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Brain pathology recapitulates physiology: A
network meta-analysis
Thomas J. Vanasse 1,9, Peter T. Fox 2,3,4,9✉, P. Mickle Fox 2, Franco Cauda5, Tommaso Costa5,

Stephen M. Smith 6, Simon B. Eickhoff7,8 & Jack L. Lancaster2,3

Network architecture is a brain-organizational motif present across spatial scales from cell

assemblies to distributed systems. Structural pathology in some neurodegenerative disorders

selectively afflicts a subset of functional networks, motivating the network degeneration

hypothesis (NDH). Recent evidence suggests that structural pathology recapitulating phy-

siology may be a general property of neuropsychiatric disorders. To test this possibility, we

compared functional and structural network meta-analyses drawing upon the BrainMap

database. The functional meta-analysis included results from >7,000 experiments of subjects

performing >100 task paradigms; the structural meta-analysis included >2,000 experiments

of patients with >40 brain disorders. Structure-function network concordance was high: 68%

of networks matched (pFWE < 0.01), confirming the broader scope of NDH. This corre-

spondence persisted across higher model orders. A positive linear association between

disease and behavioral entropy (p= 0.0006;R2= 0.53) suggests nodal stress as a common

mechanism. Corroborating this interpretation with independent data, we show that metabolic

‘cost’ significantly differs along this transdiagnostic/multimodal gradient.
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Network architecture is a fundamental, multi-scale motif in
brain organization, presumably reflecting evolutionary
pressure for efficient information-processing. Network

properties have been demonstrated across a wide range of spatial
scales. The microscale contains connections between individual
neurons, while the macroscale comprises distributed systems
which encompass direct and indirect connections between more
distant brain regions1. Progress in neuroscience over the past
three decades has been extraordinary, much of which can be
attributed to the development of high-resolution, whole-brain
imaging methods, and advanced analytic approaches for network
discovery. For human neuroscience, functional and structural
magnetic resonance imaging (fMRI and sMRI) coupled with data-
driven analytic methods applied at the systems level have been
particularly impactful2–4.

System-level functional networks are defined by their func-
tional connectivity, most often inferred by measuring temporal
correlations of neuronal activity5. The reliability of functional
connectivity as a biological construct has withstood rigorous
examination: the functional organization of the brain is domi-
nated by a core architecture shared between individuals (i.e.,
system-level networks), but stable connectivity features unique to
individuals are also present6. Substantially less variability in
functional brain connectivity is explained by day-to-day varia-
bility or even task-state6. Thus, functional connectivity is a robust
metric to study behavior, cognition, and disease7. Fifteen to 20
functional networks are readily identifiable and can account for
much of our understanding of brain–behavior ontology8–10.
These functional circuits are considered to mediate susceptibility
to dimensions of psychopathology rather than discrete dis-
orders11, making them especially relevant for transdiagnostic
investigation12.

The network denegation hypothesis (NDH) posits that disease-
related structural alteration selectively occurs—and may even
spread—within these system-level functional networks13. Just like
neuronal activity, gray matter structural alteration (atrophy or
hypertrophy) has shown to follow network-based principles14:
structural alteration in one brain area is influenced by alteration
in other brain areas15,16. This concept is hereon referred to as co-
alteration structural connectivity (CA-SC). Previous work has
linked four specific neurodegenerative disorders’ atrophy patterns
to four corresponding functional circuits17, and other work has
found shared CA-SC effects in a single functional circuit across
six psychiatric diagnoses18. In recent years, some studies have
even suggested that network-based pathology recapitulating
physiology may be a general property of neuropsychiatric dis-
orders that can occur in response to a combination of plausible
disease mechanisms14. But this fundamental question of NDH,
specifically the extent of structural and functional correspon-
dence, remains unclear. Furthermore, toward a refined under-
standing of NDH, new evidence has even suggested that the
variety and unpredictability of diseases that structurally affect a
brain area may be associated with regions that are important for
cognitive/integrative function19. Transdiagnostic disease vulner-
ability of brain networks has not yet been assessed and compared
to functionally based, integrative indexes (i.e., behavioral specia-
lization) in any formal capacity. Confirming this hypothesis
would have important implications for further understanding
NDH. Functional specialization is proposed to reflect unique
metabolic brain characteristics20 that may underlie specific NDH
mechanisms.

Meta-analytic network analysis, which draws upon decades of
human neuroimaging research, has proven to be a powerful way
to study brain organization and pathology21. Specifically, the
BrainMap (www.brainmap.org) database project has involved the

manual curation of standardized results (x–y–z brain coordinates)
from thousands of whole-brain functional and structural neu-
roimaging experiments, along with a rich taxonomy of the rele-
vant behavior (i.e., behavioral domain and task paradigm) and
disease (i.e., ICD-10 diagnosis) metadata, respectively. In utilizing
this dual-modality resource for network analysis and investigating
NDH, a plethora of analytic methods are available. Independent
component analysis (ICA), which requires perhaps the least
assumptions of neuroimaging data as opposed to other analytic
models2,22, can be applied to meta-analytic data from BrainMap
as has been done previously10,23. ICA is a multivariate method
that identifies a specified number of spatial networks by linearly
unmixing whole-brain data into maximally independent
sources24.

In the first part of this study, we test NDH’s broad-based
proposition that network-based structural pathology adheres to
the brain’s functional architecture when considering many neu-
ropsychiatric disorders. We test this hypothesis in a data-driven
manner by spatially comparing 20 transdiagnostic CA-SC net-
works to 20 task-activation functional connectivity (TA-FC) ICA
networks; each network set was separately generated from their
respective BrainMap modality (structure vs. function). We also
examine higher model orders (d= 45, 70) to assess general-
izability. In the second part of this work, utilizing a network-
normalized entropy metric derived from metadata loadings
(which captures both the diversity and non-specificity of meta-
data associations), we test the hypothesis that brain networks that
are highly behavior entropic are also highly disease entropic. To
further investigate the specific NDH mechanistic prediction of
nodal stress (NS), we utilize a separate dataset25 that reported
regional differences in the brain’s metabolic attributes among
healthy individuals, and we test whether those markers associate
with disease and behavior entropy.

Results
Network discovery. Two general characteristics of the CA-SC
and TA-FC networks identified at d= 20 using ICA were
observed. First, no singular (one-to-one) disease-to-network or
behavior-to-network matching was clearly evident based on the
disease and behavior network loadings. Forty-three distinct dis-
orders were included for structural analysis, and 56 distinct
behavior categories were included in the functional analysis. One
CA-SC network (medial visual) was unique in that no disease
category associated with it above a 75th percentile threshold.
None of the TA-FC components demonstrated this sparsity.
Second, neurological disorders (ICD G codes) showed stronger
CA-SC component associations compared to psychiatric dis-
orders (ICD F codes) in a non-parametric Wilcoxon rank-sum
test (p= 0.01) of all component-metadata loadings.

Cross-modality spatial correspondence. Fourteen of 20 CA-SC
networks and 13 of 20 TA-FC networks showed clear cross-
modal spatial correspondence, and are featured in Fig. 1. These
matches met a spatial correlation at r ≥ 0.31, corresponding to a
family-wise error (FWE) corrected p < 0.01. In the post-hoc
dimensionality analysis, network correspondence was strongest at
d= 20 vs. 20 at 68% [14+ 13 matches/(20+ 20) total networks],
but remained strong among higher model orders (64%). Percent
matching was calculated according to the sum of all unique
structural and functional components that had a cross-modality
match (r ≥ 0.31) divided by the sum of total networks in any
specific cross-modality comparison of sets (see Fig. 2). The
strongest network correspondence was evident when dimen-
sionality was matched between modalities (i.e., 20/20, 45/45,
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70/70) as opposed to off-diagonal comparisons (e.g., 20/45). The
upper diagonal, where higher VBM dimensions were compared to
lower functional dimensions, showed more matches (mean
57.3%) compared to the lower diagonal (mean 49%).

Informational comparison. Among matched networks, a linear
regression was indeed found to be significant between disease
(independent variable) and behavior network-normalized entropy
among all matched networks [β= 0.60 (std. error: 0.147);

Fig. 1 Co-alteration and task-activation network correspondence (d= 20). (Left) Thirteen task-activation (TA) networks derived from the BrainMap-TA
sector (n= 7865 task-activation experiments among healthy subjects). (Right) Fourteen structural co-alteration networks derived from the BrainMap
voxel-based morphometry sector (n= 2002 experiments across n > 40 diseases). Clear network matches across datasets are shown by blue connecting
bars, the width of which are proportional to the whole-brain, spatial correlation coefficient. Some networks matched to two, separate opposite-modality
networks (red and green). Color scale is shown at the bottom of the image. Independent component (IC) numbers are ordered by explained variance within
the respective dataset. All component matches are at or below a significance threshold of p= 0.01, family-wise error (FWE) rate corrected. Source data are
provided in Supplementary Data 1.
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right-tailed p= 0.0006; df= 13] (Fig. 3). Higher-order, supra-
modal, associative networks tended to rank high in both behavior
and disease entropy. The salience network, for example, ranked
highest on both disease and behavior entropy. Similarly, the left
central executive and ventral attentional networks were highly
disease and behavior entropic. Subcortical nuclei and immediate
connections (e.g., pulvinar, medial dorsal nucleus, and corpus
striatum), often described as performing relay functions, were
intermediate in both behavior and by disease-diversity ranking.
Lower-order, unimodal, perceptual, and motor networks (e.g.,
medial visual, hand sensorimotor, and auditory) were behavio-
rally sparse and had minimal disease diversity. Most networks fell
within the range of 40–80% of the maximum possible entropy
value. The medial visual network was an outlier, explaining the
least amount of variance within both functional and structural
datasets (ranked 20th).

Some disease categories had more diffuse loadings across
networks than others. G10: Huntington’s disease affected nine
matched networks, with loadings greater than the 75th percentile,
and was followed by G31.0: Frontotemporal Dementia and F20:
Schizophrenia with seven affected networks. G31.85: Corticobasal
Degeneration and G23.1: Progressive Supranuclear Palsy each
were associated with six networks above the threshold. On the
other end of the spectrum, diseases including G40.B: Juvenile

Myoclonic Epilepsy, F84.5: Asperger’s Syndrome, F29: Unspeci-
fied Psychosis, F31: Bipolar Disorder, and F33: Major Depressive
Disorder each had two loadings or less above the 75th percentile
among matched networks. The median TA-FC network associa-
tion across all diseases in Fig. 4 was 4 (diseases per network).

Metabolic differences. To corroborate our interpretation that
behaviorally entropic functional and disease entropic structural
brain hubs are indeed associated with increased metabolic cost
(an NDH prediction known as NS13), we regressed our entropy
measures to a group-level, voxelwise metabolic statistical map
previously acquired and shared by Shokri-Kojori et al. 25. They
used positron emission tomography (PET) and fMRI data
recorded from 28 human subjects. An energetic supply factor was
derived from PET data and a demand factor from fMRI. These
factors were then transformed with sinusoidal transformation to
provide two new factors: cost (which corresponds roughly to anti-
correlation or independence between supply and demand) and
power (which corresponds roughly to correlation or dependence
between supply and demand).

To capture variation in both dimensions, which the authors
proposed to represent two separate metabolic pathways (fast
aerobic glycolysis vs. steady oxidative metabolism), the difference

Fig. 2 Higher model order comparisons. Components that matched at higher dimensionalities of a 45 and b 70. c Percentage of network matches applying
the same correlation threshold across n= 9 separate combinations of dimensionalities (20/45/70). Source data are provided in Supplementary Data 1.
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between cost and power maps was applied here. This difference
(cost–power) significantly associated with both disease [β= 0.017
(std. error= 0.0018), intercept=−0.90, R2= 0.88, Bonferroni-
corrected right-tailed p= 7.6e−07] and behavior [β= 0.011 (std.
error= 0.0043), intercept=−0.54, R2= 0.35, Bonferroni-
corrected right-tailed p= 0.03] entropy (Fig. 5).

Matched network behavioral/pathological profiling. Loading
matrices for each matched network are provided in Fig. 4. Each
network match is reported below, paragraph-by-paragraph, in
order of higher to lower magnitude of correspondence, i.e., spatial
correlation coefficient.

The temporo-limbic functional and co-alteration networks
both included the bilateral amygdala, anterior cingulate (BA 24/
32), and left lateral prefrontal cortex (BA 9/46). The temporo-
limbic co-alteration network was loaded on by many diseases
including G30: Alzheimer’s disease (9.3–median absolute devia-
tions from zero; see the “Methods” section), G31.84: Mild
Cognitive Impairment (6.2), G31:01 Pick’s Disease (6.8), R47.01:
Aphasia (6.3), and G31.0: Frontotemporal Dementia (4.0) (Fig. 4).
This functional network was loaded on most by Perception.
Olfaction (7.8) and Emotion.Negative.Disgust (3.9).

The fronto-striatal functional and co-alteration networks
shared anatomy in the bilateral caudate and middle frontal gyri.
The co-alteration component was loaded on by G10: Hunting-
ton’s Disease (21.7) most, the strongest loading by any disease on
any network by a factor of 2. It was also loaded on by G31.85:
Corticobasal Degeneration (3.5) and F50.0: Anorexia Nervosa
(2.2). Behaviors including Action.Motor Learning (3.5) and
Emotion.Positive.Reward (4.9) highly loaded on the fronto-
striatal functional network. Other neurodegenerative syndromes
that loaded on this component including R47.01: Aphasia, G30:
Alzheimer’s disease, and G31.0: frontotemporal dementia.

The thalamus functional network corresponded to two separate
co-alteration networks: one primarily included the pulvinar
thalamus (r= 0.54) and the other mostly included the medial
dorsal nucleus (r= 0.41). The pulvinar thalamus co-alteration

network was loaded on by G40.B: Juvenile Myoclonic Epilepsy
(9.3) most. The medial dorsal nucleus co-alteration network was
loaded on by G31.85: Corticobasal Degeneration (5.6). Both
thalamus co-alteration networks were weighted on by G35:
multiple sclerosis and G93.81: Temporal Sclerosis. The thalamus
functional network was associated with a diverse set of behaviors
including Perception.Somesthesis.Pain (3.2), Action.Motor.Learn-
ing (2.8), as well as Interoception.Respiration Regulation (2.1).

The ventral attention functional network matched to a co-
alteration network that was loaded on by F20.0: Schizophrenia
(3.3), G90.3: Multi-system Degeneration (4.1), R47.01: Aphasia
(3.6), and G31.0: Frontotemporal Dementia (3.2). The matched
functional and co-alteration networks both included the bilateral
inferior frontal gyrus and parts of the anterior insula and
thalamus. The functional network supported a variety of tasks,
and was loaded on by Cognition.Language.Semantics (3.6),
Cognition.Temporal (2.2), as well as Emotion.Negative.
Disgust (3.1).

The auditory functional network—which included auditory
cortices (BAs 41/42/22)—matched to a co-alteration network that
was loaded on by F41.0: Panic Disorder (3.3), F84.5: Asperger’s
Syndrome (2.7), and F29: Unspecified Psychosis (2.1). This
functional network was uniquely associated with Action.Execu-
tion.Speech (6.2).

The matched functional and structural salience networks
primarily included the bilateral anterior insula and dorsal anterior
cingulate. This network was loaded on by many neurological and
psychiatric diseases including G31.0: Frontotemporal Dementia
(3.5), G89.2: Unclassified Chronic Pain (1.9), F20: Schizophrenia
(2.0), and even Z81.8: Family History of Mental Disorder (2.7).
The salience functional network was loaded on most by behaviors
including Perception.Somesethesis.Pain (4.1) and Cognition.
Temporal (3.9)—the mental faculty associated with the system
of sequential relations that any event has to any other as past,
present, or future.

The cognitive control network included the anterior cingulate,
dorsolateral prefrontal cortex, and posterior insula. The cognitive

Fig. 3 Matched network disease and behavior entropy comparison. The informational content of each network in terms of percent maximum of network
normalized behavior and disease entropy. High disease entropy corresponds to a network that is associated with a higher variety of diseases [from n= 43
International Classification of Disease (10th version) diagnostic categories] and is non-specific to one or few diseases. High behavior entropy corresponds
to a functional network associated with a high variety of Behaviors (from n= 56 BrainMap behavior domains) and is also not specialized. Only those n= 15
networks that are significantly matched between co-alteration and task-activation ICA are displayed; the size of data points is proportional to their spatial
correlation (0.31≤ r≤ 0.62). The linear model a had the following parameters: β= 0.60; p= 0.0006; df= 13; Adjusted R2= 0.53. Panel b excludes the
medial visual network from view, where color corresponds to the fitted values of the model. NN network normalized, MDN medial dorsal nucleus, DMN
default-mode network, Thal. thalamus, L./R. left/right, Cent. central. Source data are provided in Supplementary Data 1.
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control co-alteration network was associated with S06.02: diffuse
traumatic brain injury (3.7) and F43.10: Posttraumatic Stress
Disorder (2.2). Behaviors most associated with this functional
network included Perception.Somesthesis.Pain (3.2) and Cogni-
tion.Memory.Working (2.9).

The right central executive (i.e., fronto-parietal) functional
network was strongly associated with cognitive tasks including
Action.Inhibition (3.2) and Cognition.Memory.Working (2.9).
This co-alteration network did include bilateral aspects of the
middle frontal gyri, and was robustly loaded on by tauopathies
including G31.85: Corticobasal Degeneration (4.6) and G23.1:
Progressive Supranuclear Palsy (4.0).

The default-mode functional network was matched to separate
anterior and posterior co-alteration networks, which were loaded
on by disparate diseases. The anterior default-mode co-alteration
network was loaded on by Z91.49: Personal History of
Psychological Trauma (2.2) and M79.7: Fibromyalgia (3.5), while
the posterior aspect was loaded on by G30: Alzheimer’s Disease
(1.6), G31.84: Mild Cognitive Impairment (1.6), and Z81.8:
Family History of Mental Disorder (2.5). The associated
behaviors with the default-mode network included Cognition.
Social Cognition (2.9) and Emotion.Neutral (3.3).

The left central executive (i.e., fronto-parietal) network was
strongly affiliated with G31.01: Pick’s Disease (4.1), R47.01:
Aphasia (4.6) and P07.3: Preterm Birth (4.8). This left-lateralized

functional network was associated with Cognition.Language.
Semantics (5.7), Action.Execution.Speech (3.9), and Cognition.
Memory.Working (3.5).

The sensorimotor co-alteration network—which contained the
paracentral lobule (BA 6) and aspects of the postcentral gyrus
(BAs 4/3)—was selectively loaded on by G12.21: Amyotrophic
Lateral Sclerosis (4.2) and G35: Multiple Sclerosis (2.7). Two
functional connectivity networks, (1) hand and (2) mouth
sensorimotor, were significantly associated with this co-
alteration network. The hand sensorimotor (IC-8) was strongly
loaded on by Action.Execution.Other (7.3), Action.Motor.Learn-
ing (4.5), and Action.Imagination (2.9) Behavior Domains. The
mouth sensorimotor network was loaded on most by Action.
Execution.Speech (5.7).

Finally, the medial visual co-alteration network’s highest
disease loading was S06.02: diffuse traumatic brain injury at
1.14, but this was still not above the 75th percentile threshold,
and thus did not contribute toward disease diversity. The
functional network predictably weighted most on Perception.
Vision.Motion (1.73).

The functional networks that did not match to a co-alteration
network included a dorsal attention network, a somesthesis network
(containing posterior insula, inferior parietal lobule, and cingulate),
lateral visual (V2) and visual association (V3) networks, two
visuomotor coordination networks, and a cerebellum network.

Fig. 4 Matched network metadata loadings. a Twenty (of n= 59) selected behavior domain loadings of task-activation functional networks. b Twenty-
nine (of n= 43) selected disease loadings of co-alteration networks. One column, spanning panels a and b, corresponds to a network match. Stronger to
weaker spatial correspondence is ordered from left to right. Metadata loadings are scaled by median absolute deviation about zero (see the “Methods”
section). Metadata experiment volume within the database at the time of analysis are displayed to the right of the metadata label. Cell borders/shading
specify more extreme loadings above 6 and 15. Source data are provided in Supplementary Data 1.
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Five co-alteration networks that did not have a TA-FC network
match included a posterior insula/posterior cingulate network (IC-
13), left-lateralized and right-lateralized hippocampus networks
(IC-6, 4), a bilateral posterior hippocampus network (IC-17), and
an inferior temporal lobe network (IC-8).

Discussion
This work synthesized and compared the healthy task-activation
and disease morphology human neuroimaging literatures at large
scale. The main impact of this effort is twofold: (a) we demon-
strate that TA-FC architecture comprehensively associates with
disease-related structural co-alteration, unequivocally affirming
the network degeneration hypothesis (NDH) as a broad-based
phenomenon; and, (b) by virtue of mass comparison of structure
and function, etiologic inferences can be made about proposed
transdiagnostic mechanisms of action, and even about shared
symptomotologies across disorders. Utilizing independent brain
metabolism data showing regional differences in energy utiliza-
tion, we argue that metabolic susceptibility—proposedly linked to
NS—prominently contributes to transdiagnostic action.

Since Seeley et al.’s seminal work in 200917, the NDH has
shifted in scope to include a few neurodegenerative disorders and
networks (e.g., Alzheimer’s disease and the default-mode net-
work; or corticobasal syndrome and the somatomotor network),
to now—as we show—be powerfully relevant in understanding a
panoply of diseases and CA-SC networks. This study compre-
hensively demonstrates this network-based phenomena in a data-
driven manner, using ICA featured at a low model order. We also
show that matching persists, with only a slight decrease in percent
matching, along higher network dimensionalities. This proves
that structural and functional matching was not an artifact of
dimensionality selection. Importantly, correspondence was
highest when dimensionalities matched across modalities (see
diagonal in Fig. 2), which suggests that CA-SC/TA-FC networks
fractionate similarly as model order increases. Messe26 demon-
strated similar results when comparing the healthy structural/
functional connectome via graph theory, in that partition

matching between modalities remained constant from low-count
to high-count atlas parcellations.

The scope of structural and functional network correspondence
is noteworthy here in that 14 CA-SC networks (d= 20) matched
to a TA-FC network, but also the range of disorders (43) involved
in this analysis should be of emphasis. Neurological diseases did
indeed have stronger network associations than psychiatric dis-
eases, which reinforces the fact that neurological diseases are
more neurodegenerative and severe in comparison to psychiatric
disease. Severe aggregation of amyloid-β, tau, α-synuclein, and
TDP-43 is found post-mortem in virtually all brains with neu-
rodegenerative disease27. But some networks also showed a vast
array of psychiatric associations (see salience or temporo-limbic
network in Fig. 4). It is thus crucial to discuss transdiagnostic
mechanisms that may be driving the observed structural patterns
in both neurological and psychiatric diseases.

Toward etiological inference, the second part of our work
demonstrated a significant linear association between disease
diversity and behavior diversity, which likely reflects the trans-
diagnostic NDH principle of NS. NS, which leads to network
degeneration, is perhaps the most evidenced of the pathophy-
siological theories on offer by NDH as argued by Cauda et al. 14

and others28. The concept of NS suggests that functional brain
hubs, or areas that are highly connected, are most susceptible to
many disease mechanisms. The higher end of the linear gradient
shown in Fig. 3 (with associated high behavior and disease
diversity) contained the salience, ventral attention, and left central
executive networks, whose core anatomy, respectively, contained
the dorsal anterior cingulate, bilateral anterior insula, and left
middle frontal gyrus. Each of these regions has a strong resting-
state participation coefficient, a graph theoretical hub measure
that characterizes nodes that are involved in multiple subnet-
works of the brain29. Further down the graded scale of disease
diversity were the thalamus and fronto-striatal networks. The
thalamus and aspects of the basal ganglia both contain dense
structural connections28. Finally, at the lower end of the co-
alteration disease entropy spectrum, were the sensorimotor,
medial visual, and the anterior/posterior default-mode networks.

Fig. 5 Metabolic brain attributes vs. disease/behavior entropy. Using a published dataset capturing the dynamics of metabolic supply mismatching
energetic demand (higher relative cost vs. power) among n= 28 healthy subjects, we performed linear regression with n= 14 percent maximum disease
and n= 13 behavior network entropy metrics as separate independent variables (matched VBM and functional components, colored orange and blue,
respectively). Both regressions were found to be significant after correcting for multiple tests, p= 7e−7 and p= 0.03, for disease–structural and
behavior–functional network data, respectively. Source data are provided in Supplementary Data 1.
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The sensorimotor network was selectively associated with G12.21:
amyotrophic lateral sclerosis and G31.85: corticobasal syndrome.
The medial visual network had extremely low disease diversity,
and did not associate with one disease past the 75th percentile of
loadings among all networks and disorders (thus having 0%
disease diversity). While the default-mode network was expect-
edly behaviorally non-diverse (being task-negative30), it is
important to note that it contains a highly connected region in
the posterior cingulate cortex31. Even though the posterior cin-
gulate is highly connected to its local community, it does not have
strong inter-modular FC29.

Higher energetic costs among brain hubs make them vulner-
able to structural alteration according to NS, as any disease
process leading to metabolic impairments should selectively
damage them28,32. To test this prediction, we regressed our net-
work entropy results to an independent dataset that characterized
metabolic expense while accounting for neuronal activity. Speci-
fically, Shokri-Kojori et al.25 looked at network differences in
energy dynamics and metabolic supply of the brain by compar-
ing: (a) the extent that energy utilization exceeds activity (relative
cost, rCST); and, (b) the extent of concurrent energy utilization
and activity (relative power, rPWR). The relative difference
between these two measures (rCST–rPWR) captures both
dimensions, and significantly associated with both disease and
behavior entropy in this study. Higher rCST, as the authors
suggest, “may involve the use of faster (but inefficient) metabolic
pathways such as aerobic glycolysis”. Acute changes in metabo-
lism occur in response to neuronal stimulation, and increased
energy demand causes a Warburg-like transient dissociation
between glycolysis and oxidative phosphorylation (for a review of
the brain metabolism literature, see ref. 33). Functionally specia-
lized networks are instead proposed to rely on more efficient
oxidative metabolism (higher rPWR). For example, the default-
mode network and the medial visual network both showed low
behavior-entropy and disease-entropy in the present analysis.
While these networks are highly metabolically active, their steady
energetic characteristics are not considered to be as costly25,
which would leave them less suspectable to disease mechanisms
according to NS. Interestingly, disease entropy explained much
more variance (R2= 0.88) in metabolic attributes than behavior
entropy (R2= 0.35).

Metabolic abnormalities among neuropsychiatric disorders
have been widely reported. Mitochondrial dysfunction in many
neurodegenerative diseases is elicited by genetic alterations, exo-
genous toxins, or buildup of toxic metabolites34. Schizophrenia,
bipolar disorder, and major depressive disorder have shown
common and distinct markers of energy metabolism dysfunction
with in vivo magnetic resonance spectroscopy35,36 and proteomic
analyses of postmortem brain tissue37. Animal models have
recently suggested that elevated glycolysis may underlie increases
in lactate and pyruvate levels observed across multiple psychiatric
disorders38. Finally, oxidative stress is thought to be involved in
neurodegeneration observed across Alzheimer’s disease, Parkin-
son’s disease, and Huntington’s disease among other disorders39.
While we highlight the role of NS here, this does not preclude the
possibility that other mechanisms including prion-like transsy-
naptic spread40 or shared genetic susceptibility41 also contribute
to CA-SC, but we argue to a lesser extent when considering a vast
array of disorders.

Some diseases affected a variety of TA-FC networks as opposed
to a few. These include G10: Huntington’s disease, G31.0: fron-
totemporal dementia, F20: Schizophrenia, G31.85: corticobasal
degeneration, and G23.1: progressive supranuclear palsy. It is
difficult to broadly speculate about this observation beyond the
fact that each of these diseases has a multitude of severe symp-
toms. G10: Huntington’s disease most obviously impairs

movement in gait and speech, but it also manifests cognitive
problems and psychosis in many patients42. Furthermore, as with
many other dementias including G31.0: frontotemporal dementia,
even olfaction is impaired43. Conversely, F33: major depressive
disorder was only weakly associated with the temporo-limbic
network in this analysis, which is likely a result of its clinical
heterogeneity and the overall difficulty of finding a robust neu-
roimaging signature of this disorder44,45. Separately, G40.B:
juvenile myoclonic epilepsy strongly and uniquely loaded on the
pulvinar thalamus network, suggesting that this disease has a
more focal mechanistic action.

Other approaches to identify multivariate associations between
two or more distinct neuroimaging modalities include, but are
not limited to, Joint ICA46 and Linked ICA47,48. Both of these
methods require multi-modality data from each subject, which is
not clearly applicable to the meta-analytic dataset here. Still, this
literature provides us some noteworthy insight into how TA-FC
and structural co-alteration can be mutually affected by disease.
For example, Joint ICA has identified schizophrenia gray matter
effects in bilateral parietal/frontal, and right temporal regions to
be associated with activations by an auditory oddball stimulus in
bilateral temporal regions46. Calhoun and Sui extensively
reviewed the fusion of structural and functional data applied to
schizophrenia, mood disorders, and other psychopathologies in
ref. 49. These methods offer a promising way forward in unco-
vering the links between structure and function among many
diseases.

One limitation of this work considers that the mean spatial
correlation coefficients between the input features (i.e., 12-mm
FWHM smoothed coordinate pseudo-activation image per
experiment) and the extracted components (i.e., ICA spatial
network z-maps) are small in terms of explained variance, and
can be difficult to interpret individually (see Supplementary
Fig. 2). The spherical assumption of activation or alteration
surrounding coordinates is imprecise in comparison to the
spatial intricacies of a derived ICA component map with which
they are being correlated. This perhaps contributed to the small
correlation magnitudes. Expectedly, the number of foci per
experiment also played a role in correlation magnitudes. Some
higher-foci experiments seemed to activate multiple networks,
which likely reduced correlations to a single network. Lower-
foci experiments associated with that single network (or subset
of a network) had relatively higher correlations. To help the
reader intuit the amount of overlap between experiment-level
data and extracted components, we have provided a range of
high/medium/low experiment-to-network spatial correlations
with their corresponding anatomical layouts in Supplementary
Fig. 5.

In summary, a broadly based interpretation of the NDH was
overwhelmingly confirmed by this comprehensive analysis in that
14/20 of CA-SC each spatially corresponded to a TA-FC network.
We found a positive, graded relationship between network-based
disease and behavior entropy. Because more behaviorally diverse
and non-specialized regions necessarily incorporate hub regions,
we interpret this association to reflect the transdiagnostic NS
principle. The major metabolic susceptibility to disease inferred
here (i.e., NS) could be further addressed in future work by uti-
lizing a database of voxel-based physiology (resting-state meta-
bolism, blood flow)—a term/concept introduced by Gray et al.44

—and comparing TA, VBM, and voxel-based pathophysiology.
We hope that future work can focus on transdiagnostic vulner-
ability in certain quick-use metabolic pathways, which our data
evidently implicate. Finally, researchers can take these multi-
dimensional results as a roadmap for more specific investigations
since biologically meaningful regions-of-interest can be derived
from the component maps shared here50.
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Methods
Data. All data utilized in the analyses reported here were obtained from the
BrainMap® database (www.brainmap.org)51. BrainMap is an on-line repository of
data gleaned by hand curation from the peer-reviewed, English language literature
reporting voxel-wise, whole-brain neuroimaging studies, and tabulating significant
effects using 3-D spatial coordinates referable to established brain atlas spaces. This
online database archives tabular reduced data (standardized spatial coordinates)
and experimental-design metadata gleaned from group-wise contrasts, with no per-
subject data or personal identifiers. These data formats are classified as not human
subjects data and are exempt from Institutional Review Board oversight.

Independent component analysis. Meta-analytic connectivity modeling of
coordinate-based data is a well-established method for determining TA-FC at a
comprehensive scale52. Consistent with previous ICA investigations utilizing
BrainMap9,10,23,53, peak coordinates were grouped per experiment in the
BrainMap-TA database and smoothed using a Gaussian distribution (FWHM=
12-mm) for pseudo-activation images with 2 × 2 × 2-mm resolution in standar-
dized Talairach space. To limit within-group effects as discussed by Turkeltaub
et al.54, papers that included three or more experiments with redundant x–y–z
coordinates were not included for ICA analysis—an ICA preparatory scheme
similar to that of Vanasse et al.55 in the VBM database. Thus, 7865 experimental
contrasts involving healthy human subjects were used as pseudo-time-point input
for ICA analysis. Spatial ICA was applied to the dataset using multivariate
exploratory linear optimized decomposition into independent components
(MELODIC)3 in FMRIB Software Library (FSL)56. The CA-SC networks were
generated from 2002 VBM experiments representing data from >40 brain dis-
orders55. Of note, one of these CA-SC components (VBM IC-19) was anatomically
diffuse among white matter, and was considered artifactual. Therefore, this com-
ponent was not considered in the present analysis.

The pre-set dimensionality of 20 for functional ICA was chosen for multiple
reasons. First, 20 components has been empirically shown to provide one of the
most informative decompositions of the BrainMap in an analysis of 20 different
model orders by Ray et al. 9, and in a resting-state dataset from 1414 volunteers
collected independently at 35 international centers8. Second, 20 components match
the dimensionality of that chosen in the co-alteration network analysis55, of which
the components were planned to be spatially compared.

Spatial correspondence. To measure correspondence between VBM-ICA and
Functional-ICA components, voxel-wise spatial correlation (Pearson’s
product–moment) was applied across all pair-wise combinations of components
(20 × 19= 380). Each component match was statistically significant at p= 0.01,
FWE corrected for multiple comparisons. Our statistical inference approach was
based on a FWE method57 utilizing simulated Gaussian noise images with spatial
smoothness resembling that of the independent components—as employed by
Smith et al.58. This procedure is detailed in the “Spatial correlation statistical
inference” section of the Supplementary Methods, and Supplementary Fig. 1 in the
Supplementary Figures.

In the dimensionality analysis, we applied two higher model orders of ICA: 45
and 70. We chose these dimensions because a previous investigation of BrainMap9

found both 20 and 70 to be the most informative decompositions, and 45 was in
between both. We apply the same correlation threshold empirically derived to
compare correspondence across model orders. We counted matches greater than
this threshold among all combinations of dimensionalities (d= 20, 45, 70), and
then normalize that count by dividing by the sum of dimensionality of both
component sets (i.e. 20, 45, or 70).

Metadata–component association. The behavior domain taxonomic framework
utilized in this report was created by Fox et al.59 and includes 8 action subcategories
(e.g., motor learning), 16 cognition subcategories, 15 emotion subcategories, 8
interoception categories, and 9 perception subcategories. The disease category fra-
mework followed that of the 10th version of the International Classification of
Disease codes (ICD-10) maintained by the World Health Organization60.

The association of categorized behaviors and diseases to specific independent
components (i.e., z-score spatial maps) involved a two-step approach: (a) the
average spatial correlation of each ICA-inputted experiment image within a
metadata category (e.g., G30: Alzheimer’s disease) to each component (e.g., default-
mode network; masked with positive z-scores only) was calculated (behaviors per
functional ICA components; diseases per VBM ICA components)55; and, (b) then
—for visualization purposes in Fig. 4—loading parameters from selected metadata
categories were scaled to interpret their strength. More information regarding this
procedure is provided in the “Component weights and scaling” (per behavior/
disease category) section in the Supplementary Methods, and in Supplementary
Fig. 2. We further tested the consistency of metadata loadings across modalities
among matched components, which is detailed in the “Metadata matching across
modalities” section of the Supplementary Methods, and Supplementary Fig. 4.

Disease and behavioral entropy. To quantitatively compare the informational
content of each co-alteration and functional network, we extended the voxel-wise

entropy concept introduced by Cauda et al.19 in the BrainMap-VBM database and
Anderson et al.61 in the BrainMap-TA database. Entropy captures the predictability
of a probability distribution: if fewer states of a system are more likely than others,
entropy is lower; if more states of a system are equally likely, entropy is higher. We
considered the behavior and disease component loading matrices separately, and
included all Behavioral Domains and Diseases with 10 or more experiments at the
time of analysis (N= 56 behaviors; N= 43 ICD-10 diseases).

First, all loadings below the 75th percentile were zeroed (max {P75,x}) because
negative values can be effectively interpreted to have null loading [anti-correlation
cannot be inferred from the unsigned meta-analytic data employed here10], and we
did not want relatively weak positive loadings to contribute to our entropy measure
—i.e., we zeroed those likely noise loadings only slightly above zero. To assess our
chosen percentile threshold more thoroughly, we also provide the results using a
70th and 80th percentile threshold in Supplementary Fig. 3. After this thresholding,
the probability of a component (j) being in a certain disorder or behavior (i) state
was inferred via normalization by dividing a component’s sum total loading of all
N= 43 diseases or N= 56 behaviors. Then we calculated the alteration and
behavior entropy of that co-alteration component, j62:

Network � Normalized ICj

� �
Entropy ¼

XN
i¼1

pi;jln pi;j
� �

ð1Þ

To better interpret the entropy number (whose units are nats), we calculated the
percent maximum entropy based on the highest possible value of from a discretized
distribution: a uniform probability density function63.

%Max Entropy ¼ ICj Entropy

lnðNÞ ð2Þ
Finally, behavior and disease entropy loadings (% max) among matched

networks were displayed in a scatter plot. A linear regression of network-
normalized disease entropy (independent variable) and network-normalized
behavior entropy (dependent variable) was tested.

Metabolic cost and power. To perform comparative analyses with metabolic
brain attributes, a data request was made to Shokri-Kojori and colleagues in regard
to their recently published paper in Nature Communications25. They measured
both cerebral metabolic rate of glucose (CMRglc, indexed by 18F-flurodeox-
yglucose; fluorodeoxyglucose-PET (FDG-PET)) and synchronous fluctuations in
the blood oxygenation level dependent (BOLD; measured by fMRI and indexed by
local functional connectivity density: lFCD) among n= 28 healthy individuals.
They then computed voxelwise measures of rPWR and rCST by characterizing
lFCD-CMRglc dynamics (indexing components of neuronal activity demand and
metabolic supply) to classify the brain into major segments based on rPWR and
rCST. Only group-level voxelwise rPWR and rCST statistical maps were acquired
and used in the present analysis. Specifically, the rCST and rPWR were subtracted
to assess the relative differences in brain areas between both measures. Mean
cost–mean power values per network were assessed by thresholding components at
z > 5.

Statistics and reproducibility. Raw experimental x–y–z coordinate data and
accompanying metadata was accessed from the BrainMap database (http://
brainmap.org) with a collaborative use license agreement (http://brainmap.org/
collaborations.html); this data included 2002 and 7865 VBM and functional
experimental contrasts, respectively. Most computations and visualizations were
performed in the Python scientific computing engine. Software packages including
Mango (http://ric.uthscsa.edu/mango/), Nilearn (version 0.6.0b)64, Nibabel (ver-
sion 2.5.1)65, and Nipype (version 1.4.2)66 were heavily utilized for neuroimaging
statistics and visualization.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data utilized in the analyses reported here are available on-line from the BrainMap®

database (www.brainmap.org). All ICA-computed component maps and average
metadata-component loading correlations can be downloaded at BrainMap’s affiliated
publication repository (http://brainmap.org/pubs/). Intermediate, per-experiment data
formats used in ICA computation (modeled atrophy maps and modeled activation maps)
are available upon reasonable request via execution of a data-use agreement and with
investigator support. Source data for Figs. 1–5 are available in Supplementary Data 1.

Code availability
Independent component analyses were performed using the multivariate exploratory
linear optimized decomposition into independent components (MELODIC) function of
the FMRIB Software Library (FSL) analytic package. Statistical analysis code used to
generate figures is shared at TJV’s github page (https://github.com/tvanasse/
brainmap_structure_function_2020). Software packages including Nilearn (version
0.6.0b), Nibabel (version 2.5.1), and Nipype (version 1.4.2) were also utilized.
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