (three translations and three
rotations) were incorporated as additional nuisance regressors.

The main focus of this model-based fMRI study was to determine the
neurocomputational mechanisms underlying: (1) the subjective valuation of
information, and (2) the reduction of uncertainty across individual participants. To
address the first goal, we computed the subjective value of information (i.e., ki ∙ I + kw ∙
W) for the chosen option on every trial for every participant using the parameters from
our best-fitting model. As discussed in the “Results”, I represented the content of
information, which was weighted by an individual’s preference to reduce uncertainty, ki;
and W represented the valence of information, which was weighted by an individual’s
preference for positively valenced information, kw. In addition to the value of
information, we computed the subjective value of effort (i.e., ke ∙ E) for every trial using
the same model. We then entered these two subjective values as orthogonalised,
parametric modulators for the Scenario event-related regressor.

To address the second goal, we computed the subjective value of information when
it was finally delivered at the Reveal or Outcome screens. As for the first goal, the
subjective value of information was defined through the winning model as ki ∙ I + kw ∙
W, which represents the amount by which uncertainty was reduced (as defined by the
Rényi entropy function with a participant-specific α parameter), added to the valence of
information. These subjective values were then entered as parametric modulators for
the Reveal and Outcome events separately. We note that the visual displays for the
Reveal and Outcome events were quite distinct, but the effects of information value as a
parametric modulator was analysed for each event separately. Regression coefficients
were estimated at the subject level using the standard restricted minimum-likelihood
estimation implemented in SPM12. Variance inflation factors for all of our regressors
were < 4, indicating that multicollinearity between regressors was not an issue in our
design91 (Supplementary Table 4). A GLM design matrix for a representative
participant is provided in Supplementary Fig. 5.

SPM contrast images from the first level were then taken to a second-level group
analysis. We restricted our analyses to all voxels within regions-of-interest (ROIs)
comprising the ACC, vmPFC, OFC and VS using the Harvard-Oxford Cortical and
Subcortical Structural Atlas (corresponding to the ‘anterior cingulate’, ‘medial frontal’,
‘frontal orbital’ and ‘nucleus accumbens’ labels; Harvard Center for Morphometric
Analysis, http://www.cma.mga.harvard.edu/fsl_atlas). To define those regions sensitive
to the prospective valuation of information at the Scenario event, we took first-level
SPM contrast images for the two subjective value modulators, and input these into a
second-level factorial ANOVA with factors of Information and Effort. To define those
regions sensitive to the value of information when it was definitively delivered, we took
first-level SPM contrast images for the information value modulator at each of the
Reveal and Outcome events, and input these into a second-level t-test for each event
separately. In all analyses, we considered significant those voxels which survived cluster-
wise corrections for family-wise error (FWE, p < .05), with a cluster-forming threshold
of p = .001 (uncorrected). We additionally conducted the same analyses with the same

contrasts at whole-brain level for an exploration of these effects without our a priori
defined ROIs.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
t-maps of the fMRI results reported above are available on NeuroVault (https://
neurovault.org/collections/JOTABBXN/). Source data for the graphs and charts
presented in this manuscript are available in the Supplementary Data.

Code availability
Behavioural data were analysed with custom scripts in MATLAB R2015b (Mathworks
Inc., US), R, and Stan. fMRI data were analysed with SPM12. The code used to generate
the figures from this study are available on Zenodo (https://doi.org/10.5281/
zenodo.5598691).
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