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SARS-CoV-2 shifting transmission dynamics and
hidden reservoirs potentially limit efficacy of public
health interventions in Italy
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We investigated SARS-CoV-2 transmission dynamics in Italy, one of the countries hit hardest

by the pandemic, using phylodynamic analysis of viral genetic and epidemiological data. We

observed the co-circulation of multiple SARS-CoV-2 lineages over time, which were linked to

multiple importations and characterized by large transmission clusters concomitant with a

high number of infections. Subsequent implementation of a three-phase nationwide lockdown

strategy greatly reduced infection numbers and hospitalizations. Yet we present evidence of

sustained viral spread among sporadic clusters acting as “hidden reservoirs” during summer

2020. Mathematical modelling shows that increased mobility among residents eventually

catalyzed the coalescence of such clusters, thus driving up the number of infections and

initiating a new epidemic wave. Our results suggest that the efficacy of public health inter-

ventions is, ultimately, limited by the size and structure of epidemic reservoirs, which may

warrant prioritization during vaccine deployment.
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On December 31st 2019, the World Health Organization
(WHO) China Country Office was informed of pneu-
monia cases of unknown etiology detected in Wuhan

City, Hubei Province1,2. By January 11th–12th 2020, Chinese
authorities identified a novel single-stranded, positive-sense
enveloped RNA Betacoronavirus, with genome of 30,000
nucleotides in length, belonging to the Coronaviridae family,
related to the severe acute respiratory syndrome coronavirus
(SARS-CoV) that caused a global outbreak in 2002–20043. Initi-
ally named nCoV-2019 (novel Coronavirus 2019), the virus likely
emerged from several recombination events in bats and
pangolins4, and was subsequently introduced in the human
population through zoonotic transmissions1,5; it was later
renamed SARS-CoV-2, and recognized as the etiologic agent of
Coronavirus Disease 2019 (COVID-19)6. Epidemiological inves-
tigations and phylogenetic analysis promptly confirmed airborne
SARS-CoV-2 human-to-human transmission3,7. Following its
worldwide spread, the WHO declared the outbreak as a Public
Health Emergency of International Concern on January 30th,
2020, and a pandemic on March 11th, 2020. As of December 16th,
2020, SARS-CoV-2 has spread to 216 countries with nearly 74
million confirmed cases and over 1.6 million fatalities8.

Results and discussion
Epidemiological ovierview of the SARS-CoV-2 Italian epi-
demic. Italy was one of the first and most affected countries in the
world. By October 31st 2020, the Italian Ministry of Health and
the Civil Protection Department reported 1.38 million total
SARS-CoV-2-related cases, and 49,261 deaths9. The first con-
firmed imported cases dated back to January 30th 2020 when two
tourists from Wuhan, China, were tested positive for SARS-CoV-
2 in Rome (Fig. 1a). On February 17th 2020, the Italian govern-
ment confirmed the first locally acquired case in a small city in
Northern Italy (Codogno, Lombardy region)10. Three days later,
the first COVID-19-related death in Italy, a 78-year old male, was
reported in the city of Padova. As the epidemic quickly spread
throughout the country, establishing Italy as one of the major
SARS-CoV-2 hotspots11, the Italian government declared a Public
Health Emergency of National Importance, enabling the intro-
duction of restriction measures to limit new infections12. In the
effort to flatten the epidemic curve, Phase I lockdown measures
were first introduced on March 7th–8th 2020 in 11 municipalities
of Northern Italy, where most cases had occurred, and extended
by March 11th to the whole country (Fig. 1a). Described as the
largest lockdown in the history of Europe13, citizen mobility was
restricted, except for “well grounded” work- or health-related
reasons. A universal mask mandate was required at all times
outdoors. Schools, university activities, public/cultural events, and
sport competitions were also suspended nationwide, as well as
non-essential commercial activities. Borders with other states
were closed, and within the country public transport was limited
or shut down.

As daily viral infection numbers decreased, public health
measures were progressively relaxed through a Phase II (May 4th),
which allowed visits to family members living in the same region
and the restart of some business activities, and a Phase III (June
15th), which allowed reopening of businesses and resumption of
within-country travel, but left in place mask mandates and bans
on large-scale meetings. A significant slowdown in the number of
infections since the beginning of May 2020 (Fig. 1b) validated the
effectiveness of Phase I restrictions.

After a period of seemingly stable epidemic recession, with very
few new cases detected between June–August, a new epidemic
wave hit the country, resulting in higher incidence than before.
Superimposition of the reported epidemic curve and dynamic

estimates of the effective reproduction number, Re, throughout
the three major periods (first wave, recess, second wave) of the
Italian epidemic, revealed an interesting pattern (Fig. 1b). Re
provides a measure of the average number of secondary infections
caused by a single infected person: a growing epidemic is typically
characterized by Re > 1, while Re < 1 indicates no growth. As
expected, Re values were estimated to be >2 at the beginning of
SARS-CoV-2 exponential spread in Italy, and quickly fell to
values <1 after the start of Phase I lockdown measures. Yet,
between end of June and end of August, through Phase II and III
lockdowns, Re values showed an oscillating behavior, with
progressively higher peaks (>1), despite the consistently low
number of newly detected infections. As infections and
hospitalizations began to climb in September, Re temporarily
decreased close to 1, to increase again by mid-October, just before
the beginning of the new exponential growth of infected cases,
currently ongoing. Indeed, by October 31st, all Italian regions,
albeit with different rates were hit by the epidemic (Fig. 1c). The
rapid increase of COVID-19 patients requiring hospitalization
during the early months of 2020, as well as Re oscillations during
the period of epidemic recession, suggest the virus was circulating
cryptically among undetected transmission clusters. During this
time, there were possibly thousands of mild or asymptomatic
infections among undetected (hidden) reservoirs that preceeded
each exponential growth phase of each epidemic wave14,15.
Indeed, dramatic resurgences in cases after easing stringent public
health interventions (i.e., stay-at-home orders) that temporarily
curtailed epidemic spread was also observed in several other
European countries (e.g., UK, France, and Germany, among
others).

Phylogenetic recostruction of the SARS-CoV-2 Italian epi-
demic. To investigate further, we coupled epidemiological data
with phylodynamic analysis of 714 viral sequences currently
available from Italian patients, sampled between January 30th to
October 1st, 2020 (see Methods). Viral population dynamics were
assessed using non-parametric coalescent estimates of the effec-
tive population size (Ne) over time (a measure of viral diversity
representing the number of diverse genomes contributing to the
next generation), given a collection of plausible maximum like-
lihood (ML) evolutionary histories inferred from viral sequence
data. Although distinct patterns could be observed in Ne esti-
mates, all reconstructions agree on a rise in Ne until the end of
March 2020, matching the rise in number of reported cases
(Supplementary Fig. 1). The best-fit model (i.e., the collection of
trees with the highest likelihood, log L >−49,120) also depicts a
steady, continuous decline in Ne until October (Supplementary
Fig. 1, pattern A), possibly reflecting the impact of lockdown
measures on the viral population. As Ne is related to viral genetic
diversity, this pattern may indicate that, despite the rapid rise of
cases in late summer, the viral population maintained lower
diversity relative to the earlier months of the epidemic. This is
consistent with a reduction of viral importations, likely resulting
from global public health intereventions such as travel bans. Two
alternative patterns inferred from trees similar in likelihood value
to the best-fit model, show either a similar downward trend fol-
lowed by a pronounced increase in Ne between September and
October (pattern B), or a slower but steady increase in Ne
between April and October (pattern C). Both reconstructions are
in agreement with an increase of viral Ne, corresponding with an
exponential increase of SARS-CoV-2 infections during the second
epidemic wave. Together, with the inferred oscillations of Re
values following the first epidemic wave, the analyses suggest the
persistence of complex transmission dynamics throughout the
epidemic recession period, involving undetected asymptomatic or
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mildly affected individuals. Even considering the Ne values
inferred from ML trees with lower likelihood, we arrive at an
analogous conclusion—overall reduction in Ne after April but
repeated fluctuations throughout recession and second epidemic
wave (Supplementary Fig. 1, black curves).

Longitudinal comparison of SARS-CoV-2 dissemination pat-
terns over time among different Italian regions shows that the
pre-lockdown phase was characterized by an exponential growth
of the number of daily-confirmed COVID-19 cases and deaths,
with highest incidence in the Northwest, followed by a significant
decrease across all regions in the aftermath of lockdown measures
(Supplementary Fig. 2). By the end of August 2020, epidemio-
logical data also show increased and sustained transmission in the
South and Insular regions, possibly driven by interregional
spreading through small family/social network clusters. These
regions are the main touristic destination for Italians, and most of
the restrictions on international travel were still in place during
Phase III16. Lineages proportion and regional-specific distribution
in different parts of the country are indicative of several
independent founder events (Fig. 2b). For example, lineage A,
predominant in Sicily, has been detected in epidemiologically
linked transmission chains that appear to be related to
immigrants arrived from North Africa during the late Phase
III17. Interestingly, the number of circulating lineages have
changed over time (Supplementary Fig. 3). Sub lineage B.2
was the first one identified in January, marking the primary

introduction of imported cases from China (shown in Fig. 2).
Between February and April, additional sub lineages, such as.

B.1, B.1.1, and B.1.5 emerged in Northern and Central Italy, the
epicenter of the first epidemic wave, likely reflecting subsequent
importations18. At the beginning of Phase II lockdown in May,
which followed a dramatic decrease in cases, only B.1. and
B.1.1 sub lineages were detected. During the period of epidemic
recession between June and July, multiple sub lineages co-
circulated again. However, the subsequent second wave was
dominated by B.1.1 (September) and B.1. (October) (Supplemen-
tary Fig. 3). Since Phase II and III measures permitted intra- and
then inter-regional travel, respectively, while country borders
remained mostly closed (except with European countries part of
the Shengen agreement), it is plausible that in the first epidemic
wave lineages’ heterogeneity resulted from intial founder events
associated with international travel, and then propagated through
within-state mobility during epidemic recession. Such sequence-
based inferences, however, should be interpreted with caution
because of the inherent sampling bias in SARS-CoV-2 full-length
genomes currently available from Italian patients, which could
affect results and limit their generalizability18.

In our sequence dataset, only Lombardy (Northwest, most
affected region so far), has provided a robust number of viral
genomes (n= 405), which in turn corresponds approximatively
to one genome available every 450 positive cases. Abruzzo in
Central Italy is the second most represented region in terms of

Fig. 1 History of SARS-CoV-2 epidemic in Italy. a Timeline of key events following the first confirmed cases of SARS-CoV-2 infection in Italy. b Epidemic
curve showing the progression of reported daily viral infection numbers in Italy from the beginning of the epidemic in March (black) and changes in Re
estimations in the same period (green), with lockdown phases indicated along the bottom. c Map of cumulative SARS-CoV-2 cases per 100,000
inhabitants in Italy up to Oct 2020.
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available genomes (n= 87), while many other regions, including
Liguria (Northwest), Umbria (Central), and Calabria (South) are
not comprehensively represented (Fig. 3a), thus affecting our
ability to characterize in-depth SARS-CoV-2 molecular epide-
miology at a regional level.

Nevertheless, phylogeny-inferred virus evolutionary patterns
are useful to corroborate epidemiological data, test hypotheses
regarding factors driving epidemic dynamics, and assess public
health interventions such as stay-at-home orders. To this end, we
time-scaled the best 100ML trees of all available SARS-CoV-2 full
genomes from Italian patients, and inferred the most likely
location of each internal node (ancestral sequence) in the trees
(see Methods for details). The overall topologies of the inferred
trees were highly similar, and linear regression of root-to-tip

genetic distances against sampling dates indicated sufficient
temporal signal in the sequence data (Supplementary Fig. 4).
Although SARS-CoV-2 evolutionary rate in Italy was somewhat
lower (1.44 × 10−04 nucleotide substitutions/site/year) than values
obtained for the worldwide epidemic19,20, the most recent
common ancestor (TMRCA) of the available Italian sequences,
ranged between January 2nd and January 26th (mean Jan 14th)
2020, consistent with the date of the first confirmed case (Jan
30th). Similarly, the root node (origin) of a time-scaled ML tree
including both Italian (n= 714) and worldwide reference
sequences (n= 1421) was placed in China (99.8% probability),
with a TMRCA dating back to early December 2019, in
agreement with available epidemiology data21,22, further validat-
ing our phylogeny inference. The tree (Fig. 3b) consistently shows

Fig. 2 Frequency and distribution of SARS-CoV-2 lineages and sub lineages in Italy. a Frequency of the lineages and sub lineages of SARS-CoV-2 among
Italian macro regions. b Distribution of the most prevalent lineage and sub lineage across the country.

Fig. 3 Phylogenetic characterization of Italian SARS-CoV-2 sequences. a Map of Italy showing the number of SARS-CoV-2 genome sequences by region.
The size of the circles indicates the number of new genomes available since the beginning of the epidemic in Italy. b Time-resolved maximum likelihood
tree of 1421 SARS-CoV-2 sequences including 714 from Italy (red circles). c Chord diagram of estimated numbers of migration flows between the
geographic areas. d Frequency of estimated geographical origins for identified transmission clusters involving Italy and originating in the months of January
through October of 2020. e Frequency of Italian sequences (sampled from January through October) classified as unclustered (gray) or belonging to
clusters with Italian (white) or non-Italian origins (black).
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most of the Italian sequences interspersed with virus strains
collected in other countries. This pattern, alike the one observed
elsewhere23, confirms that emergence of SARS-CoV-2 strains
during the first epidemic wave was primarily fostered by travel
exposure during the pre-lockdown phase, rather than interregio-
nal spreading. According to the estimation of migration flows, we
further examined the potential Italian role as an exporter of
SARS-CoV-2. The number of state transitions into and from Italy
(Fig. 3c) heavily relies on the number and nature of the sequences
that are included from other locations. Independently of the
dataset, and in line with the epidemiological information, most of
the geographical sources of the introductions are attributed to
Europe (Fig. 3c). Well supported (bootstrap values >90%)
putative transmission clusters within the phylogeny were
identified based on a pre-defined genetic distance threshold
likely to detect epidemiologically linked sequences (see Methods).
Clusters containing at least one Italian sequence were considered
of interest for the estimation of temporal and spatial origins of the
transmission. Temporal origins of each cluster were derived from
the clock-estimated age of the MRCA of all sequences belonging
to the cluster. Spatial origins were inferred using joint likelihood
ancestral state reconstruction, given known country of sampling
of tip nodes (sampled sequences) within the tree. As expected, the
number of (well supported) clusters formed over the course of the
epidemic was largely influenced by the number of contempora-
neous samples (Fig. 3d), limiting conclusions regarding the rate of
cluster formation over time. The estimated geographic origins of
each cluster reflected the distribution of samples among the
reference sequences, largely limited to Europe and North
America. However, after April, transmission clusters could only
be traced back to Italy, suggesting highly localized transmission
following the implementation of Phase I lockdown measures.
Each Italian sequence was then classified either as unclustered
(i.e., no cluster with any other sequence with bootstrap >90%), or

belonging to a local (all Italian) cluster. Italian sequences within
well-supported clusters including and originating from non-
Italian strains were classified as belonging to “outside” clusters.
Finally, each well-supported cluster for which a single country
could not be assigned with >90% probability as the one at the
origin of that cluster, was also considered to be an outside (albeit
unknown in origin) cluster. This revealed distinct patterns
between January, February–July, and August (Fig. 3e). All Italian
sequences obtained in January belonged to clusters of foreign
origin, demonstrating the influence of outside introductions
before lockdowns were put into place. The predominant fraction
was quickly replaced by sequences belonging to clusters of local
origin and unclustered sequences, which suggests potential
undersampling. The month of September, when the second
epidemic wave was increasing, sequences of local origin, with no
sequences of foreign origin, largely dominated. The fraction of
sequences sampled in August (75%) was outside the 95%
confidence interval (~50%) for the fraction in remaining months,
emphasizing the significant contribution of local transmission on
sequences sampled in September. However, the specific muta-
tional profile of the Italian sequences (Fig. 4a), relative to the
Wuhan reference (NC_045512), also provided some evidence of
recently imported strains during Phase III lockdown, when travel
bans began to be eased. In particular, 97.34% (n= 695) of the
available sequences carried the mutation encoding for the amino
acid change D614G (genomic coordinate: 23403 A >G) in the
Spike protein of SARS-CoV-2, while the remaining 2.66% (n=
19) sequences displayed the nucleotide sequence encoding for the
D614 wild type. The D614G mutation has been associated with
higher infectivity and greater transmissibility with no effects on
disease severity outcomes24–26, although some of these findings
have recently been questioned27. The frequency of the D614G
polymorphism among Italian regions over time (Fig. 4b) shows
that G614 quickly became rapidly dominant during the first

Fig. 4 Italian strains mutations pattern. a Variant maps of the most common mutations mapped against the SARS-CoV-2 genomes. Most common
mutations defined as mutations present in >90% of the genomes in that group (black lines). b–e Change in frequency of D614G mutation in the Spike
Protein across Italian regions during epidemic phases. Italian regions are colored according to the dominant D614G mutation. White color represents
missing genomic data from several Italian regions during epidemic phases.
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epidemic wave, and remained the only one detected in the
available sequences through the first two lockdown phases.
Thereafter, the D614 variants re-emerged following the relaxation
of Phase III measures in Sicily (Insular Italy), possibly due to the
epidemiologically linked transmission chains related to immigra-
tion flow from North Africa17, a scenario reinforced by SARS-
CoV-2 lineage A prevalence in that region (Fig. 2b).

Agent-based stochastic model simulation of the Italian epi-
demic. Results of cluster analysis indicate maintained local
transmissions fostered by relatively small transmission chains
during the months of low case reports and through the beginning
of the second wave. This observation suggests that epidemic
resurgence was associated with a relaxation of lockdown measures
that led to increased local transmission, rather than a large
number of virus re-introductions into the country. Such a sce-
nario is also supported by surveys showing a significant reduction
in the number of foreign tourists (about −65.9%), but an
increase, albeit small (1.1%), of domestic tourism during the
summer season after restrictions on interregional travel were

relaxed16. In order to explore whether increased mobility could
explain the second surge of cases in Italy, we carried out sto-
chastic agent-based epidemic simulations. Mobility data across
three different modes of transportation (walking, public, and
personal vehicle), derived from Apple Mobility trends reports,
were used as a proxy for the number of individuals with whom an
infected individual comes into contact, which was allowed to vary
over time (see Methods). As the number of hospitalizations also
dropped drastically (and stayed low) following the first surge in
cases, the role of removal of infected individuals from the
population via hospitalization was also tested, by allowing the
probability of an infected individual exiting the simulation to be
proportional to the standardized hospitalization rates (also
varying in time). The simulated number of active infections over
time using the mobility data alone, hospitalization data alone, and
combined were then compared to the empirical case data.
Whereas all three models produced a similar rate of new infec-
tions during the first epidemic wave (Supplementary Fig. 5), time-
varying rate of removal based on hospitalization rates (without
mobility data) produced a continuing exponential growth of
infections (Fig. 5a). As in empirical data, time-varying number of

Fig. 5 Simulated epidemics under scenarios involving time-varying mobility and hospitalization rates. a The probability of removal of an infected
individual was proportional to the empirical rate of hospitalization in the simulation of active infected cases over one year (blue). b The number of
individuals with whom an infected individual comes in contact was proportional to the empirically determined number of individuals utilizing walking,
as well as public and personal modes of transportation, as primary means of mobility in the simulation of active infected cases over one year (blue).
c Hospitalization rates (as in A) and mobility data (as in B) were combined in the simulation of active infected cases over one year (blue). In a–c, orange
represents the number of empirically observed infections. d The absolute error was calculated for each time point of collected observations between
simulated infections using hospitalization rates only (red), mobility data only (blue), and the combination (purple). Mean absolute error was calculated as
the averaged error across 1000 simulations. Simulation assumed a single outside introduction.
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contacts based on mobility produced two distinct waves, which
were the most similar to the epidemic curve (Fig. 5b). The model
incorporating both mobility and hospitalization rates produced a
first wave that was of too large a magnitude and a second wave
too early in origin than the previous model (Fig. 5c). The model
incorporating mobility data alone resulted in the lowest mean
absolute error (Fig. 5d), producing a first wave of similar timing
and magnitude and a delayed second wave, closer to the empirical
epidemiology data (Fig. 1b).

While results indicate that mobility data could reproduce
epidemic wave patterns in Italy, we cannot exclude additional
factors, that might have played a role delaying the second
epidemic wave, not fully captured by our simulations, such as
retention of restriction measures, different “types” of mobility
between first and second wave, or higher temperatures in the
summer28,29.

By coupling phylodynamic analysis of viral genetic and
epidemiology data, we show how the interplay between public
health intervention and shifting SARS-CoV-2 transmission
dynamics in Italy may explain the oscillation between times of
relatively stable epidemic recession and dramatic resurgences, as
it is currently being observed. This pattern of “rubberbanding” or
“snapping back” after public health restrictions are lifted has,
unfortunately, been followed by several other European countries.
Overall, we show the critical role played by small transmission
clusters, acting as “hidden reservoirs” during epidemic recession
following aggressive lockdown measures, in maintaining SARS-
CoV-2 low-level circulation in Italy, which eventually seeded a
new epidemic wave. Despite the consistent agreement between
different viral phylogeny-based and epidemiology data analyses,
however, limitations of our work need to be acknowledged.
Availability of a large number of viral sequences, collected over an
extended period of time and sufficiently representative of the
ongoing epidemic, is crucial for prompt genomic surveillance,
and the evaluation and planning of effective and opportune
control strategies. The number of Italian SARS-CoV-2 full
genomes currently deposited in public databases represents a
very small fraction (0.05%) of the documented number of
confirmed cases in Italy, and sampling bias across regions
differently affected by the epidemic further limits generalizability
of the results. Moreover, our definition of putative transmission
clusters (see Methods) does not require the sampling and
inclusion of all the strains involved in a transmission chain,
although it does allow for detection of monophyletic clades that
likely comprise sequences epidemiologically linked through a
transmission chain, whilebeit not directly. Nevertheless, epide-
miology observations, corroborated by phylodynamic analyses
based on available sequences, depicted a coherent picture. The
first epidemic wave in Italy appears to have largely been linked to
outside introductions leading to large transmission clusters,
concomitant with high number of infections. Subsequent
implementation of a three-phase nationwide lockdown strategy
greatly mitigated numbers of infection and hospitalization during
summer 2020. Yet, once mobility increased and social distancing
decreased due to the progressive easing of lockdown measures, a
sudden spike of infectious cases was observed, promptly followed
by new hospitalizations. Our agent-based mathematical model
recapitulates this phenomenon, further supporting the hypothesis
that the small clusters observed during the summertime were
acting, essentially, as “hidden reservoirs” that likely merged
following the increase in mobility and reduction of social
distancing measures. This in turn provided the “spark” for the
sudden increase of infections observed at the end of summer,
which led to the subsequent second wave of exponential grow. In
other words, the drivers of SARS-CoV-2 transmission dynamics
shifted from high levels of community transmission, likely

involving mass super spreader events, in the early Italian
epidemic, to sustainment by smaller family/social network
clusters later in the epidemic. Unfortunately, this also suggests
that no amount of community level interventions may be
sufficient to curb the epidemic as long as people do not adhere
to individual level measures such as mask use, hand hygiene, and
social distancing. New lockdown measures are likely to provide
only temporary relief, as has already happened in the first months
of the epidemic in Italy and many other countries. Indeed, an
important debate is currently ongoing about vaccine deployment,
given financial and logistic restrictions mandating a very long
phased deployment, based on prioritization policies. In this
context, our results suggest that hidden transmission reservoirs
may continue to sustain local outbreaks into late 2021, as vaccine
rollout will likely take months before reaching the necessary herd-
immunity threshold. Ultimately, our ability to curb successfully
the current pandemic, may be linked to our ability to determine
number and structure of such reservoirs within the social and
behavioral context of specific locales.

Methods
Sequence data collection. To perform a comprehensive analysis of the genomic
epidemiology of SARS-CoV-2 in Italy, after excluding low-quality genomes (>10%
of ambiguous positions), we dowloaded all Italian full-length viral genomes
available on GISAID (https://www.gisaid.org/) (n= 714) up to October 31th 2020
(Supplementary Data 1). Sampling locations of available genomes in this dataset
included 17 of 20 regions in Italy, and collection dates spanned from January 30th

(the first two imported cases in Italy) to October 1st 2020. Each Italian sequence
was used in a local alignment (BLAST)30 search for the most (genetically) similar
non-Italian sequence in the GISAID database as of Oct 31st, 2020, and linked to
two reference sequences including the best match (highest E-value) with a date
occurring within one month following, as well as one month prior to the sampling
date of the Italian sequence (although, in some cases, only a single non-Italian
reference sequence fulfilling one of the inclusion criteria could be found for
multiple Italian query sequences). After removing duplicate sequences and masking
mutations potentially associated with common sequencing errors, using a vcf
filter31, a final dataset of 1421 reference sequences was assembled (Supplementary
Data 2). Appropriate acknowledgement was given to the sequencing laboratories
(Supplementary Data 3).

Sequence alignments and phylogenetic analysis. Sequences (Italian+ reference
strains) were aligned using MAFFT (FF-NS-2 algorithm) employing default
parameters32. The alignment was manually curated to optimize number and
location of gaps using Aliview33. A site-specific mutational comparison of the 714
Italian genomic sequences obtained from the GISAID database was made with the
MAFFT-aligned SARS-CoV-2 reference genome (RefSeq: NC_045512.2), obtained
from the GenBank database. Lineage assessment was conducted using the Phylo-
genetic Assignment of Named Global Outbreak LINeages tool available at https://
github.com/hCoV-2019/pangolin (version 2020-10-31)34. Phylogenetic analysis
was performed using the maximum likelihood (ML) method implemented in IQ-
TREE (version 1.6.10), employing the best-fit model of nucleotide substitution
according to the Bayesian Information Criterion (BIC), as indicated by the Model
Finder application implemented in IQ-TREE35. The statistical robustness of indi-
vidual nodes was determined using 1000 bootstrap replicates.

Molecular clock calibration and estimation of virus effective population size.
ML trees were inspected in TempEst v1.5.3 for the presence of temporal signal (i.e.,
linear relationship between genetic distance and sampling time in the available
sequences)21. The treedater package in R v3.6.036,37 was used for molecular clock
calibration of the Italy-only data, as well as the combined Italy and reference data.
The top 100 maximum likelihood (ML) trees (i.e., the trees with the 100 lowest -log
[likelihood] values), were chosen for calibration according to a strict clock (no
branch specificity) among the Italy-only data, whereas a single-best ML tree was
chosen for the combined dataset. Individual taxa sampling times were used to
rescale branch lengths to time in each tree using a starting value of 8 × 10−4

substitutions/site/year. The skygrowth non-parametric demographic model38 was
then used in R with time-scaled trees to estimate of median virus effective popu-
lation size (Ne) and 95% high posterior density intervals for each week during the
epidemic in Italy (Italy-only dataset) using the default smoothing parameter value
(tau) of 0.1.

SARS-CoV-2 transmission cluster identification and characterization. Trans-
mission clusters were identified using Phylopart v239 applied to the ML tree of
combined sequence data (scaled in substitutions/site). A range of percentile
thresholds spanning 10−6–15% of the whole-tree patristic distance distribution was
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used to choose an optimal threshold point and to verify robustness of cluster
composition. The minimum percentile threshold that maximized the number of
clusters was chosen as the optimal threshold by performing multiple clustering
runs on randomly sampled patristic distance distributions (1 million for each run).
Well-supported sub-trees (bootstrap values >90%) with mean pairwise patristic
distances among taxa within the chosen threshold were considered putative
transmission clusters (i.e., clusters comprising sequences epidemiologically linked
through a transmission chain, although some of the direct links may be missing).
Only clusters containing at least 1 Italian sequence were considered in downstream
analyses. The phytools package40 in R was used for joint likelihood reconstruction
of discrete ancestral origins41 according to country (and associated uncertainty) for
the most recent common ancestor (MRCA) of each transmission cluster within the
ML tree (scaled in substitutions/site) for the combined dataset. Transition rates
among discrete states (countries) along tree nodes were considered to be equal. The
tree scaled in time was used to attribute temporal origins to each cluster, or time of
MRCA (TMRCA). The following R packages were used in the manipulation of data
for cluster characterization and visualization: ape42, dplyr43, purr44, rlist45,
tidytree46, ggplot247, data.table48, reshape249, lubridate50, ggtree51, tidyr52, and
parallel37.

Estimation of basic reproduction number. Estimates for daily basic reproduction
number, Re, of SARS-CoV-2 in Italy were obtained from the COVID-19-re data
repository (https://github.com/covid-19-Re/dailyRe-Data) as at 20th September
2020. The effective reproductive number describes the average number of sec-
ondary infections caused by an infected individual. The relevant method of cal-
culation of Re builds upon another method developed by Cori et al.53, accessible
through EpiEstim R package. Instead of using a time series of infection incidence,
which cannot be observed directly, the relevant method infers the infection inci-
dence time series based on secondary sources of information such as COVID-19
confirmed case data, hospital admissions, and deaths. This was considered in
combination with two other sets of time variables: (i) the duration of SARS-CoV-2
incubation period and (ii) the time delays between the onset of the symptoms and a
positive test, a hospital admission or the death of a patient. The relevant method
infers infection time series from the stated observed incidence data by
deconvolution53–56.

Epidemiology data assembly. We analyzed COVID-19 cases counts in Italy from
publicly released data up to October 31st 2020 from the Italian Civil Protection
Department repository (https://github.com/pcm-dpc/COVID-19) that releases
daily updates on the number of new confirmed cases, deaths, and recoveries, with a
breakdown by region. To illustrate the epidemic progression, the daily number of
confirmed cases of people infected with SARS-Cov-2 in Italy was plotted alongside
a timeline of lockdown phases and variation in estimated virus reproduction
number until October 31st 2020. For convenience the geographical locations were
aggregated by Italian macro regions: Northeast, Northwest, Central, South, and
Insular, which are basic regions for the application of regional policies (Italian
regions). Mobility data over time, combining data on three different forms of
transportation—personal vehicle, public, and walking—were obtained from Apple
Mobility Trends Reports (https://covid19.apple.com/mobility).

Agent-based stochastic model simulation of the Italian epidemic. The Italian
epidemic was simulated using the forward-time, agent-based stochastic transmis-
sion chain simulator, nosoi57, which allows for time-varying parameterization. The
simulation was initiated with a single infected individual with a probability of
transmission of 0.02 per day following an incubation period, which was set to a
mean of 5 days and standard deviation of 2 days. The rate of transmission was fixed
throughout the simulation at this value. The median incubation period for SARS-
CoV-2 has often reported as 4–5 days58–60, though more recent studies have
reported closer to 7 days61. It has also been reported that 97.5% of people with
symptoms will do so within 11.5 days of infection. We, therefore, considered the
mean of these values (5 and 11.5) as the mean infectious period in the simulation,
resulting in individuals exiting the simulation at a mean time of 14 days (standard
deviation equal to 2) after infection. While this value is considerably higher than
the more commonly reported median of 4–5 days, the timing of peak numbers of
infection coincided with peak empirically reported cases (Fig. 5), validating the
choice in the distribution. Three different simulation scenarios were tested,
assuming a direct relationship between (1) rate of mobility and the number of other
individuals with which each infected individual comes into contact, (2) hospitali-
zation rate and the rate at which an infected individual was removed from the
simulation during the infectious period (approximately 5 to 14 days), or both.
Hospitalization and mobility data were standardized by (observed-minimum)/
(maximum-minimum) to a range of 0–1 and modeled using a Fourier series
periodic function, with mobility data comprised of 2 sine/cosine terms (linear
model regression R2= 0.8484) and hospitalization data of 4 sine/cosine terms
(linear model regression R2= 0.984). In scenarios 1 and 3, the probability of exiting
the simulation was allowed to vary over time proportionally to the standardized
rate of hospitalization, resulting in a maximum of ~35% of infected individuals
hospitalized during peak hospitalization of the epidemic. In scenarios 2 and 3, the
number of contacts for each infected individual was allowed to vary over time

proportionally to the mobility rate, resulting in a mean of approximately 15
individuals in contact with each infected individual. For scenario 1, a static mean
removal rate (during the infectious period described above) over time was set to
0.04 (standard deviation of 0.01). For scenario 2, the mean number of contacts per
individual was set to 15 (standard deviation of 8). The mean absolute error for each
time point was calculated to assess the deviation of the simulated number of
actively infected individuals for each of the three scenarios from the true number of
cases, provided by Italian Ministry of Health and the Civil Protection Department.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Sequence and epidemiology raw data utilized, generated, or analyzed during these studies
are available from the authors upon request (including sequence alignment and R scripts
for the phylodynamic analyses).
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