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Analysis of genetically independent phenotypes
identifies shared genetic factors associated with
chronic musculoskeletal pain conditions
Yakov A. Tsepilov 1,2,12, Maxim B. Freidin3,12, Alexandra S. Shadrina 1,2, Sodbo Z. Sharapov 1,2,

Elizaveta E. Elgaeva 2, Jan van Zundert 4,5, Lennart С. Karssen 6, Pradeep Suri 7,8,9,10,

Frances M. K. Williams 3 & Yurii S. Aulchenko 1,2,6,11✉

Chronic musculoskeletal pain affects all aspects of human life. However, mechanisms of its

genetic control remain poorly understood. Genetic studies of pain are complicated by the

high complexity and heterogeneity of pain phenotypes. Here, we apply principal component

analysis to reduce phenotype heterogeneity of chronic musculoskeletal pain at four locations:

the back, neck/shoulder, hip, and knee. Using matrices of genetic covariances, we con-

structed four genetically independent phenotypes (GIPs) with the leading GIP (GIP1)

explaining 78.4% of the genetic variance of the analyzed conditions, and GIP2–4 explain

progressively less. We identified and replicated five GIP1-associated loci and one GIP2-

associated locus and prioritized the most likely causal genes. For GIP1, we showed enrich-

ment with multiple nervous system-related terms and genetic correlations with anthropo-

metric, sociodemographic, psychiatric/personality traits and osteoarthritis. We suggest that

GIP1 represents a biopsychological component of chronic musculoskeletal pain, related to

physiological and psychological aspects and reflecting pain perception and processing.
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Chronic pain is one of the most prevalent human health
problems, affecting on average 20–30% of adults1–3, and it
is one of the most challenging conditions for clinical

management4. Often chronic pain is present without a clear
pathophysiological cause such as tissue damage and cannot be
attributed to a known disorder. Chronic musculoskeletal pain is
the most prevalent type of chronic pain in older adults5. Pre-
valence estimates vary widely depending on the studied popula-
tion and the definition used to define these conditions6. For
instance, in a Swedish study, the prevalence was 23.9% for
chronic regional musculoskeletal pain and 11.4% for chronic
widespread pain7. In Japan, the prevalence of chronic muscu-
loskeletal pain was found to be 15.4% in the general population
and reached 18.6% among individuals aged 40–498. The most
prevalent self-reported chronic musculoskeletal pain conditions
are low back, neck, and shoulder pain7,8. According to the Global
Burden of Disease Study 2015, low back pain and neck pain were
the leading causes of global years lived with disability in
1990–20159.

Precise biological mechanisms underlying chronic pain are yet
to be elucidated10,11. There is good evidence that chronic pain
disorders are complex heritable traits12,13. Exploring the genetic
underpinning of chronic pain phenotypes can expand basic
knowledge on their etiology and biological mechanisms, improve
diagnostics, and facilitate the development of effective therapies
via the identification of therapeutic targets.

Genetic association studies have suggested a number of genes
associated with chronic musculoskeletal pain phenotypes14–16.
These studies were predominantly hypothesis-driven candidate-
gene studies, which often had small samples sizes, and with some
leading to conflicting results as has been borne out in other
traits17. Compared to candidate-gene studies, genome-wide
association studies (GWAS) offer an agnostic data-driven
approach that allows identification of susceptibility genes with-
out a prior mechanistic hypothesis. So far, only a few GWAS for
forms of chronic musculoskeletal pain have been published,
including chronic widespread pain18, fibromyalgia19, chronic
back pain20, sciatica21, and painful temporomandibular dis-
order22. Thus, the genetic architecture of chronic musculoskeletal
pain is far from being defined.

Research in chronic pain genetics faces a number of obstacles.
According to the biopsychosocial model of pain, chronic pain
results from a complex and dynamic interaction among biologi-
cal, psychologic, and social factors23. The extreme complexity and
heterogeneity of chronic pain phenotypes complicates identifi-
cation of novel loci and makes it difficult to distinguish whether
identified variants affect the risk of the primary pain-causing
pathology (if any) or influence the development and maintenance
of the chronic pain state itself. Both the primary underlying
condition and its treatment, and the treatment of chronic pain,
may confound studies. A study exemplifying these challenges is
our recent GWAS of chronic back pain20. Despite the large
sample size of nearly 158,000 individuals in the discovery sample
and 284,000 subjects in the replication sample, we were able to
detect and replicate only one locus. Thus, new strategies are
required to improve understanding of the genetic influences in
chronic pain conditions.

One possible solution to the problem of clinical heterogeneity
is to study endophenotypes and subgroups of patients having
different characteristics15. A complementary approach to redu-
cing heterogeneity is to elucidate the common pathways shared
by distinct pain phenotypes. Indeed, different chronic pain con-
ditions may have common biological pathways such as those
related to pain perception and processing. Several studies have
provided evidence for shared genetic factors between conditions
manifesting chronic pain24 as well as pain at different anatomical

sites25,26. However, to the best of our knowledge, no study yet
published has explicitly identified these genetic factors.

Here, we investigated the genetic factors underlying chronic
musculoskeletal pain reported at four locations (back, neck/
shoulder, hip, and knee). These anatomical sites are commonly
affected by osteoarthritis (OA). Pain is the predominant symptom
of OA, but its intensity may be poorly correlated with OA severity
based on pathological changes revealed by radiographs. Current
evidence suggests that not only structural lesions, but also neu-
ronal pathways and alterations of pain processing contribute to
maintaining pain in OA patients27. We assumed that studying
pain at multiple sites can unravel shared musculoskeletal path-
ways and, more importantly, provide deeper understanding of
general chronic pain mechanisms. We used, to our knowledge, a
novel approach to explore the genetic background of pain traits
by analyzing genetically independent phenotypes (GIPs). Using
data from UK Biobank28 we identified and replicated specific loci
associated with these GIPs, followed by in silico functional ana-
lysis, including a search for pleiotropic effects of functional var-
iants, prioritization of likely causal genes, analysis of gene set and
tissue enrichment, and estimation of genetic correlations with
other complex traits.

Results
Overview of the study design. Our study was designed to
investigate the genetic components underlying chronic muscu-
loskeletal pain at four locations: back, neck/shoulder, hip, and
knee (Fig. 1). Individuals who reported more than 3 months of
pain all over the body were not included in the present study. All
studied pain phenotypes were found to have statistically sig-
nificant SNP-based heritability (2–4% on the observed scale
estimated by LD Score regression, and 5–7% on the observed
scale estimated by REML algorithm, 7–9% on the liability scale
estimated by LD Score regression, and 13–16% on the liability
scale estimated by REML algorithm, Supplementary Data 1a) and
to be genetically correlated with each other (Fig. 2c). Coefficients
of phenotypic correlations between the studied pain traits ranged
from 0.18 to 0.28 (Fig. 2d).

Using the matrix of genetic covariances between the studied
chronic pain traits as estimated from the discovery cohort, we
constructed four genetically independent pain phenotypes (GIPs;
GIP1 to GIP4) in the discovery and replication cohorts. GIP1,
explaining most of the genetic variance and covariance between
the studied pain traits, was of foremost interest in the present
research. Nevertheless, we also considered the remaining GIPs,
which are genetically independent contributors to chronic pain at
the four studied sites.

For each GIP, GWAS results were obtained. Associations
reaching the genome-wide significance threshold in the discovery
cohort were considered replicated if the Bonferroni-corrected
significance threshold was reached in the meta-analysis of
replication cohorts. For replicated loci, gene prioritization was
performed using several approaches. We conducted a functional
bioinformatics analysis searching for relevant gene sets and
tissues (DEPICT/FUMA analyses), analyzed pleiotropic effects
(SMR/HEIDI analysis) and investigated genetic correlations with
other complex traits. In silico functional analysis was performed
using the cohort of European ancestry individuals since this
subsample was the largest.

Genetically independent phenotypes. The four original chronic
musculoskeletal pain phenotypes were converted into GIPs using
the coefficients of orthogonal transformation generated in the
principal component analysis based on the matrix of genetic
covariances. Coefficients of orthogonal transformation represent
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Fig. 1 Overview of the study. European ancestry individuals provided the matrix of genetic covariances and orthogonal transformation coefficients. The
four chronic musculoskeletal pain phenotypes were decomposed into four GIPs. Orthogonal transformation coefficients were further used to construct
GIPs in the replication cohorts of European, African, and South Asian ancestry individuals. For each GIP, GWAS results were obtained. Replication of
associations and in silico functional analyses were based on the meta-analyses of GWAS for the replication cohorts and European ancestry cohorts,
respectively. For replicated loci, the most likely causal genes were prioritized. DEPICT Data-driven Expression Prioritized Integration for Complex Traits
framework, GIP genetically independent phenotype, PC principal components, SMR/HEIDI Summary data-based Mendelian Randomization analysis
followed by the Heterogeneity in Dependent Instruments test, FUMA Functional Mapping and Annotation of Genome-Wide Association Studies platform.

Fig. 2 Genetically independent phenotypes (GIP) for chronic musculoskeletal pain. a Barplots depicting the contribution of the four chronic
musculoskeletal pain traits to each GIP. The bars represent orthogonal transformation coefficients, and the whiskers indicate their 95% confidence
intervals. The violin plots depicting the empirical distribution of the coefficients of orthogonal transformation are presented in Supplementary Fig. 1.
b Genetic variance of the studied chronic musculoskeletal pain explained by four GIPs. c. Estimated matrix of genetic correlations between the four chronic
musculoskeletal pain phenotypes and GIPs. The diagonal elements represent LD Score regression estimates of SNP-based heritability (h2) on the observed
scale for each trait. d Matrix of phenotypic correlations between the four chronic musculoskeletal pain phenotypes and GIPs (estimated for pain
phenotypes and predicted for GIPs, details are given in Supplementary Methods). Estimates for c, d were obtained using the discovery cohort of European
ancestry individuals (N= 265,000).
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contribution of each pain phenotype on each GIP, while genetic
variance explained by GIPs approximates contribution of each
GIP to each pain phenotype. A graphical representation of
orthogonal transformation coefficients, as well as the genetic
variance of chronic musculoskeletal pain phenotypes explained
by each GIP, is shown in Fig. 2a, b, respectively. The violin plots
of the empirical distribution of the coefficients of orthogonal
transformation can be found in Supplementary Fig. 1.

The contributions of all pain phenotypes to GIP1 had the same
direction and approximately the same magnitude. GIP1 showed
the best stability based on the narrow 95% confidence intervals of
orthogonal transformation coefficients. As expected, GIP1
explained the largest proportion of genetic variance (78.4%) of
the four investigated musculoskeletal pain traits (the formula for
calculating this value is provided in Supplementary Methods,
page 9). LD Score regression-estimated SNP-based heritability of
GIP1 was 7% on the observed scale and 15% on the liability scale
and was found to be substantially larger than the heritability of
the four individual pain phenotypes (2–4% on the observed scale
and 7–9% on the liability scale, LD Score regression estimates,
Fig. 2c, Supplementary Data 1a).

GWAS for genetically independent phenotypes. At the dis-
covery stage, 9 loci passed the study-level threshold of statistical
significance set at P < 1.3e-08 (5e-08/4, where 4 is the number of
GIPs) after correction for the LD Score regression intercept (1.016
for GIP1, 1.001 for GIP2, 1.013 for GIP3, and 1.021 for GIP4). Six
of the loci were associated with GIP1, and three with GIP2
(Table 1). Conditional and joint analysis showed single associa-
tion signals per locus (Supplementary Data 2). A Manhattan plot
of –log10(P) for GIP1 is given in Fig. 3, Manhattan plots of
–log10(P) for GIP2–4 are given in Supplementary Fig. 2,
quantile–quantile plots are presented in Supplementary Fig. 3,
and regional association plots are shown in Supplementary Fig. 4.

Associations of six loci (five associated with GIP1 and one with
GIP2) were replicated at P < 5.6e-03 (0.05/9, where 9 is the
number of loci identified in the discovery stage) (Table 1). Full
results of association analysis for each GIP and studied chronic
musculoskeletal pain phenotype are provided in Supplementary
Data 3.

Two of the six replicated loci showed genome-wide significant
associations with chronic pain at specific location in the discovery
cohort (P < 5e-08, Supplementary Data 3). These included the
GIP1-associated locus near the EXD3 gene (the locus is tagged by
rs73581580 and is associated with chronic back pain with P=
8.3e-09) and the GIP2-associated locus near the GDF5 gene (the
locus is tagged by rs143384 and is associated with chronic knee
pain with P= 6.8e-16 in our study and with knee pain in previous
study29). In the meta-analysis of European ancestry discovery and
replication cohorts, two additional loci reached a genome-wide
significance for association with pain at specific location: the
GIP1-associated locus near the SLC39A8 gene (the locus is tagged
by rs13107325 and is associated with chronic neck/shoulder pain
with P= 2.0e-08) and the GIP1-associated locus near the ECM1
gene (the locus is tagged by rs3737240 and is associated with
chronic hip pain with P= 8.4e-10).

SNPs rs13107325, rs3737240, and rs143384 are known to have
functional effects and/or to be associated with different complex
traits and diseases. Summary data from published literature are
provided in Supplementary Data 4.

Functional annotation of the revealed signals. Literature-
based gene prioritization: for genes located near the lead SNPs
(±250 kb) associated with GIPs, we performed a search in the
Online Mendelian Inheritance in Man database (OMIM, T
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https://www.omim.org/), Google Scholar, the NCBI Gene
(https://www.ncbi.nlm.nih.gov/gene), and the Pubmed database
(https://www.ncbi.nlm.nih.gov/pubmed) to infer whether the
biological functions of these genes may better explain their
involvement in chronic musculoskeletal pain. The list of genes
in the studied regions was based on regional association plots
(Supplementary Fig. 4) and is given in Supplementary Data 3.
Summary information on the genes that we considered most
likely to be causal (literature data with references to corre-
sponding sources) is provided in Supplementary Data 5.

Prediction of SNP effects: variant effect predictor (VEP)
identified four missense variants: rs13107325 in the SLC39A8
gene, rs3737240 and rs13294 in the ECM1 gene, and rs79140116
in the EXD3 gene. SIFT and PolyPhen tools predicted possibly
damaging/deleterious effects only for rs13107325 and rs13294,
while the remaining SNPs were designated as benign/tolerated
(Supplementary Data 6a). Polymorphism rs13107325 is a triallelic
SNP (C > T, A), and possibly damaging effects were predicted for
both minor alleles T and A. Allele A is extremely rare and was not
analyzed in the present study. Allele T was pain-predisposing
(and positively associated with GIP1). Polymorphism rs13294 is
also a triallelic SNP (G > A, T) and the extremely rare allele T was
not covered by our GWAS. SIFT and PolyPhen tools predicted
possibly damaging/deleterious effects only for the rare T variant,
while allele A (inversely associated with GIP1 in our study) was
attributed as benign/tolerated. However, it is still possible that in
the case of a large effect of the rare allele rs13294T on GIP1, lead
SNP rs3737240 only tags this rare variant (rs3737240 and rs13294
are located 1.6 kb from each other and are in high LD, r2= 0.97
in European ancestry populations). FATHMM-XF and
FATHMM-INDEL identified a potentially pathogenic intronic
SNP rs28535523 in the UBA7 gene and an intronic indel
rs34291892 in the FOXP2 gene (Supplementary Data 6b, 6c).
Potentially pathogenic variants rs28535523 T and rs34291892
insertion A were positively associated with GIP1. Data on
matching the possibly damaging/deleterious/pathogenic alleles
with the effects on GIPs, amino acid changes (where appropriate),
and lead SNP alleles are presented in Supplementary Data 6d. All
SNPs included in VEP and FATHMM analyses are listed in
Supplementary Data 6e.

Pleiotropic effects on gene expression: the results of Summary
data-based Mendelian Randomization (SMR) analysis followed
by the Heterogeneity in Dependent Instruments (HEIDI) test are
given in Supplementary Data 7 (associations that passed both
SMR and HEIDI tests are presented in Supplementary Data 7a,
full results are given in Supplementary Data 7b).

SMR/HEIDI analysis provided evidence that the same causal
SNP in the locus tagged by rs143384 is associated with GIP2 and
the expression of GDF5, UQCC1, and RP3-477O4.16 (the gene
encoding long intergenic non-coding RNA) in different tissues
including brain caudate basal ganglia. Pleiotropic effects were also
found for the locus tagged by rs3737240 associated with GIP1 and
MRPS21 gene expression in blood, and for the locus tagged by
rs7628207 associated with GIP1 and expression levels of the genes
RBM6, FAM212A, RNF123, and pseudogene ACTBP13 (mainly in
nervous tissues). It is likely that the locus tagged by rs7628207
contains regulatory elements that influence transcription of
adjacent genes. Interestingly, RNF123 gene expression has been
linked to the risk of major depression30, and major depressive
disorders are genetically correlated with pain25. As the AMIGO3
gene transcript (the CNS-related gene bearing the GIP1-
associated SNP rs7628207 in its intron) was not present among
the list of probes analyzed in the GTEx31 and Westra projects32,
we could not infer pleiotropy. Other genes found in the literature-
based and SNP effect analyses did not passed thresholds in SMR
and HEIDI tests, signifying that we have no support to claim that
their expression is influenced by causal variants associated
with GIPs.

DEPICT gene prioritization: the results of DEPICT gene
prioritization are given in Supplementary Data 8a (for input
SNPs associated with GIPs at P < 1e-05) and Supplementary
Data 8b (for input SNPs associated with GIPs at P < 5e-08).
Statistically significant results (FDR < 0.05) were observed only
for GIP1 and only when the P-value threshold for input SNPs was
set at 1e-05. The list of prioritized genes is provided in
Supplementary Data 8a. Of the genes identified in previous
analyses, only BSN and FOXP2 were found to be prioritized by
DEPICT.

Summary of gene prioritization: a summary list of prioritized
genes is presented in Table 2. For each locus tagged by rs143384,
rs13107325, rs3737240, and rs12705966, two or more lines of
evidence support a role for GDF5, SLC39A8, ECM1, and FOXP2
genes, respectively, providing solid ground for their prioritization.
Single candidate genes could not be suggested for loci tagged by
rs7628207 and rs73581580 since different approaches yielded
different results. The nearest gene to rs7628207 is AMIGO3,
which has been shown to participate in inhibition of axon
regeneration in the damaged CNS33,34. Five more genes are
present in this region that were prioritized by in silico methods
and/or based on prior literature data (in particular, the BSN gene
encoding Bassoon presynaptic cytomatrix protein). Lead SNP
rs73581580 is located in the intron of the EXD3 gene, an ortholog

Fig. 3 Graphical summary of the discovery GWAS results for GIP1 (European ancestry individuals, N= 265,000). Negative logarithms of P-values are
presented after the genomic control correction using LD Score regression intercept. Only associations with P < 1.0e-04 are shown. Red line corresponds to
the genome-wide significance threshold of P= 1.25e-08 (5.0e-08/4, where 4 is the number of GIPs). Replicated loci are annotated.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-1051-9 ARTICLE

COMMUNICATIONS BIOLOGY |           (2020) 3:329 | https://doi.org/10.1038/s42003-020-1051-9 | www.nature.com/commsbio 5

https://www.omim.org/
https://www.ncbi.nlm.nih.gov/gene
https://www.ncbi.nlm.nih.gov/pubmed
www.nature.com/commsbio
www.nature.com/commsbio


of C. elegans mut-7 gene required for transposon silencing and
RNA interference in that organism. Nevertheless, results from
other studies suggest four genes with more plausible effects on
chronic musculoskeletal pain (MIR711435, NOXA136, NSMF37,38,
and GRIN139, Supplementary Data 5).

Gene set and tissue/cell type enrichment. DEPICT gene set and
tissue/cell type enrichment analyses provided statistically sig-
nificant results only for GIP1 (Supplementary Data 8c–f). For
SNP sets associated with GIP1 with P < 5e-08, tissue/cell type
enrichment with FDR < 0.05 was found for two terms: the
“Neural Stem Cells” cell type and “Retina” tissue. However,
relaxing the significance threshold of input SNPs to P < 1e-05 led
to identification of 24 additional tissues, all of which were related
to CNS. The same pattern was observed for gene set enrichment
(for SNPs with P < 1e-05), revealing 462 terms mainly involved in
nervous system function, development and morphology (e.g.
“regulation of nervous system development”, “axonogenesis”,
“synapse”, and “regulation of transmission of nerve impulse”).

FUMA gene set and tissue enrichment analyses for GIP1
detected 9 gene categories (6 of them were nervous system-
related) and 12 brain tissues, respectively (Supplementary Data 9,
Supplementary Fig. 5). For GIP2 and GIP3, a total of three gene
sets were found by FUMA analysis, although we considered them
as non-specific (e.g. “nikolsky_breast_cancer_20q11_amplicon”;
Supplementary Data 9). No statistically significant gene sets were
revealed for GIP4, and no statistically significant tissue types were
identified for GIP2, GIP3, and GIP4.

Pleiotropic effects on complex traits. Five out of six replicated
loci demonstrated pleiotropic effects on human complex traits in
the SMR/HEIDI analysis (Supplementary Data 10, Fig. 4). As
expected, the GIP1-associated locus rs13107325 (known as one of
the most pleiotropic variants of the genome) was associated with
the greatest number of diverse phenotypes, which included
anthropometric traits (weight, height, and BMI), fluid intelligence
score, prospective memory and education, sleep duration,
Crohn’s disease, self-reported osteoarthritis, diastolic blood
pressure, blood cell traits, and alcohol intake frequency. Traits
linked with the GIP2-associated locus rs143384 were mainly
related to anthropometry and knee-related conditions (gonar-
throsis and internal derangement of knee). The locus tagged by

the missense SNP rs3737240 (ECM1 gene) showed pleiotropic
effects on platelet count and plasma level of extracellular matrix
protein 1 (ECM1) measured with the SOMAscan platform40. The
same pain-promoting allele in this locus that was positively
associated with GIP1 was linked to an increase in ECM1 level,
reinforcing the role of ECM1 as the candidate in this region. In
the locus tagged by rs73581580, GIP1-associated alleles were
linked to higher frequency of tiredness and difficulty of getting up
in the morning. In the locus tagged by rs7628207, GIP1-
associated variants were related to decreased plasma level of
thioredoxin domain-containing protein 12 (TXNDC12),
decreased overall health rating, decreased age at first live birth,
decreased educational attainment, increased basal metabolic rate,
and increased hip circumference. Interestingly, rs7628207 is
adjacent to the AMIGO3 gene prioritized by us based on the
literature data (Table 2, Supplementary Data 5) which is linked to
the gene encoding TXNDC12 via a trans-protein QTL
rs468875940.

Hospital-diagnosed osteoarthritis (the UK Biobank trait for
which GWAS summary statistics were downloaded from the
Michigan PheWeb database, see Methods section) was not revealed
in the SMR/HEIDI analysis for any of the analyzed loci. However,
for rs13107325, rs3737240, and rs143384, we can speculate that
this could be due to the limited statistical power of the analysis.
The SMR test P-values for these loci were quite low, although
did not reach the Bonferroni-corrected significance threshold of
P= 3.71e-06 (rs13107325: PSMR= 1.14e-05, betaSMR= 0.63;
rs3737240: PSMR= 1.68e-05, betaSMR= 0.89; rs143384: PSMR=
6.13e-04, betaSMR=−0.40; PHEIDI ≥ 0.01 for all these loci). Thus,
we cannot rule out a hypothesis that the same causal SNPs within
the loci tagged by rs13107325 and rs3737240 may be associated
with GIP1 and the increased risk of osteoarthritis, and the same
causal SNPs within the locus tagged by rs143384 can be associated
with GIP2 and the decreased risk of osteoarthritis.

Genetic correlations between GIPs and complex traits. GIP1
showed statistically significant genetic correlations with 40 com-
plex traits (Fig. 5, Supplementary Data 11a; matrix of correlations
between GIPs, chronic musculoskeletal pain phenotypes, and
osteoarthritis is presented in Supplementary Fig. 6). Among them,
11 traits were directly linked to excess weight (BMI, overweight,
obesity, and waist circumference), that is in line with known

Table 2 Summary of gene prioritization.

Lead SNP Locusa GIPb Number of genes in the
locusc

Prioritized gene Nearest gene, yes/no (lead SNP
location)

Evidence for
prioritization

rs143384 20:34025756 GIP2 15 GDF5 Yes (5′ UTR) L, S
rs7628207 3:49754970 GIP1 18 AMIGO3 Yes (intronic) L

BSN No L, D
RBM6 No S
FAM212A No S
RNF123 No S
UBA7 No V

rs13107325 4:103188709 GIP1 3 SLC39A8 Yes (missense) L, V
rs3737240 1:150483355 GIP1 19 ECM1 Yes (missense) L, V
rs73581580 9:140251458 GIP1 32 MIR7114 No L

NSMF No L
NOXA1 No L
GRIN1 No L

rs12705966 7:114248851 GIP1 2 FOXP2 Yes (intronic) L, V, D

Genes with strong evidence for prioritization are indicated in bold.
D DEPICT analysis, L literature-based prioritization (Supplementary Data 5), S SMR/HEIDI analysis, V variant effect predictor/FATHMM analysis, UTR untranslated region.
aChromosome: position on chromosome according to GRCh37.p13 assembly.
bGenetically independent phenotype with which the locus is associated.
cCalculated based on regional association plots generated with LocusZoom tool (http://locuszoom.org/) in a 500-kb window (±250 kb around the lead SNP, Supplementary Fig. 4).
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epidemiological associations between chronic pain and obesity-
related traits41. Five more traits fell in the same cluster: HDL
cholesterol (negative correlation with GIP1), triglycerides,
HOMA-IR, leptin, and fasting insulin. Strong genetic correlations
(|rg | ranging between 0.31 and 0.54) were also revealed between

GIP1 and the cluster of psychiatric/personality traits (major
depressive disorder, depressive symptoms, subjective well-being,
and neuroticism). This finding is in accord with previous twin and
family studies demonstrating a common genetic background for
pain and depression42–44. Other traits included sociodemographic,

Fig. 4 Pleiotropic effects of identified loci on human complex traits. Color depicts the sign and the magnitude of SMR beta coefficient. Negative sign
(red) means opposed effects on the corresponding GIP and the trait, and positive sign (blue) means the same direction of effect. |beta SMR | > 4 are
depicted as |beta SMR |= 4. For “Prospective memory result” and “Overall health rating” trait, high scores correspond to poor performance. For “Getting
up in morning” trait, high score corresponds to easy getting up. Traits that passed both SMR and HEIDI tests (PSMR < 3.71e-06 and PHEIDI≥ 0.01) are
marked with an asterisk. Data on 45 out of 78 revealed traits are not shown. Full results are given in Supplementary Data 10. GIPs associated with the loci
and genes nearest to lead SNPs are indicated in parentheses. Dendrograms represent clustering based on complete linkage hierarchical clustering method.

Fig. 5 Matrix of genetic correlations between GIP1 and human complex traits. Color depicts the sign and absolute value of the genetic correlation
coefficients (rg). Genetic correlations between GIP1 and all presented traits were statistically significant (P < 5.98e-05). Osteoarthritis is not shown on this
plot since genetic correlations analysis for this trait was performed using the GWAS-MAP platform, whereas for other traits, LD hub web interface was
used. Matrix of genetic correlations between GIPs, chronic musculoskeletal pain traits and osteoarthritis is provided in Supplementary Fig. 6. HDL high
density lipoprotein, HOMA-IR Homeostatic Model Assessment for Insulin Resistance, PMID PubMed ID number of the literature source providing GWAS
summary statistics.
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reproductive, education-related and smoking-related traits,
osteoarthritis, rheumatoid arthritis, coronary artery disease, and
sleep duration.

Traits that displayed the strongest genetic correlations with
GIP1 were osteoarthritis (rg= 0.65), age of first birth (rg=
−0.56), depressive symptoms (rg= 0.54), and college completion
(rg= 0.54). Overall, the pattern of genetic correlations with GIP1
was very similar to that observed for back pain in our previous
study45. GIP2 was genetically correlated only with osteoarthritis
(inverse genetic correlation, rg=−0.30) and obesity-related
traits, and GIP4 only with hip circumference (Supplementary
Data 11b, c). No statistically significant genetic correlations with
complex traits were found for GIP3 (Supplementary Data 11d).

Furthermore, we analyzed the genetic correlation between
GIP1 and the first GIP constructed using the same methodology
for a broader range of chronic pain traits (back, neck/shoulder,
knee, hip, stomach/abdominal pain, and headache). We found
out that these GIPs were almost genetically equivalent (rg= 0.99).

Discussion
The genetic control of chronic musculoskeletal pain is complex,
with each of very many genetic variants contributing a small
effect. As a result, even very large genome-wide association stu-
dies provide only a limited number of replicated loci and rather
low SNP-based heritability. Evidence from recent studies indi-
cates that pain at different anatomical sites shares a common
genetic component24–26. This suggests that combining several
pain phenotypes in a single analytical framework may facilitate
the discovery of common genetic factors – chronic musculoske-
letal pain genes and pathways.

In the present study, we applied an approach that allowed us to
detect genes shared between four common chronic musculoske-
letal pains: back, neck/shoulder, knee, and hip. Our approach
relies on capturing heredity of a set of genetically correlated traits
via constructing genetically independent phenotypes (GIPs;
Fig. 2a). The GIPs are defined as a weighted sum of the original
phenotypes, with weights selected in such a way that the first GIP
(GIP1) explains most genetic variance of and covariance between
the studied traits, with the later GIPs (GIP2–4) explaining pro-
gressively less. The four weights defining GIP1 based on the four
chronic pain traits (back, neck/shoulder, hip, and knee pain)
turned out to be approximately the same (Fig. 2a, Supplementary
Fig. 1). This means that GIP1, the genetic component explaining
most of the cases of chronic musculoskeletal pain at the studied
sites, affects the risk of chronic musculoskeletal pain to
approximately the same degree, irrespective of pain’s location.
Unlike the first GIP, the second GIP is site-specific and reflects a
genetic propensity for knee pain, but not the back or neck/
shoulder pain.

We mapped and replicated six genomic loci (five associated
with GIP1 and one with GIP2). Importantly, in the discovery
sample, only two out of six replicated loci were genome-wide
significantly associated with the individual pain phenotypes:
rs73581580 with chronic back pain and rs143384 with chronic
knee pain. Also, as expected, the SNP-based heritability of GIP1
was substantially higher than for any of separate pain traits (7%
vs 2–4%, observed scale, LD Score regression estimates). These
results highlight the improved power of the GIP approach for
identifying genetic predictors of chronic pain predisposition. It
should be noted that phenotypic correlations between the traits
were much lower than the genetic correlations (Fig. 2c, d; pair-
wise phenotypic correlations ranged from 0.18 to 0.28, while
pairwise genetic correlations ranged from 0.56 to 0.87). In this
scenario, we can speculate that conventional multivariate
approaches based on phenotypic correlations like MANOVA46 or

MultiPhen47 would have been less powerful than our method
based on genetic correlations. Moreover, while estimation of
phenotypic correlation is impossible for non-overlapping sam-
ples, genetic correlations can be calculated for both overlapping
samples and independent cohorts48. This makes our approach
applicable to the traits measured within the frameworks of dif-
ferent genomics consortia.

Among the six replicated loci, three were well-studied poly-
morphisms associated with different traits and conditions in
previous works (rs13107325, rs3737240, and rs143384, Supple-
mentary Data 4). In the present study, we performed a
hypothesis-free analysis of pleiotropic effects of six GIP-
associated loci on 2243 complex human traits. Our analysis
revealed 78 phenotypes influenced by the same causal poly-
morphisms that are associated with GIPs (Supplementary
Data 10, Fig. 4). These phenotypes included a broad variety of
anthropometric, sociodemographic, behavior and personality
traits, diseases (such as Crohn’s disease, gonarthrosis and
osteoarthritis), and laboratory parameters. Interestingly, GIP1-
associated alleles in the locus tagged by rs73581580 were also
associated with higher frequency of tiredness and difficulty of
getting up in the morning. Our results demonstrate diversity of
effects of the GIP-associated loci and suggest the presence of
common pathways underlying chronic musculoskeletal pain and
multiple other human traits.

GIP1-associated pathways and tissues were mostly related to
CNS development and functioning, suggesting that GIP1 depicts
neurological and psychological components of chronic pain.
Consistent with this, one of the genes prioritized for GIP1-
associated loci based on multiple lines of evidence was FOXP2,
whose product is a transcription factor expressed in fetal and
adult brain and required for the development of speech and
language regions49,50. Involvement of psychological component
in chronic pain was additionally supported by the finding of a
very strong positive genetic correlation between GIP1 and
depressive symptoms. Having said that, it is equally important
that GIP1 was associated also with traits reflecting general health
and risk factors for musculoskeletal pain: sociodemographic,
reproductive, education- and smoking-related traits, and sleep
duration. Importance of morphological factors for chronic mus-
culoskeletal pain was also demonstrated by revealing of GIP1-
associated genes SLC39A8 and ECM1, which are known to be
implicated in the development and functioning of the muscu-
loskeletal system. ECM1 gene encodes a negative regulator of
bone mineralization and chondrogenesis51–53. GIP1-associated
(“pain-promoting”) variant in this gene showed an association
with the increased level of ECM1 protein in our SMR/HEIDI
analysis. GIP1-associated ECM1 allele rs3737240 C is in a high
LD (r2= 0.94 in European ancestry populations) with the allele
rs12040949 C, which was associated with the increased risk of hip
osteoarthritis in a recent study54. The product of the SLC39A8
gene was shown to participate in osteoarthritis cartilage
destruction55,56. Slc39a8 mutant zebrafish exhibit vertebral
abnormalities, impaired growth, and decreased motor activity,
and a missense GIP1-associated polymorphism rs13107325 in the
SLC39A8 gene has previously been associated with the increased
risk of osteoarthritis54 and severe adolescent idiopathic sco-
liosis57. Thus, similar to findings from our recent study of back
pain45, genetic factors underlying chronic musculoskeletal pain
comprise biological, social, and psychological components.

Since our study was aimed at investigating chronic muscu-
loskeletal pains at anatomical sites commonly affected by
osteoarthritis, it was not surprising that we found loci and genes
associated with this condition and found high genetic correlation
between osteoarthritis and GIP1 (rg= 0.65). Note, that this
genetic correlation is similar in magnitude to correlation between
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GIP1 and age of first birth (−0.56), indicating that although
similarities are high, there exist substantial differences between
OA and GIP1. Furthermore, for GIP1, gene/tissue enrichment
analysis revealed a plethora of CNS-related terms. In a recent
large-scale genetic study for OA, enriched terms were not directly
linked to the nervous system (“anatomical structure morpho-
genesis”, “ion channel transport”, “histidine metabolism”, etc.)54.
Finally, we performed genetically independent phenotype analysis
for the extended set of chronic traits, which include not only
musculoskeletal pain (six traits: back, neck/shoulder, knee, hip
pain as well as stomach/abdominal pain and headache). Genetic
correlation between GIP1 for four pain traits and GIP1 for six
pain traits was extremely high (rg= 0.99) providing evidence
that, despite high genetic overlap with OA, GIP1 for muscu-
loskeletal pain may reflect chronic pain per se.

It is noteworthy that pain is the main symptom and clinical
outcome of osteoarthritis. In the UK Biobank study which pro-
vided GWAS summary statistics for OA58, phenotypes were
defined according to ICD-9/ICD-10 codes (electronic medical
record data), so whether the study participants were examined
radiographically or not is unknown. Thus, genetic overlap
between GIP1 and OA can be actually biased by a genetic cor-
relation between GIP1 and not the OA, but pain in OA. Besides
this, a study by Valdes et al.59 obtained interesting results on the
inverse relationship between preoperative radiographic severity
and postoperative pain in OA patients who have undergone total
joint replacement (TJR). We hypothesized that in OA patients
with low preoperative radiographic damage, pain leading to TJR
can be caused not entirely by a joint damage, but also by other
factors such as central sensitization. It is possible that these fac-
tors have common genetic background with GIP1 constructed in
our study.

Given that GIP1 essentially contrasts chronic musculoskeletal
pain (in general) with an unpainful state, the other GIPs might be
expected to account for musculoskeletal pain at specific anato-
mical locations. This was indeed the case with GIP2, which had
the greatest impact on knee pain (Fig. 2b). The only gene found to
be associated with GIP2 at the genome-wide significance level was
GDF5, a gene with well-established associations with peripheral
osteoarthritis and intervertebral disc degeneration54,60–65. These
results are consistent with the fact that the knee is one of the most
common sites of osteoarthritis. For GIP3 and GIP4, no firm
conclusions can be drawn regarding what component of pain they
might represent, but, as can be seen from Fig. 2b, GIP3 makes a
substantial contribution to hip pain and GIP4 to neck/
shoulder pain.

Another approach recently applied in GWAS of chronic pain is
based on obtaining a phenotype of multisite chronic pain (MCP)
as a sum of the number of anatomical sites affected by pain (a
study by Johnston et al.66). Johnston et al. carried out a large-scale
GWAS of MCP in ~380,000 UK Biobank participants. They
obtained results supporting the hypothesis that chronic pain
involves a strong nervous system component and demonstrated a
causal effect of MCP on major depressive disorder. However, the
summing of different pain sites into a quantitative MCP pheno-
type assumes equivalence between the genetic predictors of
musculoskeletal pain conditions (such as back and knee pain) and
the genetic predictors of non-musculoskeletal pain conditions
that may include substantial components of pain due to other
causes, such as migraine (in the case of headache), dental or
neuropathic pain (in the case of facial pain), or visceral pain (in
the case of stomach/abdominal pain). Such equivalence may be
too strong an assumption to make without empirical justification.
Our approach is empirical, with definition of GIPs driven by the
data; another strength of our approach is its ability to reveal pain
type specific genetic loci as exemplified by GDP5 associated with

GIP2 representing knee pain. Comparing with a direct knee pain
GWAS, GIP2 may provide a more knee-specific phenotype from
which general propensity to pain is subtracted. This claim
requires experimental validation, though.

Nevertheless, as far as we are aware, our study, together with
that by Johnston et al.66, is among the first to use a GWAS
framework to address the genetics of chronic pain at multiple
sites. Despite the difference in methodology and the phenotypes
involved, our study identified five loci also reported by Johnston
et al.: AMIGO3 (tagged by rs7628207 in Johnston et al.66),
SLC39A8 (tagged by rs13135092 in Johnston et al.66), ECM1
(tagged by rs59898460 in Johnston et al.66), EXD3 (tagged by
rs73581580 in both Johnston et al.66 and our study), and FOXP2
(tagged by rs12537376 in Johnston et al.66). It should be noted
that in our study, in contrast to the study by Johnston et al., these
loci have been replicated. However, both discovery and replica-
tion stages in our study as well as analyses conducted by Johnston
et al. were based on the UK Biobank data only, highlighting the
need to replicate these findings in independent cohorts.

Our study has limitations. The first general limitation is related
to a questionnaire-based approach to phenotyping, which may
lead to heterogeneous pain phenotypes. Our methods attempted
to overcome this by constructing genetically independent phe-
notypes whose genetic basis approximates the genetic background
of distinct phenotypes and likely represents the “general pain”
component of analyzed musculoskeletal pain traits. Second, in
our study, we focused only on chronic musculoskeletal pain at
anatomical sites potentially linked through osteoarthritis, so one
must be cautious generalizing our results to other chronic pain
conditions. Third, even though we carried out replication ana-
lysis, the replication cohorts were drawn from the same source
dataset (UK Biobank), so sampling bias cannot be excluded.
Finally, for two out of six identified loci (tagged by rs7628207 and
rs73581580), we were not able to prioritize a single causal gene,
and candidate genes suggested for the locus tagged by rs73581580
were selected based only on data from available literature sources.

In summary, our study of genetically independent components
of chronic musculoskeletal pain phenotypes revealed hereditary
factors shared by chronic back, neck/shoulder, hip, and knee pain
and identified loci and genes relevant for these conditions. Our
results provided further support that neurological and psycho-
logical components are important contributors to chronic pain.
Using this approach may facilitate discovery of chronic pain
mechanisms.

Methods
Study sample and phenotype definition. The study sample comprised UK Bio-
bank participants28. Sociodemographic, physical, lifestyle, and health-related
characteristics of this cohort have been reported elsewhere67. In brief, individuals
enrolled in the UK Biobank study were aged 40–69 years; were less likely to be
obese, to smoke, to drink alcohol; had fewer self-reported health conditions as
compared to the general population. All study participants provided written
informed consent, and the study was approved by the North West Multi-Centre for
Research Ethics Committee (11/NW/0382).

This particular study was approved by the UK Biobank research team under
project #18219. Cases and controls were defined based on questionnaire responses.
First, participants responded to “Pain type(s) experienced in the last months”
followed by questions inquiring if the specific pain had been present for more than
3 months. Those who reported back, neck or shoulder, hip, or knee pain lasting
more than 3 months were considered chronic back, neck/shoulder, hip, and knee
pain cases, respectively. Participants reporting no such pain lasting longer than
3 months were considered controls (regardless of whether they had another
regional chronic pain, such as abdominal pain, or not). Individuals who preferred
not to answer were excluded from the study. Besides this, we excluded individuals
who reported more than 3 months of pain all over the body because this phenotype
was by definition negatively correlated with other pain phenotypes (those who have
answered “pain all over the body” could not specify any location of pain) and had a
low prevalence in the UK Biobank cohort (1.6%). Further details of phenotype
definitions are given in Supplementary Methods.
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Overall, 456,580 individuals with imputed genotype data and phenotype data
were included in the present study. Of these, 265,000 participants of European
ancestry (defined by SNP-based principal component analysis) were randomly
selected to provide the GWAS discovery cohort. The decision to include only
Europeans was based solely on the highest representation of these individuals
among the UK Biobank participants. The replication cohort (N= 191,580)
comprised individuals of African (N= 7,541) and South Asian ancestry (Indian,
Pakistani, and Bangladeshi; N= 9,208) as well as the remaining European ancestry
participants (N= 174,831). Descriptive characteristics of the groups is provided in
Table 3. Splitting the European ancestry sample by 265,000 and 174,834 was done
in order to obtain the optimal balance of statistical power between discovery and
replication stages. We estimated the statistical power for different sample sizes of
discovery and replication cohorts (based on the effect sizes of the top SNPs from
our previous back pain GWAS45) and showed that splitting by 3/5 for discovery
and 2/5 for replication would be an optimal ratio since it enabled reaching 80%
power at both stages.

Genotyping and imputation. Genotyping and imputation data were obtained
from the UK Biobank March 2018 data release. Genotyping was conducted using
the Affymetrix UK BiLEVE and Affymetrix UK Biobank Axiom arrays. Imputation
was performed with the IMPUTE4 program (https://jmarchini.org/impute-4/)68

using the Haplotype Reference Consortium (HRC)69 and merged UK10K and 1000
Genomes phase 3 reference panels. Details on DNA extraction and quantification70

as well as on the centralized analysis of the genetic data, genotype quality, prop-
erties of population structure and relatedness of the genetic data, and efficient
phasing and genotype imputation have been reported previously68.

Genome-wide association study. GWAS were carried out using BOLT-LMM
v.2.3.2 software71. Linear mixed-effects models were fitted to test for additive
effects of the SNPs (genotype dosage) on pain phenotypes adjusting for age, sex,
genotyping platform batch, and the first ten genetic principal components. The
following filters were applied: minor allele frequency >0.0002 for Europeans and
>0.005 for Africans and Asians; imputation quality score >0.7; genotyping and
individual call rates >0.98. Only biallelic autosomal SNPs and indels were analyzed.
BOLT-LMM software requires LD score data for the analysis. For Europeans, we
used LD scores distributed as part of BOLT-LMM package. For Africans and South
Asians, we carried out LD score estimation using LD score software72 and data
from 500 individuals randomly selected from each ethnic group. The results of
GWAS were corrected for residual inflation using the LD score regression
intercept72.

Locus definition. Associated loci were defined as regions within ±250 kb around
the lead SNP. Only the most significant SNP per locus was reported.

Genetically independent phenotypes. To elucidate genetic components
explaining four chronic musculoskeletal pain phenotypes (chronic back, neck/
shoulder, hip, and knee pain), we used a modified principal component analysis
(PCA) technique that combines multiple correlated variables into a set of uncor-
related principal components (PCs). PCs are linear combinations of variables
constructed such that the first PC explains the maximum proportion of the total
variance of the set of traits, the second PC accounts for the largest proportion of the
remaining variance, and so on. In conventional PCA of a set of traits, vectors of
coefficients of orthogonal transformation are equal to the eigenvectors of the
matrix of phenotypic covariance. In the present study, we used the matrix of

Table 3 Descriptive characteristics of the study cohorts.

Prevalence Sample size Age (mean ± SD) (years) BMI (mean ± SD) (kg m−2) Women (%)

Discovery cohorta (N= 265,000)
Chronic back pain 17.9% Cases (N= 47,507) 57.65 (7.99) 28.33 (5.18) 53.88

Controls (N= 217,493) 57.26 (8.03) 27.15 (4.61) 54.32
Chronic neck pain 16.3% Cases (N= 43,287) 57.73 (7.79) 27.90 (5.02) 53.84

Controls (N= 221,713) 57.25 (8.07) 27.25 (4.68) 54.32
Chronic hip pain 9.2% Cases (N= 24,300) 59.15 (7.44) 28.91 (5.40) 54.35

Controls (N= 240,700) 57.15 (8.06) 27.20 (4.64) 54.23
Chronic knee pain 17.5% Cases (N= 46,292) 58.61 (7.59) 29.18 (5.37) 54.12

Controls (N= 218,708) 57.06 (8.09) 26.97 (4.50) 54.27
Replication cohort (N= 191,580)
African ancestry (N= 7541)
Chronic back pain 21.0% Cases (N= 1586) 53.77 (8.24) 30.62 (5.79) 54.50

Controls (N= 5955) 52.04 (8.00) 29.27 (5.13) 54.19
Chronic neck pain 16.1% Cases (N= 1217) 54.38 (7.98) 30.06 (5.52) 54.35

Controls (N= 6324) 52.02 (8.04) 29.45 (5.25) 54.24
Chronic hip pain 8.5% Cases (N= 641) 55.00 (7.91) 31.30 (6.14) 54.37

Controls (N= 6900) 52.16 (8.05) 29.39 (5.19) 54.25
Chronic knee pain 20.4% Cases (N= 1539) 54.67 (8.30) 31.64 (6.11) 54.49

Controls (N= 6002) 51.82 (7.92) 29.01 (4.93) 54.20
European ancestry (N= 174,831)
Chronic back pain 18.0% Cases (N= 31,428) 57.62 (7.96) 28.36 (5.22) 54.05

Controls (N= 143,403) 57.26 (8.02) 27.14 (4.58) 54.28
Chronic neck pain 16.3% Cases (N= 28,482) 57.82 (7.76) 27.92 (5.02) 54.27

Controls (N= 146,349) 57.23 (8.06) 27.25 (4.66) 54.24
Chronic hip pain 9.2% Cases (N= 16,022) 59.26 (7.40) 28.86 (5.41) 54.61

Controls (N= 158,809) 57.13 (8.05) 27.21 (4.63) 54.20
Chronic knee pain 17.3% Cases (N= 30,173) 58.71 (7.54) 29.24 (5.41) 54.27

Controls (N= 144,658) 57.04 (8.08) 26.97 (4.47) 54.23
South Asian ancestryb (N= 9208)
Chronic back pain 21.6% Cases (N= 1993) 54.66 (8.51) 27.76 (4.58) 54.29

Controls (N= 7215) 53.87 (8.47) 26.92 (4.23) 54.22
Chronic neck pain 20.2% Cases (N= 1864) 54.65 (8.24) 27.43 (4.56) 54.31

Controls (N= 7344) 53.88 (8.53) 27.01 (4.25) 54.22
Chronic hip pain 6.6% Cases (N= 610) 56.61 (8.21) 28.30 (4.90) 54.07

Controls (N= 8598) 53.86 (8.47) 27.01 (4.26) 54.25
Chronic knee pain 20.1% Cases (N= 1850) 55.97 (8.23) 28.52 (4.86) 54.10

Controls (N= 7358) 53.55 (8.47) 26.74 (4.09) 54.27

aDiscovery cohort comprised only individuals of European ancestry.
bIndian, Pakistani, and Bangladeshi.
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genetic covariances between the traits of interest to decompose them into geneti-
cally independent components, that we called genetically independent phenotypes
(GIPs). GIPs are not correlated genetically and the first GIP (GIP1) explains most
of the genetic variance of -and covariance between- four musculoskeletal pain
phenotypes. Technical details of our approach are described in Supplementary
Methods. The method can be applied for three or more genetically correlated traits.
The GIP1 captures large part of the variation for each trait in case of high genetic
correlations between traits (see examples in Supplementary Methods). It should be
noted that principal component analysis has already been used for studying genetic
background of complex traits73,74, although it was applied to obtain phenotypically
independent phenotypes, not GIPs. In both cases heritability of obtained principal
components was not less than heritability of original traits.

The matrix of genetic covariances (estimated by LD Score regression48) and
orthogonal transformation coefficients were obtained using the discovery cohort of
European ancestry individuals. The 95% confidence intervals of these coefficients
were estimated via the Monte Carlo sampling. For each resulting “discovery” GIP,
GWAS results were calculated as described in Supplementary Methods.

GIPs for replication datasets were constructed using the orthogonal
transformation coefficients obtained at the discovery step. GWAS results for each
“replication” GIP were combined by a meta-analysis. Furthermore, GWAS for
GIPs for European ancestry replication cohort (N= 439,831 in total) were meta-
analyzed with GWAS for discovery GIPs, and the results were used for subsequent
post-GWAS in silico analyses. Meta-analyses were conducted using the inverse-
variance-weighted approach (fixed-effects model) with METAL software75.

Additionally, we used the same methodology to obtain the first GIP for the
extended set of pain traits available in the UK Biobank: chronic back, neck/
shoulder, hip, knee, stomach/abdominal pain and headache. Facial pain, which is
also present in the UK Biobank database, was not included in the analysis due to
low prevalence (0.9% in European ancestry dataset, 4016 cases and 435815
controls) and statistically insignificant SNP-based heritability, that makes the
genetic correlation analysis impossible. GIP1 for six pain phenotypes was
constructed for the discovery and European ancestry replication cohort, and
GWAS results for these cohorts were meta-analyzed. GIP1 for six pain phenotypes
was included in the analysis of genetic correlation with GIP1 for four pain
phenotypes.

Conditional analysis. Conditional and joint (COJO) analysis was carried out as
previously described76. Calculations were performed using the GCTA software77.
Linkage disequilibrium (LD) matrix was computed with PLINK 1.9 software
(https://www.cog-genomics.org/plink2) using 100,000 individuals randomly selec-
ted from the discovery cohort. We claimed one independent signal per locus if no
polymorphism other than the lead SNP passed the significance threshold of P= 5e-
08. Regional association plots were generated using LocusZoom (http://locuszoom.
org/) for regions within ±250 kb from the lead SNP.

Prediction of SNP effects. We analyzed the functional effects of a set of SNPs and
indels in high LD (r2 > 0.8) with replicated variants. LD was calculated using
PLINK 1.978 (—show-tags option) and genotype data for 503 European ancestry
individuals (1000 Genomes phase 3 version 5 data). Additionally, we selected SNPs
within replicated regions (±250 kb from lead SNPs) associated with GIPs at P ≤ T,
where log10(T)= log10(Pmin) + 1, and Pmin is a P-value for the strongest asso-
ciation per locus. These SNPs were added in the analysis since genotype data for
the UK Biobank samples were imputed using the Haplotype Reference Consortium
(HRC) panel, and some HRC SNPs could possibly be missed in the 1000 Genomes
panel. All selected variants were annotated using the Ensembl Variant Effect
Predictor (VEP)79 as well as FATHMM-XF80 and FATHMM-INDEL81. In the
latter two methods, predictions of variant effects were made according to scores
ranging from 0 to 1, with scores above 0.5 predicted to be deleterious while those
below 0.5 predicted to be neutral or benign.

DEPICT and FUMA analyses. Gene set and tissue/cell type enrichment analyses
and gene prioritization were performed using the Data-driven Expression Prior-
itized Integration for Complex Traits (DEPICT) tool82. We employed the DEPICT
software version 1.1, release 194 with default parameters (https://data.
broadinstitute.org/mpg/depict/). Tests were conducted for both genome-wide sig-
nificant SNPs (P < 5e-08) and for SNPs associated with GIPs at P < 1e-05. The
MHC region was omitted. The significance threshold for DEPICT analyses was set
at FDR < 0.05.

Gene set and tissue enrichment analyses were also performed using the FUMA
(Functional Mapping and Annotation of Genome-Wide Association Studies)
platform83 (GENE2FUNC function, with default parameters) based on the
MAGMA method84 and the MsigDB c5 database85. The significance threshold for
FUMA analyses was set at Bonferroni-corrected P-value < 0.05.

SMR/HEIDI analysis. Summary data-based Mendelian Randomization (SMR)
analysis followed by the Heterogeneity in Dependent Instruments (HEIDI) test86

was used to study potential pleiotropic effects of identified loci on GIPs, human
complex traits, and gene expression levels in different tissues. SMR analysis pro-
vides evidence for pleiotropy (the same locus is associated with two or more traits).

It cannot define whether traits in a pair are affected by the same underlying causal
polymorphism, and this is specified by a HEIDI test, which distinguishes pleiotropy
from linkage disequilibrium. It should be noted that SMR/HEIDI analysis does not
identify which allele is causal and cannot distinguish pleiotropy from causation.

Summary statistics for gene expression levels were obtained from Westra Blood
eQTL (peripheral blood, http://cnsgenomics.com/software/smr/
#eQTLsummarydata)32 and the GTEx version 7 database (48 tissues, https://
gtexportal.org)31. Summary statistics for other complex traits were derived from
the GWAS-MAP database87 developed by our group. The GWAS-MAP platform
integrates a database of summary-level GWAS results for 673 complex traits from
the UK Biobank, 123 metabolomics traits, 1206 circulating proteins, 41 cytokines
and growth factors, 190 plasma protein and IgG N-glycosylation traits,
inflammatory bowel disease (including Crohn’s disease), and 8 traits related to
coronary artery disease, myocardial infarction, and factors associated with these
conditions. Summary statistics for the UK Biobank traits were provided by the
Neale Lab (http://www.nealelab.is/) and the Gene ATLAS (http://geneatlas.roslin.
ed.ac.uk/)88. In this study, we added to the GWAS-MAP database results from 18
GWAS of chronic musculoskeletal pain-related traits obtained in the present study
(GWAS in the discovery dataset and the results from European ancestry meta-
analysis for chronic back, neck/shoulder, knee, hip pain; GWAS in the discovery
dataset and the results from European ancestry meta-analysis for GIPs constructed
for these four phenotypes; European ancestry meta-analysis of GWAS for chronic
stomach/abdominal pain and chronic headache). Additionally, we added the results
of GWAS of osteoarthritis from the Michigan PheWeb database (http://pheweb.
sph.umich.edu/SAIGE-UKB/pheno/740). This OA GWAS was performed using
the UK Biobank data by the Scalable and Accurate Implementation of GEneralized
mixed model (SAIGE) method58.

Description of all 2262 traits is provided in Supplementary Data 1b. The
GWAS-MAP platform contains embedded software for our implementation of
SMR/HEIDI analysis86, LD Score regression72, and 2-sample Mendelian
randomization analysis (MR-Base package89). Further details are given in
Supplementary Methods.

In gene expression analysis, the significance threshold for SMR was set at P=
3.24e-06 (0.05/15,445, where 15,445 is the total number of tests corresponding to
all analyzed SNPs, expression probes, and tissues). In complex traits analysis, the
significance threshold for SMR was set at P= 3.71e-06 (0.05/(6 × 2244), where 6 is
the number of loci, and 2244 is the number of non-pain traits). The significance
threshold for HEIDI tests in both analyses was set at P= 0.01 (P < 0.01 corresponds
to the rejection of pleiotropy hypothesis). Details of data processing are given in
Supplementary Methods.

Genetic correlations and heritability. SNP-captured heritability (h2) and genetic
correlations between GIPs and human complex traits were estimated using LD
Score regression48. SNP-captured heritability (h2) of pain traits was also estimated
using the restricted multiple likelihood (REML) algorithm in BOLT-LMM
v.2.3.2 software71. In total, we examined 209 non-UK Biobank traits available in the
LD hub database (http://ldsc.broadinstitute.org/ldhub/). We removed duplicates
and included only the most recent study for each trait (as indicated by the largest
PubMed ID number). Since osteoarthritis was not present in the LD hub database,
we used summary statistics for this trait obtained from the Michigan PheWeb
database (http://pheweb.sph.umich.edu/SAIGE-UKB/pheno/740). The statistical
significance threshold was set at 5.95e-05 (0.05/(210 × 4), where 210 is the number
of traits and 4 is the number of GIPs).

Genetic correlations between GIPs and LD hub traits were calculated using the
LD hub web interface. Genetic correlations between GIPs, osteoarthritis and
chronic pain traits were calculated using the GWAS-MAP platform.

For 39 LD hub traits showing statistically significant correlations with GIP1 as
well as for osteoarthritis, four chronic pain traits and four GIPs, matrices of genetic
correlation were generated. Clustering and visualization were performed by the
“corrplot” package for the R language (basic “hclust” function). For clustering, we
estimated squared Euclidean distances by subtracting absolute values of genetic
correlation from 1 and used the Ward’s clustering method.

Additionally, we estimated the genetic correlation between GIP1 for four
analyzed chronic pain traits and the first GIP constructed using the same
methodology for six chronic pain traits (back, neck/shoulder, knee, hip, stomach/
abdominal pain, and headache) using the GWAS-MAP platform.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
UK Biobank data are available upon application. Summary statistics from the GWAS
reported in this study are available for download from Zenodo90 under the CC BY 4.0
license.

Code availability
All computer code used in this research is available at https://github.com/Sodbo/
Pain3_project_code91.
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