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The ubiquitin-conjugating enzyme UBE2K
determines neurogenic potential through histone
H3 in human embryonic stem cells
Azra Fatima1, Dilber Irmak1, Alireza Noormohammadi1, Markus M. Rinschen 1, Aniruddha Das 2,

Orsolya Leidecker3, Christina Schindler1, Víctor Sánchez-Gaya4, Prerana Wagle1, Wojciech Pokrzywa 1,2,

Thorsten Hoppe1,5, Alvaro Rada-Iglesias4,5 & David Vilchez 1,5✉

Histones modulate gene expression by chromatin compaction, regulating numerous pro-

cesses such as differentiation. However, the mechanisms underlying histone degradation

remain elusive. Human embryonic stem cells (hESCs) have a unique chromatin architecture

characterized by low levels of trimethylated histone H3 at lysine 9 (H3K9me3), a

heterochromatin-associated modification. Here we assess the link between the intrinsic

epigenetic landscape and ubiquitin-proteasome system of hESCs. We find that hESCs exhibit

high expression of the ubiquitin-conjugating enzyme UBE2K. Loss of UBE2K upregulates the

trimethyltransferase SETDB1, resulting in H3K9 trimethylation and repression of neurogenic

genes during differentiation. Besides H3K9 trimethylation, UBE2K binds histone H3 to induce

its polyubiquitination and degradation by the proteasome. Notably, ubc-20, the worm

orthologue of UBE2K, also regulates histone H3 levels and H3K9 trimethylation in Cae-

norhabditis elegans germ cells. Thus, our results indicate that UBE2K crosses evolutionary

boundaries to promote histone H3 degradation and reduce H3K9me3 repressive marks in

immortal cells.
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Embryonic stem cells (ESCs) can replicate indefinitely while
retaining their potential to differentiate into all cell
lineages1,2. A precisely coordinated network of transcrip-

tional and epigenetic modifiers determines ESC identity. For
instance, ESCs exhibit an endogenous transcriptional network
that modulates their self-renewal and pluripotency, including
transcription factors such as OCT4, NANOG and SOX23. Like-
wise, chromatin modifiers regulate ESC pluripotency and
differentiation4,5. In comparison with their differentiated coun-
terparts, ESCs have a unique chromatin architecture such as fewer
condensed heterochromatin foci, a pattern that facilitates
dynamic reorganization of chromatin during development6. For
instance, heterochromatin-associated histone modifications such
as H3K9 trimethylation (H3K9me3) are usually reduced in
ESCs6–8. Notably, regulators of histone modifications and chro-
matin compaction are required for ESC differentiation, including
the polycomb repressive complex 1 (PRC1)9,10. In these lines,
huntingtin protein (HTT) binds and inhibits SETDB1, a
methyltransferase that specifically trimethylates lysine 9 of his-
tone H3. Concomitantly, HTT maintains low levels of H3K9me3
in human ESCs (hESCs)11,12.

Although histones are key determinants of chromatin com-
paction, little is known about how their total levels are modulated.
The ubiquitin-proteasome system is involved in the regulation of
histone levels13, but the enzymes that catalyze their poly-
ubiquitination for proteasome recognition have not been identi-
fied in multicellular organisms14. The attachment of ubiquitin is
achieved through a sequential mechanism involving three classes
of enzymes15. First, the ubiquitin-activating enzyme (E1) activates
the C-terminal glycine residue of ubiquitin in an ATP-dependent
manner. Activated ubiquitin is next transferred to a ubiquitin-
conjugating enzyme (E2). In the third step, a ubiquitin ligase (E3)
attaches ubiquitin from the E2 enzyme to the target protein. The
same cascade can link additional molecules to the primary ubi-
quitin via internal ubiquitin lysines, forming a ubiquitin chain.
Ubiquitination can affect numerous proteins in many manners: it
can signal for their degradation through the proteasome or
modulate their activity, intracellular localization, and interaction
with other proteins. E2 enzymes are the main determinants for
selection of the lysine to construct ubiquitin chains, which thereby
control the cellular fate of the substrate. In humans, 35 E2 and
over 600 E3 enzymes have been identified so far. Growing evi-
dence indicates that ESCs not only exhibit increased proteasome
activity, but also an intrinsic network of ubiquitin ligases16–22. As
such, the ubiquitin-proteasome system has a central role in the
immortality and cell fate decisions of pluripotent stem cells16–22.

Given their endogenous chromatin structure signature, ESCs
could provide a novel paradigm to discover epigenetic regulatory
mechanisms and their impact on differentiation. For this purpose,
we ask whether the intrinsic ubiquitin-proteasome system of
hESCs impinge on their epigenetic landscape. Notably, we find
that the ubiquitin-conjugating enzyme E2 K (UBE2K), also
known as huntingtin-interacting protein 2 (HIP2), is upregulated
in hESCs compared with their differentiated counterparts.
UBE2K reduces total histone H3 levels and trimethylation of
H3K9, allowing for neurogenesis of hESCs. However, loss of
UBE2K impairs the levels of SETDB1 and its regulator HTT,
resulting in H3K9 trimethylation and repression of neurogenic
genes during differentiation. Besides H3K9me3 regulation,
UBE2K binds histone H3 and promotes its degradation primarily
by 26S proteasomes, regulating total H3 protein amounts.
Interestingly, UBE2K also impinges upon total H3 and H3K9me3
levels in the organismal model Caenorhabditis elegans, particu-
larly in the immortal germline. Thus, our results provide a link
between the ubiquitin-proteasome system and histone regulation
in both ESCs and germ cells.

Results
hESCs exhibit increased levels of UBE2K. To determine changes
in the levels of E2 enzymes during differentiation, we analyzed
available quantitative proteomics data23. We found 4 E2 enzymes
(i.e., UBE2C, UBE2G1, UBE2K and UBE2O) increased in hESCs
when compared with their neural progenitor cell (NPC) and
neuronal counterparts (Supplementary Table 1). Notably, UBE2K
markedly decreased during neural differentiation of hESCs
(Supplementary Table 1), as we confirmed by western blot ana-
lysis (Fig. 1a). In both NPCs and neurons, the decrease in the
protein amount of UBE2K correlated with a reduction of the
transcript levels (Fig. 1b). UBE2K protein amounts also decreased
during differentiation into either endoderm or mesoderm, indi-
cating that this is not a specific phenomenon associated to neural
differentiation (Fig. 1c, d). We then asked whether high levels of
UBE2K can be reprogrammed. Indeed, induced pluripotent stem
cells (iPSCs) displayed increased levels of UBE2K compared with
their parental fibroblasts (Fig. 1e, f). Taken together, our results
indicate that enhanced UBE2K protein expression is associated
with pluripotency.

Loss of UBE2K impairs neurogenesis from hESCs. With the
strong correlation between UBE2K expression and pluripotency,
we assessed whether increased levels of UBE2K are required to
maintain the undifferentiated state of hESCs. For this purpose, we
generated stable UBE2K knockdown hESC lines using two
independent shRNAs. Since we did not observe morphological
differences, we analysed their transcriptome (Supplementary
Data 1). We found a statistically significant >2-fold-change in
only 35 transcripts, of which 12 were downregulated whereas 23
were upregulated (Fig. 2a and Supplementary Data 1). Among the
changed transcripts, gene ontology biological process (GOBP)
term analysis indicated enrichment for modulators of transcrip-
tion (Fig. 2b and Supplementary Data 1). To further identify
changes in UBE2K shRNA hESCs, we performed quantitative
proteomics (Supplementary Data 2). Besides UBE2K, these
experiments revealed that other 67 proteins are decreased in both
independent UBE2K shRNA hESC lines (Supplementary Data 3).
Among them, GOBP analysis revealed the strongest enrichment
for genes involved in translational regulation (Fig. 2c and Sup-
plementary Data 3). In addition, loss of UBE2K resulted in the
upregulation of 46 proteins which were enriched for transcrip-
tional modulators (Fig. 2c and Supplementary Data 4). Despite
these moderate changes in the proteome, loss of UBE2K did not
impair the expression of pluripotency markers (Fig. 2d, e). Since
hESC lines can vary in their characteristics, we examined an
independent line and obtained similar results (Supplementary
Fig. 1). Moreover, knockdown of UBE2K did not change the
expression of distinct germ layers markers (Fig. 2f). Thus, our
results indicate that loss of UBE2K does not induce differentia-
tion of hESCs.

Although UBE2K knockdown did not significantly alter the
levels of pluripotency markers in hESCs, another possibility is
that UBE2K determines their ability to differentiate. Given that
the ubiquitin-proteasome system is required for neurogenesis
from hESCs20–22, we focused on the neural lineage. For this
purpose, we performed neural induction and monitored the
expression of PAX6, an early marker of neuroectodermal
differentiation24. After 10 days on neural induction treatment,
control hESCs differentiated into early NPCs that express high
levels of PAX6 (Fig. 3a–c). Similarly, PAX6 expression was
triggered to the same extent in UBE2K shRNA hESCs after
10 days of neural induction, resulting in cultures essentially
formed by PAX6-positive cells (Fig. 3a–c). Besides PAX6, we
assessed the levels of other neural markers (Nestin, SOX1) and
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found no significant differences in their induction at the early
NPC stage (Fig. 3c and Supplementary Fig. 2). When compared
with hESCs, early NPCs also had higher expression of MAP2, a
microtubule-associated protein which is upregulated through the
differentiation process into neurons25,26. However, loss of UBE2K
did not affect MAP2 induction during the first 10 days of neural
differentiation (Fig. 3c). Likewise, knockdown of UBE2K did not
impair the induction of neural markers and MAP2 in a distinct
hESC line during the early stages of neural differentiation
(Supplementary Fig. 3). Thus, these results suggest that UBE2K is
not required for the commitment of hESCs to a neuroectoderm
fate. However, we observed dramatic differences when we further
differentiated these cells (20 days on neural induction) to obtain
mature NPCs with the ability to generate terminally differentiated
neurons (Fig. 3d–g). At this stage, the expression of the early NPC
marker PAX6 decreases while the levels of MAP2 are upregu-
lated25. Indeed, we observed that control mature NPCs lose the
expression of PAX6, but exhibit increased levels of other neural
markers (Nestin and SOX1) as well as neuronal factors (e.g.,
MAP2, NEFL, AADC, SYN1, GABAR) when compared with
early NPCs (Fig. 3f, g). On the contrary, UBE2K shRNA cells
retained abnormal high levels of PAX6 whereas the expression of
Nestin, SOX1 and most of the neuronal markers tested was lower
compared with control mature NPCs in two independent cell
lines (Fig. 3d–g and Supplementary Fig. 4a, b). Therefore,
knockdown of UBE2K in hESCs could impair their ability to
generate mature NPCs. In contrast to control mature NPCs,
UBE2K shRNA cells did not develop neuronal extensions even

after terminal neuronal differentiation treatment during one
month (Fig. 3h and Supplementary Fig. 5a). Moreover, these cells
exhibited a strong impairment in the neuronal induction of
MAP2, neurofilaments and synaptic proteins while retaining high
levels of PAX6 expression (Fig. 3h–k and Supplementary Fig. 5b).
Taken together, these data suggest a role of UBE2K in
maintaining the ability of hESCs to differentiate into mature
NPCs with intact neurogenic properties.

Loss of UBE2K increases H3 levels and H3K9me3 in hESCs.
UBE2K interacts with huntingtin protein (HTT)27. Our recent
findings indicate that HTT maintains low levels of H3K9 tri-
methylation in hESCs12. Importantly, H3K9 trimethylation
induced by HTT knockdown does not alter the undifferentiated
state of hESCs and their commitment into early NPCs12. How-
ever, it particularly impairs the transition of early NPCs into
mature NPCs and neuronal differentiation12. Given that loss of
UBE2K induces a similar phenotype, we asked whether UBE2K is
also involved in histone H3 regulation. Although highly abundant
in the cytoplasm, UBE2K was also present in nuclear fractions of
hESCs, supporting a potential role in the nucleus (Supplementary
Fig. 6). Notably, co-immunoprecipitation experiments followed
by western blot indicated that UBE2K interacts with histone H3
(Fig. 4a). In addition, loss of UBE2K was sufficient to increase
the total protein levels of histone H3 in hESCs (Fig. 4b). On
the contrary, we did not observe interaction of UBE2K with
histone H1 or changes in H1 protein levels upon UBE2K shRNA
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Fig. 1 The expression of UBE2K decreases during differentiation. a Western blot analysis with antibody to UBE2K. The graph represents the UBE2K
relative percentage values (corrected for β-actin loading control) to H9 hESCs (mean ± s.e.m. of three independent experiments). b Quantitative PCR
(qPCR) analysis of UBE2K mRNA levels. Graph (relative expression to H9 hESCs) represents the mean ± s.e.m. of three biologically independent samples.
c, dWestern blot analysis with antibody to UBE2K. The graphs represent the UBE2K relative percentage values (corrected for β-actin) to H9 hESCs (mean
± s.e.m. of three independent experiments). e Western blot analysis of UBE2K levels comparing iPSCs with their parental HFF-1 fibroblasts. The graph
represents the UBE2K relative percentage values (corrected for β-actin) to HFF-1 fibroblasts (mean ± s.e.m. of three independent experiments). f UBE2K
mRNA relative levels to HFF1 fibroblasts represent the mean ± s.e.m. (n= 6 biologically independent samples). All the statistical comparisons were made
by two-tailed Student’s t-test for unpaired samples. P value: *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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(Fig. 4a, b). Since UBE2K knockdown did not affect the tran-
scripts amounts of H3 (Fig. 4c), our results suggest a role of
UBE2K in the regulation of H3 protein levels. Besides total H3,
UBE2K knockdown also increased global H3K9me3 levels
(Fig. 4d, e). More importantly, we found enrichment for
H3K9me3 fraction among total histone H3 (Fig. 4d). Likewise,
UBE2K shRNA upregulated both H3 levels and H3K9me3/H3

ratio in an independent hESC line (Supplementary Fig. 7). Col-
lectively, our results suggest that endogenous high expression of
UBE2K not only reduces total histone H3 but also H3K9 tri-
methylation in hESCs.

Given the robust increase in H3K9me3/H3 ratio induced by
loss of UBE2K, we asked whether UBE2K also modulates other
H3 modifications. Upon UBE2K knockdown, H3K9me1/H3 and
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H3K9me2/H3 ratios were diminished and not significantly
changed, respectively (Fig. 5a). Whereas loss of UBE2K also
induced an upregulation in the global levels of other H3
modifications (i.e., H3K4me3, H3K27me3, H3K27ac), the ratio
of these modifications was not significantly enriched when
normalized by total H3 amounts (Fig. 5b). In addition, co-
immunoprecipitation experiments indicate a more robust inter-
action of UBE2K with H3K9me3 than H3K4me3, H3K27me3,
and H3K27ac (Fig. 5c). Thus, UBE2K could particularly modulate
H3K9 trimethylation. Since HTT inhibits the H3K9 methyl-
transferase activity of SETDB1 in hESCs12, we first confirmed
that UBE2K interacts with HTT in these cells (Fig. 5d). Notably,
loss of UBE2K resulted in a downregulation of HTT levels,
correlating with higher H3K9 trimethylation (Fig. 5e). Besides
HTT, we found that UBE2K also interacts with SETDB1 (Fig. 5d).
Moreover, knockdown of UBE2K dramatically increased the
amounts of SETDB1 (Fig. 5e). Concomitantly, histone H3 gained
interaction with SETDB1 in hESCs, a process that could
contribute to H3K9 trimethylation on UBE2K knockdown
(Fig. 5f).

H3K9me3 represses the induction of distinct neural genes.
Since UBE2K decreases during differentiation, we asked whether
this downregulation correlates with changes in histone H3.
Whereas the levels of H3K9me3 increased upon neural differ-
entiation of control hESCs, we did not observe changes in total
H3 levels (Supplementary Fig. 8), indicating that other mechan-
isms could contribute to maintaining physiological amounts of
histone H3. However, when UBE2K shRNA hESCs were differ-
entiated into early NPCs, these cells retained the alterations in
both total H3 and H3K9 trimethylation induced at the undif-
ferentiated state (Fig. 6a, b and Supplementary Fig. 9). The
increase in total H3 levels of NPCs derived from UBE2K shRNA
hESCs was not associated with changes in the amounts of histone
H3 transcripts (Supplementary Fig. 10a, b). Altogether, these data
suggest that epigenetic changes induced by UBE2K knockdown in
hESCs are transmitted to their neural counterparts.

To assess whether H3K9 trimethylation induced by UBE2K
knockdown in hESCs affects gene expression, we first performed
chromatin immunoprecipitation-sequencing (ChIP-seq) using an
antibody to H3K9me3 (Supplementary Data 5). We found a > 1.5
fold-change enrichment (P value < 0.05) for H3K9me3 marks in
821 gene-associated regions upon UBE2K shRNA in hESCs
(Fig. 7a and Supplementary Data 5). Among them, we found
factors involved in transcriptional regulation such as several zinc
finger proteins (e.g., ZNF236, ZNF416, ZNF844, ZNF879), the
transcription factor GBX1 and the bHLH transcription cofactor
HES6 (Supplementary Data 5). GBX1 is highly expressed in the
neuroectoderm and modulates midbrain/forebrain formation by
determining the positioning of the midbrain-hindbrain boundary
organizer in the early neural plate28. HES6 promotes neuronal
differentiation by allowing the transcription factor ASCL1 to

induce the expression of genes required for neurogenesis at early
stages of development29. Besides neurogenic transcription factors,
loss of UBE2K also induced an enrichment for H3K9me3 marks
in other genes involved in nervous system formation (e.g.,
CELSR1, CPEB130, SMC1B). In addition, we found H3K9me3
enrichment in distinct potassium voltage-gated channels
(KCNA1, KCNA3, KCNA5, KCNF1) (Supplementary Data 5).
Thus, we asked whether H3K9me3 modifications induced by
UBE2K knockdown result in decreased expression of these pro-
neuronal factors. However, we did not find significant changes in
their expression at the hESC stage (Fig. 7b and Supplementary
Fig. 11a). In addition, early NPCs from UBE2K shRNA hESCs
(10 days of neural induction) did not exhibit significant decreased
expression of H3K9me3-enriched genes when compared with
control NPCs (Fig. 7c). Since these genes were typically expressed
at low amounts in control hESCs and early NPCs but induced
during neuronal differentiation (Fig. 7d and Supplementary
Fig. 11b), we asked whether abnormal H3K9me3 marks impair
their induction. Indeed, knockdown of UBE2K in hESCs
diminished their ability to trigger the expression of distinct
pro-neuronal genes (e.g., HES6, KCNA3, KCNA5) upon further
neural induction (20 days) and terminal neuronal differentiation
(Fig. 7e, f). Likewise, we obtained similar results in an
independent hESC line (Supplementary Fig. 11c, d). To further
examine the link between UBE2K, H3K9me3 and induction of
neuronal genes, we performed rescue experiments. For this
purpose, we knocked down UBE2K using a shRNA against the 3′-
UTR region of UBE2K transcripts and rescue H3K9me3 levels by
ectopic expression of UBE2K cDNA in hESCs (Fig. 8a). Upon
20 days on neural induction treatment, 3′-UTR UBE2K shRNA
cells exhibited decreased expression of H3K9me3-marked genes
(i.e., HES6, GBX1, KCNA3, KCNA5) when compared with control
cells (Fig. 8b). Notably, ectopic expression of UBE2K not only
rescued this phenotype (Fig. 8b) but also the low expression of
other neural and neuronal markers such as MAP2 (Fig. 8c).
Taken together, our data indicate that UBE2K maintains low
levels of H3K9me3 marks in distinct genes, allowing neuronal
differentiation of hESCs. Conversely, loss of UBE2K dysregulates
H3K9me3 in hESCs, a process that could contribute to altered
gene expression upon differentiation and compromised
neurogenesis.

UBE2K modulates ubiquitination and degradation of H3.
Besides H3K9 trimethylation, our results indicate that UBE2K
also regulates total H3 proteins levels (Fig. 4b). By high-coverage
sequencing of purified histones based on filter-aided sample
preparation (FASP)31, we found two ubiquitination sites at Lys18
and Lys56 of histone H3 (Supplementary Fig. 12). Since UBE2K
interacts with histone H3 (Fig. 4a), we assessed whether UBE2K
modulates its ubiquitination by in vitro ubiquitination assays. For
this purpose, we used recombinant UBE2K in combination with
either RNF2 or RNF138, the main interacting E3 enzymes of

Fig. 2 Knockdown of UBE2K does not affect the expression of pluripotency markers. a Heatmap representing differentially expressed transcripts
identified by RNA-sequencing analysis (Fold-change > 2, P value < 0.05, n= 3 biologically independent samples) in UBE2K shRNA H9 hESCs compared
with non-targeting (NT) shRNA hESCs. b GOBP analysis of downregulated and upregulated transcripts in UBE2K shRNA hESCs. Statistical comparisons
with a modified Fisher’s exact test (EASE score) below the P value cutoff of 0.05 were considered significant. c GOBP analysis of downregulated and
upregulated proteins in both UBE2K shRNA #1 and shRNA #2 H9 hESCs. For downregulated proteins, 10 of the 23 enriched GOBPs are shown. Please see
Supplementary Data 3 for a complete list of enriched GOBP terms. P value (EASE score) < 0.05 was considered significant. d Western blot analysis of H9
hESCs with antibodies to OCT4, SOX2 and UBE2K. β-actin is the loading control. Images are representative of three independent experiments. e qPCR
analysis of UBE2K and pluripotency markers in H9 hESCs. Graph (relative expression to NT shRNA control hESCs) represents the mean ± s.e.m. of nine
independent experiments. f qPCR analysis of ectodermal (PAX6, NES, FGF5), mesodermal (MSX1) and endodermal (ALB, GATA4, GATA6) germ layer
markers. Graph (relative expression to NT shRNA) represents the mean ± s.e.m. of nine independent experiments. In (e, f) statistical comparisons were
made by two-tailed Student’s t test for unpaired samples. P values: ***P < 0.001, ****P < 0.0001.
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UBE2K32–36. The combination of UBE2K with RNF2 did not
efficiently promote ubiquitination of H3. Importantly, UBE2K-
RNF138 induced the robust formation of ubiquitinated H3 with a
molecular weight of ~24 kDa, which could be caused by mono-
ubiquitination. To a lesser extent, we also observed ubiquitinated
H3 at higher molecular weights (e.g. ~48 kDa) that could corre-
spond to polyubiquitination induced by UBE2K-RNF138

(Fig. 9a). Likewise, UBE2K-RNF138 induced ubiquitination of
p53 (Fig. 9b), a previously known target of UBE2K37. On the
contrary, we did not detect ubiquitination of histone H1 under
these conditions (Fig. 9c). Thus, in vitro experiments indicate that
UBE2K can promote ubiquitination of H3.

One step further was to assess whether UBE2K modulates
histone H3 levels through the ubiquitin-proteasome system.
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Whereas ectopic expression of UBE2K did not affect global
proteasome activity (Supplementary Fig. 13), it reduced total H3
levels and H3K9me3 in human HEK293 cells (Fig. 9d). Notably,
the treatment with the proteasome inhibitor MG-132 diminished
the effects on histone H3 induced by UBE2K overexpression
(Fig. 9d and Supplementary Fig. 13), indicating that UBE2K
determines proteasomal degradation of H3. Active proteasomes
exist in distinct forms, but its major assembly is formed through
the interaction of the catalytic 20S core with the 19S regulatory
particle, generating 26S proteasome complexes that degrade
polyubiquitinated proteins15. The 19S subunit PSMD11 is a
crucial regulator of 26S proteasome assembly and activity21,22,38.
Besides 19S, the 20S catalytic core can also be activated by other
regulatory particles such as PA200 (PSME4) or PA28γ (PSME3),
which promote ubiquitin-independent proteolytic degradation15.
Since proteasome inhibitors such as MG-132 target the catalytic
subunits of the 20S particle, they can inhibit all types of
proteasomes. To determine which is the primary type of
proteasome involved in histone H3 degradation, we knocked
down specific regulators of distinct assemblies in HEK293 cells
(i.e., PSMD11, PSME3 and PSME3). Since PSMD11 is essential
for cell viability22,38, we induced a mild knockdown (40%) to
circumvent potential indirect effects. By these means, we
generated stable PSMD11 shRNA cells that could replicate
continuously and did not show obvious phenotypes in cell
morphology, viability and proliferation when compared with
control non-targeting shRNA stable cells. Importantly, this mild
PSMD11 knockdown was sufficient to induce a slight (approx.
24%) but statistically significant decrease in proteasome activity
(Fig. 9e, f). Likewise, knockdown of PSME4/PA200 induced a
similar downregulation in proteasome activity (Fig. 9e, f).
However, a potent knockdown of PSME3 (>90%) did not impair
proteasome activity, indicating that PA28γ/20S assemblies do not
contribute to proteasome activity in these cells (Fig. 9e, f).
Notably, knockdown of PSMD11 induced a substantial increase
in H3 levels (Fig. 9g). On the contrary, loss of either PSME4 or
PSME3 did not cause significant changes in total histone H3
levels (Fig. 9g). Thus, these data indicate a prominent role of 26S
proteasomes in the proteolysis of histone H3. Moreover, PSMD11
knockdown diminished the degradation of H3 induced by
UBE2K overexpression (Fig. 9h). Since UBE2K can form chains
of at least four Lys-48-linked ubiquitin moieties that trigger
protein degradation by the 26S proteasome39,40, we performed
immunoprecipitation of H3 and examined its ubiquitination
status upon UBE2K overexpression. Prior to immunoprecipita-
tion, we treated the cells with proteasome inhibitor to block
the degradation of H3 induced by UBE2K. Under these
conditions, we immunoprecipitated similar amounts of histone

H3 in both control and UBE2K-overexpressing cells, but UBE2K
overexpression slightly increased H3 polyubiquitination (Supple-
mentary Fig. 14a, b). To further exclude contaminating proteins
following the first immunoprecipitation, we performed a re-
immunoprecipitation with anti-H3 antibody. This assay sup-
ported polyubiquitination of histone H3 induced by UBE2K
(Fig. 9i). By using an antibody against ubiquitin to detect all the
forms of ubiquitinated H3, we could confirm polyubiquitination
of H3 (Supplementary Fig. 15). However, we could not detect
monoubiquitinated H3 in control or UBE2K overexpression
conditions (Supplementary Fig. 15), suggesting that UBE2K
mainly modulates H3 polyubiquitination in human cells.
Altogether, our results indicate that UBE2K regulates H3
degradation by the 26S proteasome.

UBE2K controls H3 levels and H3K9me3 in C. elegans germ-
line. To examine whether UBE2K modulates histone H3 in vivo,
we used the nematode Caenorhabditis elegans as a model
organism. Notably, loss of ubc-20, the worm orthologue of
UBE2K41, induced an increase in both total histone H3 and
H3K9me3 levels of wild-type worms (Fig. 10a). In contrast,
knockdown of a distinct E2 enzyme (i.e., ubc-22) did not affect
histone H3 levels. Adult C. elegans contains 959 somatic cells and
a germline with proliferative germ stem cells and gametes. Similar
to hESCs, germ cells also rely on increased proteostasis
mechanisms such as the ubiquitin-proteasome system23,42–44. To
assess whether the regulation of histone H3 by ubc-20 occurs in
the germ cells, we compared germline-lacking worms with con-
trol sterile worms that conserve their germline38. As wild-type
worms, knockdown of ubc-20 increased histone H3 in control
sterile worms with germline (Fig. 10b). On the contrary, we did
not observe these effects in germline-lacking worms, indicating
that ubc-20 particularly modulates histone H3 in germ cells
(Fig. 10b). Besides total histone H3 amounts, ubc-20 also
increased H3K9me3 levels in the germline (Fig. 10b). To further
assess the role of ubc-20 in H3K9 trimethylation, we examined
met-2 mutant worms. met-2 is the orthologue of SETDB1 and
SETDB2, two of the main H3K9 trimethylases45,46. Similar to
wild-type worms, knockdown of ubc-20 resulted in upregulated
histone H3 levels in met-2 mutant worms (Fig. 10c). However,
loss of ubc-20 did not increase the H3K9me3/H3 ratio in met-2
mutants (Fig. 10c), supporting that H3K9 trimethylation induced
by loss of ubc-20 requires an active role of trimethylases. Taken
together, our results suggest that the effects of UBE2K on histone
H3 could be evolutionary conserved, as the worm orthologue ubc-
20 also modulates histone H3 levels and H3K9 trimethylation in
the C. elegans germline.

Fig. 3 Loss of UBE2K impairs neurogenesis from hESCs. a After 10 days of neural induction (H9 line), early NPCs were assessed by immunofluorescence
with OCT4 and PAX6 staining. Hoechst staining was used as a marker of nuclei. Scale bar represents 20 μm. Images are representative of three
independent experiments. b Western blot analysis of early H9 NPCs (10 days on neural induction) with antibody to PAX6. β-actin is the loading control.
The images are representative of four independent experiments. c qPCR after 10 days of neural induction. Graph (relative expression to NT shRNA H9
cells) represents the mean ± s.e.m. of five independent experiments. d After 20 days of neural induction (H9 line), cells were assessed by
immunofluorescence with MAP2 and PAX6 staining. Scale bar represents 40 μm. The images are representative of three independent experiments.
eWestern blot analysis of mature H9 NPCs (20 days on neural induction) with antibodies to MAP2, NES, PAX6 and β-actin. The images are representative
of three independent experiments. f, g qPCR after 20 days of neural induction. Graphs (relative expression to NT shRNA H9 cells) represent the mean ±
s.e.m. of four independent experiments. h After pan-neuronal differentiation treatment (H9 line), cells were assessed by immunofluorescence with MAP2
and PAX6 staining. Scale bar represents 20 μm. Images are representative of two independent experiments. i Percentage of PAX6 and MAP2-positive
cells/total nuclei after neuronal differentiation (mean ± s.e.m. of 5 culture areas per condition of two independent experiments, NT shRNA= 349 total
nuclei, UBE2K shRNA #1= 996 total nuclei, UBE2K shRNA #2= 370 total nuclei). j, k qPCR analysis after neuronal differentiation treatment. Graph
(relative expression to NT shRNA H9 cells) represents the mean ± s.e.m. of four independent experiments. All the statistical comparisons were made by
two-tailed Student’s t test for unpaired samples. P value: *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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Fig. 4 Loss of UBE2K increases total H3 levels and H3K9 trimethylation in hESCs. a Immunoprecipitation with UBE2K and control FLAG antibodies in H9
hESCs followed by western blot with H3, H1 and UBE2K antibodies. The images are representative of three independent experiments. b Western blot
analysis of H9 hESCs with antibodies to total histone H3 and H1. Relative percentage values of H3/β-actin (mean ± s.e.m., eight independent experiments)
and H1/β-actin (mean ± s.e.m., three independent experiments) to NT shRNA control hESCs are presented. c qPCR analysis of histone H3 variants in H9
hESCs. Graph (relative expression to NT shRNA control hESCs) represents the mean ± s.e.m. of five independent experiments. d Western blot analysis of
H9 hESCs with antibodies to H3K9me3 and total H3. Graph represents the relative percentage of H3K9me3/H3 ratio to NT shRNA control hESCs (mean ±
s.e.m., eight independent experiments). e Immunocytochemistry of H9 hESCs with antibody to H3K9me3. Hoechst staining was used as a marker of nuclei.
Scale bar represents 20 μm. The images are representative of three independent experiments. All the statistical comparisons were made by two-tailed
Student’s t test for unpaired samples. P value: **P < 0.01, ***P < 0.001. NS not significant (P > 0.05).
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Discussion
With the essential role of histones in chromatin compaction and
gene expression, it is of central interest to define not only the
regulatory mechanisms of histone modification, but also total
histone amounts. During spermatogenesis, histones are replaced
by transition proteins and protamines in post-meiotic cells, a
process mediated by the ubiquitin-proteasome system47.

Moreover, somatic cells also exhibit replacement of histones at
promoter regions or active gene bodies48. Importantly, an excess
of histones impairs transcription, increases DNA-damage sensi-
tivity, and promotes either chromosome aggregation or loss49. In
yeast, excess histones are rapidly degraded by the proteasome in a
pathway involving the E2 enzyme Ubc4/5 and E3 ligases such as
Tom1 and Hel149,50.
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Despite their essential biological role, little is known about how
histone levels are regulated in multicellular organisms. As the
origin of multicellular organisms, pluripotent stem cells have
stringent mechanisms to protect their genome51 and proteome18.
Since hESCs exhibit an endogenous epigenetic landscape with a
more open and dynamic architecture of chromatin52,53, we
hypothesized that these cells can also have intrinsic mechanisms
to maintain the homeostasis of histone levels. For this purpose,
we examined whether their enhanced ubiquitin-proteasome sys-
tem is involved in histone regulation. Our approach led us to
identify high levels of UBE2K as a determinant of histone H3
protein amounts, potentially via regulating its ubiquitination and
proteasomal-mediated degradation. First, we confirmed UBE2K-
mediated ubiquitination of H3 by in-vitro ubiquitination assays.
In these experiments, UBE2K in combination with the E3 ligase
RNF138 robustly induces the formation of ubiquitinated H3 with
a molecular weight of ~24 kDa, which could indicate attachment
of one ubiquitin. To a lesser extent, UBE2K-RNF138 also triggers
the formation of ubiquitinated H3 with higher molecular weights.
Among them, we found a ubiquitinated H3 form of ~48 kDa.
According to the molecular weight, this band could correspond to
H3 tagged with a chain of four ubiquitins, which is a mark for
proteasomal recognition and degradation. However, in-vitro
ubiquitination experiments alone cannot discard that the dis-
tinct ubiquitinated H3 forms detected in the assay might be
caused by multi-monoubiquitination. Remarkably, immunopre-
cipitation of histone H3 supports that UBE2K overexpression

triggers polyubiquitination of H3 in human cells, whereas we
could not detect monoubiquitinated H3 in control or UBE2K
overexpression conditions. In line with these findings, UBE2K
overexpression results in degradation of histone H3, whereas the
treatment with MG-132 proteasome inhibitor antagonizes these
effects. Most importantly, a mild decrease in proteasome activity
upon moderate knockdown of PSMD11, a key regulator of
26S proteasomes that degrade polyubiquitinated proteins, induces
the strongest increase in total H3 levels when compared
with activators of other proteasome assemblies involved in
ubiquitin-independent proteolytic degradation15. For instance,
even when PSMD11 and PSME4 knockdown induced a similar
inhibition of total proteasome activity (~24%), only
PSMD11 shRNA resulted in robust changes in histone H3 levels.
Whereas these results support a prominent role of 26S protea-
somes in H3 degradation, we cannot discard that other protea-
some assemblies could also regulate H3 levels. For instance, it is
possible that a stronger knockdown of PSME4 may induce a
further reduction in proteasome activity, and eventually lead to
changes in histone H3 levels. As a further evidence of a role of
26S proteasomes in H3 degradation, we found that PSMD11
knockdown blocks the degradation of H3 induced by UBE2K
overexpression.

Besides total H3 levels, UBE2K also modulates H3K9 tri-
methylation, a histone modification associated with hetero-
chromatin formation and gene repression. Our data indicate that
UBE2K impinges upon H3K9 trimethylation by two mechanisms

Fig. 5 Knockdown of UBE2K increases SETDB1 levels in hESCs. a Western blot analysis of H9 hESCs with antibodies to H3K9me1, H3K9me2, total H3
and β-actin. Graph represents the H3K9me1/H3 and H3K9me2/H3 relative percentage values to NT shRNA hESCs (mean ± s.e.m., five independent
experiments). b Western blot analysis of H9 hESCs with antibodies to H3K9me3, H3K4me3, H3K27me3, H3K27ac, total H3 and β-actin. Graph represents
the mean ± s.e.m of H3K9me3/H3 (n= 5 independent experiments), H3K4me3/H3 (n= 3), H3K27me3/H3 (n= 5) and H3K27ac/H3 (n= 3) relative
percentage values to NT shRNA hESCs. c Immunoprecipitation with UBE2K and control FLAG antibodies in H9 hESCs followed by western blot with
H3K9me3, H3K4me3, H3K27me3, H3K27ac, H3 and UBE2K antibodies. The images are representative of three independent experiments.
d Immunoprecipitation with UBE2K and control FLAG antibodies in H9 hESCs followed by western blot with HTT, SETDB1 and UBE2K antibodies. The
images are representative of three independent experiments. e Western blot analysis of H9 hESCs with antibodies to HTT and SETDB1. The graph
represents the relative percentage values (corrected for β-actin loading control) to NT shRNA control hESCs (mean ± s.e.m., three independent
experiments). f Immunoprecipitation with H3 and control FLAG antibodies in H9 hESCs followed by western blot with H3 and SETDB1 antibodies. The
images are representative of two independent experiments. All the statistical comparisons were made by two-tailed Student’s t test for unpaired samples.
P value: *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. NS not significant (P > 0.05).
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Fig. 6 NPCs derived from UBE2K shRNA hESCs retain alterations in both total H3 levels and H3K9me3/H3 ratio. a After 10 days of neural induction
treatment, early H9 NPCs were analysed by western blot with antibodies to total H3 and H3K9me3. Graphs represent the histone H3/β-actin and
H3K9me3/H3 relative percentage values to NT shRNA NPCs (mean ± s.e.m., three independent experiments). b After 10 days of neural induction, early H9
NPCs were assessed by immunofluorescence with H3K9me3 and Hoechst staining. Scale bar represents 20 μm. All the statistical comparisons were made
by two-tailed Student’s t test for unpaired samples. P value: *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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converging on SETDB1. First, we find that loss of UBE2K
decreases the levels of HTT, an inhibitor of SETBD1 activity. In
these lines, our results in C. elegans support that H3K9 tri-
methylation upon UBE2K knockdown requires the activity of
trimethylases such as SETDB1. Besides changes in HTT, knock-
down of UBE2K results in higher SETDB1 protein levels. Given
the important role of HTT and SETDB1 in gene expression, it will

be fascinating to define how UBE2K regulates their levels. Since
UBE2K interacts with SETDB1, an intriguing hypothesis is that
UBE2K directly modulates its ubiquitination and proteasomal
degradation. Another possibility is that UBE2K regulates SETDB1
levels via its recruitment into histone complexes, preventing its
degradation. To address these hypothesis, it will also be important
to assess whether UBE2K-mediated ubiquitination and stability of
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H3 determines changes in the total protein amounts or interac-
tions of key regulators of H3K9 trimethylation.

Since UBE2K particularly increased the H3K9me3 ratio, we
focused on the impact of upregulated H3K9me3 in neurogenesis
from hESCs. Importantly, loss of UBE2K not only increases
global H3K9 trimethylation but also H3K9me3 enrichment in
genes required for neural and neuronal differentiation such as
GBX1, HES6 or distinct potassium voltage-gated channels. It is
important to note that these changes do not have strong effects on
hESCs and their commitment into early NPCs. However,
H3K9me3 enrichment in the aforementioned genes diminishes
their induction during differentiation into mature NPCs and
neurons. Interestingly, a recent study found that low levels of
H3K9me3 in hESCs allow for the establishment of compacted
heterochromatin in specific protein-coding-genes at later stages, a
critical process for cell differentiation8. Thus, UBE2K could
contribute to maintaining low H3K9me3 levels in hESCs, defining

their differentiation potential. In these lines, we observed that loss
of UBE2K in hESCs does not affect the first steps of differentia-
tion into early NPCs, but impairs their ability to differentiate into
mature NPCs and neurons. We speculate that the H3K9me3-
mediated repression of genes such as GBX1, HES6, KCNA3,
KCNA5 could contribute to these phenotypes, including the lack
of induction in distinct neural and neuronal markers during mid
and late stages of differentiation. For instance, UBE2K knock-
down does not affect the expression of the neural markers Nestin
and SOX1 in early NPCs, but blocks their further induction
during differentiation into mature NPCs. When compared with
early NPCs, control mature NPCs also have increased levels of all
the neuronal markers tested (i.e., AADC, TH+, MAP2, TUJ1,
SYN1, NEUN, GABAR, NEFL, NEFM, DLG4). Importantly, loss
of UBE2K in hESCs is sufficient to inhibit the induction of these
factors during differentiation into mature NPCs, with the
exception of TUJ1. Moreover, UBE2K knockdown also blocked

Fig. 7 Altered H3K9me3 marks in hESCs upon UBE2K knockdown impairs the induction of distinct neural genes. a H3K9me3 ChIP-seq profiles of
SMC1B, HES6 and KCNA3 generated in NT and UBE2K shRNA H9 hESCs. b qPCR analysis of H9 hESCs. Graph (relative expression to NT shRNA)
represents the mean ± s.e.m. of three independent experiments. No significant differences were found. c qPCR analysis after 10 days of neural induction of
H9 hESCs. Graph (relative expression to NT shRNA) represents the mean ± s.e.m. of three independent experiments. d qPCR analysis of wild-type H9
hESCs and their differentiated counterparts. Graph (relative expression to NT shRNA) represents the mean ± s.e.m. of six independent experiments.
e qPCR analysis after 20 days of neural induction of H9 hESCs. Graph (relative expression to NT shRNA) represents the mean ± s.e.m. of four independent
experiments. f qPCR analysis after neuronal differentiation (H9 line). Graph (relative expression to NT shRNA) represents the mean ± s.e.m. of six
independent experiments. Statistical comparisons were made by two-tailed Student’s t test for unpaired samples. P value: *P < 0.05, **P < 0.01, ***P <
0.001, ****P < 0.0001.
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the further induction of all the tested neuronal markers during
terminal differentiation into neurons, including TUJ1. Despite the
delay in TUJ1 alterations, our results indicate that UBE2K
knockdown already has deleterious effects during differentiation
into mature NPCs. Although our data suggest an important role
of H3K9me3 changes in neuronal differentiation, it is uncertain
whether H3K9 trimethylation or H3 stability is the key player in

regulating the neurogenic potential of hESCs. For instance, dys-
regulated H3 levels may also contribute to diminishing neuro-
genic potential and even has a more prominent role in this
phenotype relative to H3K9me3 changes. Whereas UBE2K
knockdown does not significantly change the ratio of H3K4me3,
H3K27me3, H3K27ac when normalized to total H3, it increases
overall levels of these modifications. Thus, we cannot discard that
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upregulated H3K4me3, H3K27me3, H3K27ac amounts resulting
from increased H3 levels also have a key role in regulating neu-
rogenic potential. Another intriguing possibility is that UBE2K-
mediated changes in H3 stability are the upstream signal to
modulate H3K9 trimethylation. In this speculative model, chan-
ges in H3 levels could be considered as the key determinant of
neurogenesis, because they would precede H3K9 trimethylation.

Remarkably, our experiments in adult C. elegans indicate that
UBE2K knockdown particularly affects histone H3 and H3K9
trimethylation in the immortal germline, which generates
gametes for reproduction. On the other hand, we observed that
enhancing the levels of UBE2K in human cell lines is sufficient to
mimic histone H3 modulation of pluripotent cells. Thus, our
results indicate that a precise regulation of UBE2K levels could
contribute to determining cell-type epigenetic landscapes.

Methods
hESC/iPSC culture and differentiation. Both H9 (WA09) and H1 (WA01) hESC
lines were obtained from the WiCell Research Institute. The human iPSC line
(ACS-1011) and their parental HFF-1 fibroblasts (SCRC-1041) were obtained from
ATCC. hESCs/iPSCs were maintained on Geltrex-coated plates (ThermoFisher
Scientific) using mTeSR1 media (Stem Cell Technologies). Undifferentiated hESC/
iPSC colonies were passaged using a solution of dispase (2 mgml−1), and scraping
the colonies with a glass pipette. All the cell lines were tested for mycoplasma
contamination at least once every three weeks and no mycoplasma contamination
was detected. Research involving hESCs was performed with approval of the
German Federal competent authority (Robert Koch Institute). The H9 and H1
hESCs used in this study were authenticated by short tandem repeat (STR) profile
across 8 STR loci17.

Neural differentiation was performed following the monolayer culture method
with STEMdiff Neural Induction Medium (Stem Cell Technologies) based on
ref. 54. Undifferentiated hESCs were rinsed once with PBS and then dissociated
with Gentle Dissociation Reagent (Stem Cell Technologies) for 10 min. Then, we
gently dislodged the cells and added 2 ml of Dulbecco’s Modified Eagle Medium
(DMEM)-F12 (ThermoFisher Scientific) + 10 μM ROCK inhibitor (Abcam). Cells
were then centrifuged at 300×g for 10 min and resuspended on STEMdiff Neural
Induction Medium supplemented with 10 μM ROCK inhibitor. Cells were plated
on polyornithine (15 μg ml−1)/laminin (10 μg ml−1)-coated plates at a density of
200,000 cells cm−2. As indicated in the corresponding figures, hESCs were cultured
on neural induction medium for a total of 10 and 20 days to generate early NPCs
(PAX6-positive cells) and mature NPCs with the ability to efficiently differentiate
into neurons, respectively.

For neuronal differentiation, mature NPCs (20 days) were dissociated with
Accutase (Stem Cell Technologies) and transferred to polyornithine/laminin-
coated plates with neuronal differentiation medium Dulbecco’s Modified Eagle
Medium (DMEM)/F12, B27, N2 (ThermoFisher Scientific), 1 μg ml−1 laminin
(ThermoFisher Scientific), 20 ng ml−1 BDNF (Peprotech), 20 ng ml−1 GDNF
(Peprotech), 1 mM dibutyryl-cyclic AMP (Sigma) and 200 nM ascorbic acid
(Sigma)22. Cells were differentiated for 1 month, with weekly feeding of fresh
neuronal differentiation medium. Endoderm differentiation of H9 hESCs was
performed using STEMdiff Definitive Endoderm Kit (Stem Cell Technologies). For
mesodermal differentiation, hESC colonies were dissociated with Accutase and

single cells were seeded at a density of 50,000 cells cm−2 in mTeSR1 media (Stem
Cell Technologies) supplemented with 10 μM ROCK inhibitor. One day after, we
replaced mTeSR1 media with STEMdiff Mesoderm Induction Medium (Stem Cell
Technologies). Then, cells were fed daily with STEMdiff Mesoderm Induction
Medium and collected for experiments after 5 days.

Lentiviral infection of hESCs. Lentivirus (LV)-non-targeting shRNA control,
LV-UBE2K shRNA #1 (TRCN0000237896), LV-UBE2K shRNA #2
(TRCN0000237893), LV-3′-UTR UBE2K shRNA (TRCN0000237895), LV-
PSMD11 shRNA (TRCN0000003950), LV-PSME4 shRNA (TRCN0000158223)
and LV-PSME3 shRNA (TRCN0000290094) in pLKO.1-puro vector were obtained
from Mission shRNA (Sigma). To establish stable shRNA hESC lines, hESCs
growing on Geltrex-coated plates were incubated with mTesR1 medium supple-
mented with 10 μM ROCK inhibitor for 1 h and individualized using Accutase.
50 000 cells were infected with 20 µl of concentrated lentivirus in the presence of
10 μM ROCK inhibitor for 1 h. Cell suspension was centrifuged to remove virus,
passed through a mesh of 40 μM to obtain individual cells, and plated on a feeder
layer of mitotically inactive mouse embryonic fibroblasts (MEFs) in hESC media
(DMEM/F12, 20% knockout serum replacement (ThermoFisher Scientific),
0.1 mM non-essential amino acids, 1 mM L-glutamine, 10 ng ml−1 bFGF (Joint
Protein Central) and β-mercaptoethanol) supplemented with 10 μM ROCK inhi-
bitor. When small hESC colonies arose after a few days in culture, we performed
1 µg ml−1 puromycin selection during 2 days and colonies were manually passaged
onto MEFs to generate stable knockdown hESC lines. Once stable knockdown
hESC lines were established, the cells were maintained on Geltrex-coated plates
using mTeSR1 media. To establish stable shRNA HEK293 lines, HEK293 cells
(ATCC, #CRL-11268) were transduced with 5 µl of concentrated lentivirus and
selected by adding puromycin at a concentration of 2 µg ml−1.

For the generation of UBE2K-overexpressing lentiviral constructs (UBE2K
(OE)), human UBE2K complementary DNA was PCR-amplified and cloned into
CD522A-1 pCDH cDNA Cloning Lentivector (System Biosciences) using NheI and
BamHI. This construct was sequence verified and thereafter transfected into
packaging cells to produce high titer lentiviruses. As a control, we generated
lentiviral particles of CD522A-1 pCDH lacking UBE2K insert (empty vector).
HEK293 cells were transduced with either empty vector or UBE2K(OE) lentiviruses
and selected by adding puromycin at a concentration of 2 µg ml−1. To overexpress
UBE2K in stable cell lines that were previously infected with lentivirus expressing
shRNA and selected for puromycin resistance, we cloned human UBE2K into
CD515B-1 pCDH cDNA Cloning Lentivector (System Biosciences), a vector that
contains hygromycin resistance gene instead of puromycin resistance gene. As a
control for these experiments, we generated lentiviral particles of CD515B-1 pCDH
lacking UBE2K insert (empty vector). Cells were selected by adding hygromycin at
a concentration of 100 μg ml−1.

RNA sequencing. We extracted RNA using RNAbee (Tel-Test Inc.). Libraries were
then prepared using the TruSeq Stranded mRNA Library Prep Kit. Library pre-
paration started with 1 µg total RNA. After selection with poly-T oligo-attached
magnetic beads, mRNA was purified and fragmented using divalent cations under
elevated temperature. The RNA fragments underwent reverse transcription with
random primers followed by second strand cDNA synthesis with DNA Polymerase
I and RNase H. After end repair and A-tailing, indexing adapters were ligated.
Then, products were purified and amplified (20 µl template, 14 PCR cycles) to
generate the final cDNA libraries. Following library validation and quantification
(Agilent 2100 Bioanalyzer), we pooled equimolar amounts of library. Then, the
pool was quantified by the Peqlab KAPA Library Quantification Kit and Applied

Fig. 9 UBE2K modulates ubiquitination and proteasomal degradation of histone H3. a In vitro ubiquitination assay of 6xHis-tagged H3F3A with UBE2K
and FLAG::RNF2 or GFP::RNF138 ubiquitin ligases followed by immunoblotting with antibodies to 6xHis, UBE2K, FLAG and GFP. The images are
representative of two independent experiments. b In vitro ubiquitination of recombinant p53 followed by immunoblotting with antibodies to p53, UBE2K,
and GFP. The images are representative of two independent experiments. c In vitro ubiquitination of 6xHis::H1 followed by immunoblotting with antibodies
to 6xHis, UBE2K, and GFP. The images are representative of two independent experiments. d Western blot of UBE2K overexpressing (OE) HEK293 with
antibodies to H3, H3K9me3 and β-actin. The graphs represent the relative percentage of H3/β-actin and H3K9me3/H3 to DMSO-empty vector cells
(mean ± s.e.m. of four independent experiments). When indicated in the figure, cells were treated with 5 µM MG-132 for 16 h. e Knockdown levels of
proteasome activators in HEK293 cells. The graph (relative expression to non-targeting (NT) shRNA HEK293 cells) represents the mean ± s.e.m.
(PSMD11 shRNA (n= 8), PSME4 shRNA (n= 5), PSME3 shRNA (n= 6)). f Percentage of chymotrypsin-like proteasome activity relative to NT shRNA
HEK293 cells (mean ± s.e.m. of three independent experiments). MG-132 treatment: 5 µMMG-132 for 16 h. gWestern blot of HEK293 cells with antibodies
to H3 and UBE2K. The graph represents the relative percentage of H3/β-actin to NT shRNA cells (mean ± s.e.m. of three independent experiments).
h Western blot of HEK293 cells with antibodies to H3, PSMD11 and UBE2K. The graph represents the relative percentage of H3/β-actin to NT shRNA+
empty vector cells (mean ± s.e.m. of three independent experiments). i After immunoprecipitation with anti-H3 and anti-FLAG antibodies in HEK293 cells,
we performed a re-immunoprecipitation (Re-IP) with the same antibodies. Re-IP was followed by western blot with antibodies against H3 and
polyubiquitinated proteins (polyUb) to detect immunoprecipitated H3 protein and polyUb-H3, respectively. The images are representative of two
independent experiments. Prior to immunoprecipitation, cells were treated with 5 µM MG-132 (16 h). All the statistical comparisons were made by two-
tailed Student’s t-test for unpaired samples. P value: *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. NS not significant.
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Fig. 10 ubc-20, a C. elegans orthologue of UBE2K, regulates histone H3 and H3K9me3 levels in the germline. a Western blot analysis of wild-type C.
elegans upon knockdown of either the UBE2K orthologue (ubc-20) or a distinct E2 enzyme (ubc-22) with antibodies to total H3, H3K9me3 and α-tubulin
loading control. Graphs represent the relative percentage values of H3/α-tubulin and H3K9me3/H3 to empty vector RNAi-treated worms (mean ± s.e.m.,
empty vector RNAi n= 7 independent experiments, ubc-20 RNAi n= 7, ubc-22 RNAi n= 5). RNAi was started at day 1 of adulthood. b Western blot
analysis of control sterile worms (fer-15(b26);fem-1(hc17)) and germline-lacking worms (glp-4(bn2)) with antibodies to total H3, H3K9me3 and α-tubulin
loading control. The graphs represent the relative percentage values of H3/α-tubulin and H3K9me3/H3 to the corresponding empty vector RNAi-treated
strain (mean ± s.e.m. of 8 independent experiments). c Western blot analysis of wild-type and met-2(n4256) mutant worms upon knockdown of ubc-20.
The graphs represent the relative percentage values of H3/α-tubulin and H3K9me3/H3 to empty vector RNAi-wild-type worms (mean ± s.e.m. of 5
independent experiments). All the statistical comparisons were made by two-tailed Student’s t-test for unpaired samples. P value: *P < 0.05, **P < 0.01,
***P < 0.001, ****P < 0.0001. NS not significant.
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Biosystems 7900HT Sequence Detection System. The pool was sequenced on an
Illumina HiSeq 4000 sequencer with a paired- end (2 × 75 bp) protocol.

RNA-sequencing data were analyzed using a QuickNGS pipeline55. We
performed basic read quality check and read statistics by using FastQC and
SAMtools, respectively. The basic data processing consists of a splicing-aware
alignment using Tophat256 followed by reference-guided transcriptome reassembly
with Cufflinks257,58. Read count means, fold-change (FC) and P values were
calculated with DEseq259, whereas gene expression for the individual samples was
calculated with Cufflinks257,58 as FPKMs, using in both cases genomic annotation
from the Ensembl database (version 87).

Sample preparation for quantitative proteomics and analysis. For the com-
parison between control and UBE2K shRNA H9 hESCs, label-free quantitative
(LFQ) proteomics were performed as we described in ref. 12. Cells were collected in
urea buffer (8 M urea, 50 mM ammonium bicarbonate and 1× complete protease
inhibitor mix with EDTA (Roche)), homogenized with a syringe and cleared using
centrifugation (16,000 g, 20 min). Supernatants were reduced (1 mM DTT, 30 min),
alkylated (5 mM iodoacetamide (IAA), 45 min) and digested with trypsin at a 1:100
w/w ratio after diluting the urea concentration to 2 M. After one day, samples were
cleared (16,000 g, 20 min) and supernatant was acidified. Then, peptides were
cleaned up using stage tip extraction60. The liquid chromatography tandem mass
spectrometry (LC-MS/MS) equipment consisted of an EASY nLC 1000 coupled to
the quadrupole based QExactive instrument (Thermo Scientific) via a nano-spray
electroionization source. Peptides were separated on an in-house packed 50 cm
column (1.9 µm C18 beads, Dr. Maisch) using a binary buffer system: (A) 0.1%
formic acid, (B) 0.1 % formic acid in ACN. The content of buffer B was raised from
7 to 23% within 120 min and then increased to 45% within 10 min. Buffer B
fraction was raised to 80% within 5 min and held for further 5 min after which it
was decreased to 5% within 2 min and held there for further 3 min before the next
sample was loaded onto the column. Eluting peptides were ionized by an applied
voltage of 2.2 kV. The capillary temperature was 275 °C and the S-lens RF level was
set to 60. MS1 spectra were acquired using a resolution of 70,000 (at 200 m/z), an
Automatic Gain Control (AGC) target of 3e6 and a maximum injection time of 20
ms in a scan range of 300–1750 Th. In a data-dependent mode, the 10 most intense
peaks were selected for isolation and fragmentation in the HCD cell using a nor-
malized collision energy of 25 at an isolation window of 2.1 Th. Dynamic exclusion
was enabled and set to 20 s. We used the following MS/MS scan properties: 17.500
resolution at 200m/z, AGC target of 5e5 and maximum injection time of 60 ms.
We analysed all LFQ proteomics data sets with MaxQuant software (release
1.5.3.8). We used the LFQ mode61 and MaxQuant default settings for protein
identification and LFQ quantification. Downstream analyses of LFQ values were
performed with Perseus (v. 1.5.2.4)62.

Protein immunoprecipitation for interactome analysis. Protein immunopreci-
pitation for interactome assays were performed as we reported in ref. 63. Cells were
lysed in modified Radioimmunoprecipitation assay (RIPA) buffer (50 mM Tris-
HCl (pH 7.4), 150 mM NaCl, 1 % IgPal, 0.25% sodium deoxycholate, 1 mM EDTA,
1 mM PMSF) supplemented with protease inhibitor (Roche). Lysates were cen-
trifuged at 10,000 g for 10 min at 4 °C. Then, the supernatant was collected and
incubated with anti-UBE2K antibody (Cell Signaling, #8226 1:50) for 30 min and
subsequently with 100 µl Protein A magnetic beads (Miltenyi) for 1 h on the
overhead shaker at 4 °C. As a control, the same amount of protein was incubated
with anti-FLAG antibody (SIGMA, F7425, 1:100) in parallel. After the incubation
with antibodies, supernatants were subjected to magnetic column purification
followed by three washes using wash buffer 1 (50 mM Tris-HCl (pH 7.4), 150 mM
NaCl, 5% glycerol and 0.05% IgPal). Next, columns were washed five times with
wash buffer 2 (50 mM Tris-HCl (pH 7.4), 150 mM NaCl). After the washing steps,
the pellet was incubated with 2x Laemmli buffer, boiled for 5 min and centrifuged
5 min at maximum speed. The supernatant was taken and loaded onto a sodium
dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) gel for western
blot analysis.

Identification of ubiquitination events in histone H3. Histones were purified
using a method that combines sulfuric acid extraction with ion exchange
chromatography64,65. Briefly, HEK293 cells were treated with 5 µM MG-132
overnight to avoid proteasomal degradation, washed twice with ice-cold PBS and
lysed by rotation in 6 ml of 0.1 M H2SO4 at 4 °C for 2 h. The lysate was centrifuged
at 2200 g at 4 °C for 20 min. The pellet with non-soluble proteins and cell debris
was discarded. The supernatant was neutralized in 1 M Tris-Hcl pH 8.0 buffer.
Volume of lysate was made up to 15 ml by adding binding buffer (50 mM Tris pH
8.0, 0.5 M NaCl, 2 mM EDTA, 0.25 mM PMSF, 1 mM DTT). Sulfopropyl (SP)-
Sepharose resin (S1799, Sigma) was packed into a column and pre-equilibrated
with 10 volumes of binding buffer. 15 ml of lysate was passed through the column.
The column was then washed with 10 volumes of binding buffer and 30 volumes of
washing buffer (50 mM Tris-HCl, pH 8.0, 0.6 M NaCl, 2 mM EDTA, 0.25 mM
PMSF, 1 mM DTT). Proteins were eluted with elution buffer (50 mM Tris-HCl, pH
8.0, 2 M NaCl, 2 mM EDTA, 0.25 mM PMSF 1mM DTT) in ten fractions. Eluted
proteins were precipitated overnight in 4% (vol/vol) PCA at 4 °C. The fractions
were then centrifuged at 21,000 g at 4 °C for 45 min, and the resulting pellets were

washed twice with 4% PCA, twice with 0.2% HCl in acetone and twice with
acetone. The protein pellets were finally dissolved in milliQ water and protein
concentration was determined by standard BCA method.

Then, 500 μg histone proteins were denatured by diluting in 8 M Urea (in 0.1 M
Tris/HCl pH 8.5) in a final volume of 200 μl. Additionally, 2 μl of 1 M TCEP (final
10 mM) and 8 μl 0.5 M CAA (final 20 mM) were added and transferred to a
Vivacon® 500 10 kDa cutoff filter and centrifuged at 14,000 g at 20 °C for 15 min.
200 μl of 50 mM ABC was then added and centrifuged again until half wet. This
step was repeated twice. Partial digestion was then performed by adding 50 μl of
50 mM ABC with trypsin 1:2000 (trypsin: histone ratio) for 20 min at room
temperature. Flow-through and retent were collected by centrifuging the filter units
at 14,000 g at 20 °C for 10 min. Filters were then washed with 50 µl of 50 mM ABC
and flow through was collected. The partially digested protein samples were later
stage-tipped for label-free quantitative proteomics.

All samples were analyzed on a Q-Exactive Plus (Thermo Scientific) mass
spectrometer that was coupled to an EASY nLC 1200 UPLC (Thermo Scientific).
Peptides were loaded with solvent A (0.1% formic acid in water) onto an in-house
packed analytical column (50 cm × 75 µm I.D., filled with 2.7 µm Poroshell EC120
C18, Agilent). Peptides were chromatographically separated at a constant flow rate
of 250 nl min−1 using 150 min method: 5–30% solvent B (0.1% formic acid in 80%
acetonitrile) within 119 min, 30–50% solvent B within 19 min, followed by washing
and column equilibration. The mass spectrometer was operated in data-dependent
acquisition mode. The MS1 survey scan was acquired from 300 to 1750 m/z at a
resolution of 70,000. The top 10 most abundant peptides were subjected to higher
collisional dissociation (HCD) fragmentation at a normalized collision energy of
27%. The AGC (automatic gain control) target was set to 5e5 charges. Product ions
were detected in the Orbitrap at a resolution of 17,500.

All mass spectrometric raw data were processed with MaxQuant (version
1.5.3.8) using default parameters. Briefly, MS2 spectra were searched against the
human Uniprot database with human histone sequences, including a list of
common contaminants. False discovery rates (FDRs) on protein and
peptide–spectrum match (PSM) level were estimated by the target-decoy approach
to 0.01% (Protein FDR) and 0.01% (PSM FDR), respectively. The minimal peptide
length was set to 7 amino acids and carbamidomethylation at cysteine residues was
considered as a fixed modification. The maximum number of missed cleavages was
set to 6. Variable modifications included oxidation (M), acetylation (protein
N-term and K), methylation (KR) and diglycine (signature of ubiquitination) (K).

Re-immunoprecipitation of histone H3. Before immunoprecipitation, HEK293
cells were treated with 5 μM MG-132 for 16 h. Then, cells were lysed in modified
RIPA buffer (50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 0.25% sodium deox-
ycholate, 1% NP40, 1 mM PMSF, 1 mM EDTA, 1 mM NaF, 1 mM Na3VO) sup-
plemented with protease inhibitor cocktail. Lysates were homogenized through a
syringe needle (27 G) and centrifuged at 13,000 g for 15 min at 4 °C. The super-
natant was collected and protein concentration was determined. Approximately
400 μg of protein were used for immunoprecipitation. After pre-clearing of the
supernatant with Protein A agarose beads (Pierce), the samples were incubated
overnight with 2 μg histone H3 antibody (Cell Signaling, #2650) at 4 °C. As a
negative control, the same amount of protein was incubated with 2 μg anti-FLAG
antibody (SIGMA, F7425) in parallel. Subsequently, samples were incubated with
30 µl of Protein A beads for 1 h at room temperature. Then, samples were cen-
trifuged for 5 min at 5000 g and the pellet was washed three times with RIPA
buffer. To elute histone H3, the beads were incubated with 50 µL 0.2 M glycine pH
2.6 (1:1) for 10 min with frequent agitation. The eluate was collected after cen-
trifugation and immediately neutralized by adding an equal volume of Tris pH 8.0.
Then, samples were diluted with RIPA buffer and used for re-immunoprecipitation
with 2 μg anti-histone H3 or anti-FLAG control antibody. Subsequently, samples
were incubated with 30 µl of Protein A beads for 1 h at room temperature.
After this incubation, samples were centrifuged for 5 min at 5000 g and the
pellet was washed three times with RIPA buffer. For the second elution, the
beads were incubated with Laemmli Buffer, boiled for 5 min and centrifuged at
13,000 g for 5 min. The supernatant was then loaded onto a sodium dodecyl
sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) gel for western blot
analysis.

Chromatin Immunoprecipitation-sequencing (ChIP-seq). ChIP-seq experiments
were performed following the protocol described in ref. 12. Cells were crosslinked
with 1% formaldehyde for 10 min at room temperature. Crosslinked cells were
quenched with 0.125 M glycine for 10 min at room temperature and scraped/
transferred to a 15 ml conical tube on ice. Cells were then centrifuged for 5 min at
4 °C followed by two washing steps with 5 ml PBS 1×/1 mM PMSF66. H9 hESCs
were resuspended sequentially in three different lysis buffers (lysis buffer 1: 50 mM
Hepes, 140 mM NaCL, 10% glycerol, 1 mM EDTA, 0.25% TX-100, 0.5% NP-40,
and protease inhibitor (Roche); lysis buffer 2: 10 mM Tris, 200 mM NaCL, 0.5 mM
EGTA, 1 mM EDTA; lysis buffer 3: 10 mM Tris, 100 mM NaCL, 0.5 mM EGTA, 1
mM EDTA, 0.1% Na-Deoxycholate, 0.5% N-Lauroylsarcosine). Chromatin was
sonicated for 20 cycles (30 s on, 45 s off) using Bioruptor (Diagenode). After
sonication, the material was centrifuged at 16000 g for 3 min at 4 °C, with the
supernatant representing the sonicated chromatin. 75 μl was not subject to
immunoprecipitation and was used as total input control for the ChIP reactions.
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750 μl were incubated with 10 μg of anti-H3K9me3 antibody (Abcam, #8898,
reported suitable for ChIP) overnight at 4 °C. On day 2, magnetic Dynabeads G
(Thermofisher) at 10x volume of H3K9me3 antibody were aliquoted into a new
microtube. Magnetic beads were washed five times with cold RIPA wash buffer (50
mM Hepes, 1 mM EDTA, 500 mM LiCl, 1% NP-40, 0.7% Na-Deoxycholate). Then,
beads were washed once with 1 ml TE+ 50 mM NaCl on ice and samples were
centrifuged at 950 g for 3 min at 4 °C. After removing all liquid from beads, elution
buffer (50 mM Tris, 10 mM EDTA, 1% SDS) was added for 15 min at 65 °C.
Finally, beads were centrifuged for 1 min at 1600 g and placed on magnet-holder to
settle and the supernatant was transferred into a new tube. To reverse crosslinking,
3x volume of the elution buffer was added to the input and incubated together with
the ChIP sample at 65 °C overnight. On day 3, 1x volume of TE buffer and 0.2 mg
ml−1 RNase were added and incubated for 1 h at 37 °C. To digest proteins, 0.2 mg
ml−1 Proteinase K was added and incubated for 2 h at 55 °C. Then, DNA was
phenol-chloroform extracted at room temperature with 1x volume of 25:24:1
phenol-chloroform-isoamyl alcohol and centrifuged for 5 min to separate layers,
followed by the addition of 1x volume chloroform. The DNA was transferred to a
new tube for precipitation with 1/10 of NaOAc 3M, 1 μl 20 mgml−1 glycogen, 2x
volume of ice-cold ethanol during 30 min at −80 °C. After centrifugation for 30
min at 4 °C, we removed the supernatant was removed and added 0.5 ml ice cold
70% ethanol followed by 5 min centrifugation. After removing the ethanol, the
pellet was air-dried at room temperature and resuspended in 40 μl dH2O.

ChIP-seq libraries from ChIP and input DNA samples were prepared as
previously described67. Libraries from H9 hESCs were sequenced with a 2 × 75 bp
read length on Illumina HiSeq4000. For ChIP-seq, two biological replicates from
independent experiments were analysed by QuickNGS (Next-Generation
Sequencing) pipeline55. Quality check of sequencing data were performed with
FastQC version 0.10.1 (Babraham Bioinformatics). ChIP-seq sequencing reads
were mapped with Burrows-Wheeler Aligner (BWA)68 to the Homo Sapiens
genome (Ensembl database 87). For peak calling, the resulting Binary Alignment/
Map (BAM) files were analyzed with MACS2 version 2.0.1069. The results comprise
lists of statistically significant peaks compared with the respective input DNA
controls. QuickNGS pipeline identifies all genes which are 10,000 bp up- or
downstream from the MACS2 peaks. To identify differential read-enriched peak
regions from ChIP-seq data between different conditions, we used bdgdiff module
of MACS2. Data was uploaded into MySQL database. In addition, QuickNGS
provides password-protected track hubs for the UCSC Genome Browser with
hyperlinks for visualization.

Western blot. hESCs and HEK293 cells were scraped from plates and lysed in
protein cell lysis buffer (10 mM Tris-HCl, pH 7.4, 150 mM NaCl, 10 mM EDTA,
1% Triton X-100, 50 mM NaF, 0.1% SDS, 20 μg ml−1 Aprotinin, 2 mM sodium
orthovanadate, 1 mM phenylmethylsulphonyl fluoride and protease inhibitor) by
incubating samples for 10 min on ice and homogenization through 27-G syringe
needle. Then, cell lysates were centrifuged at 10,000 g for 10 min at 4 °C and the
supernatant was collected. Nematodes were lysed in protein lysis buffer (50 mM
Tris-HCl, pH 7.8, 150 mM NaCl, 0.25% sodium deoxycholate, 1 mM EDTA and
protease inhibitor) using a Precellys 24 homogenizer. Worm lysates were cen-
trifuged at 10,000 rpm for 10 min at 4 °C and the supernatant was collected.

Protein concentrations were determined with BCA protein assay
(Thermoscientific, Germany). Total protein was separated by SDS–PAGE,
transferred to nitrocellulose membranes (Millipore, Germany) and immunoblotted.
Western blot analysis was performed with anti-UBE2K (Cell Signaling, #8226,
1:1,000), anti-OCT4 (Stem Cell Technologies, #60093, 1:500), anti-SOX2 (Abcam,
#97959, 1:1,000), anti-PAX6 (Stem Cell Technologies, #60094, 1:200), anti-Nestin
(Stem Cell Technologies, #60091, 1:1,000), anti-MAP2 (Sigma, #1406, 1:1,000),
anti-polyubiquitinylated conjugates (Enzo, PW8805-0500, 1:1,000), anti-ubiquitin
(Merck Millipore, # 05-944, clone P4D1-A11, 1:1000), anti-H3K9me3 (Abcam,
#8898, 1:1,000), anti-Histone H3 (Cell Signaling, #2650, 1:10,000), anti-H3K9me1
(Cell Signaling, #1418, 1:1,000), anti-H3K9me2 (Cell Signaling, #4658, 1:1,000),
anti-H3K4me3 (Active Motif, #39916, 1:1,000), anti-H3K27me3 (Active Motif,
#39155, 1:1,000), anti-H3K27ac (Active Motif, #39933, 1:1,000), anti-HTT (Cell
Signaling, #5656, 1:1,000), anti-SETDB1 (Abcam, #107225, 1:500), anti-p53 (Cell
Signaling, #9282, 1:2,000), anti-Histone H1 (Merck, 05-457, 1:1,000), anti-PSMD11
(Abcam, #99413, 1:1,000), anti-ß-actin (Abcam, #8226, 1:1,000) and α-tubulin
(Sigma, T6199, 1:5,000).

In vitro ubiquitination assays. A concentration of 10 μg of purified human
recombinant protein 6xHis::H3F3A (Prospec, PRO-1452) was mixed with 25 ng of
E1 activating enzyme (Enzo Life Sciences, BML-UW9410-0050), 400 ng of UBE2K/
E2-25K (R&D systems, E2-603), 2 μg of FLAG::ubiquitin (Sigma-Aldrich, U6253),
ATP regeneration solution (Enzo Life Sciences, BML-EW9810-0100) and Ubi-
quitin Conjugation Reaction Buffer (Enzo Life Sciences, BML-KW9885-0001).
When indicated in the corresponding figures, we also added 1 μg of hESC lysate or
0.8 μg of recombinant E3 enzymes RNF2 or RNF138. Samples were incubated at
30 °C for 1 h. The reaction was terminated by boiling for 5 min with SDS-sample
buffer, and resolved by SDS-PAGE followed by immunoblotting using anti-6xHis
antibody (QIAGEN, #34660, 1:1000) to monitor ubiquitination of histone H3F3A.
RNF2 cloned into pRK5-FLAG plasmid was a gift from J. Zhang70. RNF138 cloned
into the eGFP-C1 vector was a gift from M.J. Hendzel71.

26S proteasome fluorogenic peptidase assays. In vitro assay of proteasome
activity was performed as previously described72. Cells were collected in protea-
some activity assay buffer (50 mM Tris-HCl, pH7.5, 250 mM sucrose, 5 mM
MgCl2, 2 mM ATP, 0.5 mM EDTA, and 1 mM dithiothreitol) and lysed by passing
10 times through a 27 G needle attached to a 1 ml syringe needle. Lysates were
centrifuged at 10,000 g for 10 min at 4 °C. 25 μg of total protein were transferred to
a 96-well microtiter plate (BD Falcon) and incubated with Suc-Leu-Leu-Val-Tyr-
AMC (Enzo), a fluorogenic proteasome substrate to measure chymotrypsin-like
activity. Fluorescence (380 nm excitation, 460 nm emission) was monitored on a
microplate fluorometer (EnSpire, Perkin Elmer) every 5 min for 1 h at 37 °C.

Immunocytochemistry. Immunocytochemistry experiments were performed as we
described in ref. 63. Cells were fixed with paraformaldehyde (4% in PBS) for 30
min, followed by permeabilization (0.2 % Triton X-100 in PBS for 10 min) and
blocking (3% BSA in 0.2% Triton X-100 in PBS for 10 min). Cells were incubated
with primary antibody for 2 h at room temperature (Rabbit anti-H3K9me3
(Abcam, #8898, 1:500), Rabbit anti-PAX6 (Stem Cell Technologies, #60094, 1:300),
Mouse anti-OCT4 (Stem Cell Technologies, #60093, 1:200), Mouse anti-Nestin
(Stem Cell Technologies, #60091, 1:500), Rabbit anti-SOX1 (Stem Cell Technolo-
gies, #60095, 1:100), Mouse anti-MAP2 (Sigma, #1406, 1:200), Rabbit anti-
H3K9me3 (Abcam, #8898, 1:500)). Cells were then washed with 0.2% Triton-X/
PBS and incubated with secondary antibody Alexa Fluor 488 goat anti-mouse
(ThermoFisher Scientific, A-11029, 1:500), Alexa Fluor 568 goat anti-rabbit
(ThermoFisher Scientific, A-11011, 1:500), and 2 µg ml−1 Hoechst 33342 (Life
Technologies, #1656104) for 1 h at room temperature. 0.2% Triton-X/PBS and
distilled water wash were followed before we mounted the cover slips.

RNA isolation and quantitative RT–PCR. RNA extraction and quantitative
RT–PCR were performed as described in ref. 63. We extracted RNA using RNAbee
(Tel-Test Inc.) and generated cDNA using qScript Flex cDNA synthesis kit
(Quantabio). SybrGreen qPCR experiments were performed with a 1:20 dilution of
cDNA using a CFC384 Real-Time System (Bio-Rad) following the manufacturer’s
instructions. Data were analysed with the comparative 2ΔΔCt method using the
geometric mean of ACTB and GAPDH as housekeeping genes. Supplementary
Data 6 contains the sequences of all the primers used for this assay.

C. elegans strains and maintenance. C. elegans strains were grown and main-
tained on standard nematode growth media seeded with E. coli (OP50)73. Wild-
type (N2), SS104 (glp-4(bn2)I), CF512 (fer-15(b26)II;fem-1(hc17)IV), MT13293
(met-2(n4256)III) were provided by the Caenorhabditis Genetics Center (CGC)
(University of Minnesota), which is supported by the NIH Office of Research
Infrastructure Programs (P40 OD010440).

For western blot experiments, synchronized animals were raised and fed OP50
E. coli at 25 °C until day 1 of adulthood. Then, worms were transferred onto plates
with E. coli (HT115) containing either empty control vector (L4440) or expressing
double-stranded RNAi. ubc-20 RNAi and ubc-22 RNAi constructs were obtained
from the Vidal RNAi library and sequence verified. Wild-type and MT13293
worms were treated with 100 μg ml−1 5-fluoro-2′deoxyuridine (FUdR) to inhibit
the proliferation of progeny.

Statistics and reproducibility. In each independent experiment using mammalian
cells, biological replicates/wells were averaged for every condition. Then, the data of
different independent experiments were averaged. Finally, we compared the
average across conditions/groups. For C. elegans experiments, sample size deter-
mination was done according to standard C. elegans approaches. Sample sizes are
indicated in the corresponding figure legends and supplementary information.
Statistics were derived from at least n= 3. No data were excluded from the ana-
lyses. Statistical comparisons of western blot quantifications and qPCR data were
performed with two-tailed Student’s t test for unpaired samples using GraphPad
Prism 6.0. Statistically significant differences from proteomics data were deter-
mined with Perseus (v. 1.5.2.4)62 after correction for multiple testing following the
Benjamini–Hochberg procedure, which calculates false discovery rate (FDR)
adjusted P values. Analysis of enriched Gene Ontology Biological Processes
(GOBPs) were performed using Database for Annotation Visualization and Inte-
grated Discovery (DAVID)74, that provides statistical comparisons with a modified
Fisher’s exact test (EASE score). We used MACS2 to calculate fold changes and P
values from ChIP-seq data, allowing for the identification of statistically significant
differential enriched-peak regions between conditions69. For RNA-sequencing
data, gene expression for the individual samples was calculated with Cufflinks2 as
FPKMs57,58 and fold-change and P values were calculated with DEseq259.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
RNA-seq and ChIP-seq data have been deposited in Gene Expression Omnibus (GEO)
under the accession code GSE146704. The mass spectrometry proteomics data showed in
Supplementary Data 2 and Supplementary Fig. 12 have been deposited to the
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ProteomeXchange Consortium via the PRIDE75 partner repository with the dataset
identifiers PXD018625 and PXD018621, respectively. Uncropped images of western blots
are presented in Supplementary Data 7. All source data underlying the graphs presented
in the main figures can be found as Supplementary Data 8. All the other data are also
available from the corresponding author upon request (DV).
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