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The 2015 Sustainable Development Goals (SDGs) have moti-
vated the development community to focus on improving 
the livelihoods and climate resilience of small-scale farms. To 

focus research, programmatic efforts and donor funding towards 
supporting small-scale farmers, SDG 2.3 aims to "double the agri-
cultural productivity and incomes of small-scale food producers [by 
2030]"1. Critical to achieving SDG 2.3 is to sustain farmers’ produc-
tion and incomes through climate shocks and stressors. As climate 
projections indicate that drier regions will become drier and that 
droughts are likely to increase2, small-scale farmers in already water 
scarce regions will require additional support3.

Tackling water scarcity in small-scale farming systems remains 
a top priority for development organizations, researchers and 
donors4,5. As precipitation patterns change with climate change, the 
livelihoods of small-scale farmers who lack access to water and tech-
nologies will become even more marginalized6,7. Small-scale farm-
ers represent >80% of the world’s farms8 and are major contributors 
to the food system9–11; farms of <5 ha produce nearly 50% of the 
global food supply11. Finding options for this large and diverse set 
of farmers to adapt to increasing water scarcity is a growing central 
tenet to alleviate poverty and to ensure a resilient food system4,5.

A key question for donors is which interventions have proven 
impacts. For instance, improved water access and water-use effi-
ciency have been shown to increase yields and farmer incomes 
but interventions that are successful in one region do not neces-
sarily work elsewhere. Many interventions (such as water har-
vesting, soil improvement strategies, drought-resistant crops and 
livestock breed selection) are heterogeneous and their impacts can 
vary across physical, social and political dimensions12. This creates 

a challenge for donors seeking to focus their investments around 
the goals of increasing food production, improving livelihoods and 
reducing climate vulnerability for small-scale farmers. Despite the 
large volume of evidence produced every year in peer-reviewed 
journals, grey literature and monitoring and evaluation reports, 
it is difficult to track which interventions have adequate research 
support. For instance, in water scarce regions it remains unknown 
if general research trends have kept up to date with policy trends 
that have shifted from the focus of the Green Revolution era on 
improving yields to modern development initiatives (for example, 
SDGs) that include livelihoods, commitment to reducing environ-
mental impacts and gender. To date, the evidence base addressing 
interventions to improve the livelihoods of small-scale farmers in 
water scarce regions is limited. Structured evidence syntheses such 
as systematic reviews and meta-analyses do exist13–20, as do more 
traditional literature reviews21,22, but all tend to focus on subtopics 
such as conservation agriculture, irrigation or policy frameworks.

This scoping review collates many different types of interven-
tions aimed at small-scale farmers in water scarce regions across 
low- and middle-income countries (LMICs) to understand the 
breadth of evidence for available on-farm interventions. Our effort 
seeks to help donors identify future research funding, to focus the 
efforts of researchers towards filling knowledge gaps and to build 
a repository of studies on a broad swath of interventions that may 
improve the yields and incomes of small-scale farmers.

We focus our evidence synthesis on water scarce, small-scale 
farms across LMICs to assess whether research effort is being con-
ducted in the locations that need it most. Our research identifies 
countries that have limited research for adaptation solutions, yet 
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high numbers of small-scale farmers in water scarce regions. On 
the basis of the available evidence, we systematically map research 
effort onto intervention types to identify which interventions  
lack research (Box 1). We also assess whether studies examined 
environmental trade-offs or gender effects to ensure that there 
is evidence for integrated solutions that reflect the relationship 
between SDG 2.3 and other development goals. Our scoping review 
provides a rapid way to identify the breadth of evidence represented 
in the literature to assist the adaptation of small-scale farmers to 
water scarcity.

Results
Research needs versus research effort. We found that 76.7% of 
small-scale farms and 72.4% of small-scale farm area across all 
LMICs were probably located in water scarce regions. We also found 
that existing technological penetration of basic irrigation infra-
structure for these farms was low. For example, we estimated that 
fewer than 37.2% of small-scale farms in water scarce regions across 
all LMICs were irrigated, compared to 43.2% of non-small-scale 
farms (Fig. 1 and Supplementary Fig. 1). The largest disparities in 
irrigation coverage between non-small-scale farms and small-scale 
farms were in Latin America and the Caribbean, South Asia and 
Sub-Saharan Africa. Yet, in East Asia and the Pacific and in the 
Middle East and North Africa regions, small-scale farms had greater 
irrigation coverage than non-small-scale farms.

We also found a large variation across countries of the number 
of studies of interventions for farmers living in water scarce regions 

(Fig. 2). When comparing where research on interventions was 
conducted with where high numbers of water scarce, small-scale 
farms were located, we observed considerable gaps for countries 
where few studies met our criteria, such as Nigeria, Mali, Uganda, 
Chad and Ivory Coast (Fig. 3 shows that these countries had 12, 10, 
7, 1 and 0 studies, respectively). There were also hotspots of water 
scarce, small-scale farms with more moderate research effort, which 
included India, Ethiopia, Kenya, Tanzania and Ghana (Fig. 3 shows 
that these countries had 74, 54, 48, 33 and 28 studies, respectively). 
These differences in the amount of studies are quite large when con-
sidering that the included studies ranged from 1962 to 2019.

A promising finding was that 55% of studies tested interventions 
in controlled field trials and 18% were modelling studies both of 
which focus on the causal relationships between the interventions 
and yield and/or incomes. In addition, 28% of studies were from 
household surveys to determine if interventions designed for water 
scarce, small-scale farms worked in farmers’ local contexts accord-
ing to farmers’ responses on yield and livelihood outcomes. Studies 
in high-income countries were excluded unless they were relevant 
to LMICs (for example, studies that used experiments and mod-
elling to mimic water scarce conditions) and those accounted for  
2% of the studies we analysed. We found eight meta-analyses and  
six systematic reviews in our literature search. Five of the meta- 
analyses found that seed priming, soil management and water 
management contributed to increased yields in water scarce con-
texts; the three meta-analyses that examined conservation agricul-
ture showed mixed results in its effects on yield for water scarce  
contexts (Table 1).

Research focus on yields versus livelihoods. We found that most 
articles assessed outcomes associated with yield (91% of articles) as 
compared to livelihoods (21% of articles examined incomes and/
or expenditures) (Fig. 4). Despite shifts from Green Revolution 
rhetoric in the 1950s–1970s to language used in the Millennium 
Development Goals that launched in 2000 and the subsequent 2015 
SDGs, research continues to focus on yields compared to liveli-
hoods (Supplementary Fig. 2).

We checked this research bias towards yields compared to live-
lihoods by assessing meta-analyses that synthesized the literature 
on interventions for small-scale farmers in water scarce regions. We 
found that all eight meta-analyses focused on yield (Table 1). This 
shows that not only is the focus on yield prevalent in the primary 
literature but it is also the sole focus of existing research syntheses 
that quantifies the relationships between interventions and outcome 
for small-scale farmers in water scarce regions to date.

In addition to outcomes, the coverage and evidence for differ-
ent kinds of interventions is also diverse. Farm-level interventions 
represent a toolbox of actions that farmers can take to tackle water 
scarcity directly, which include drip irrigation, soil improvement 
strategies, integrated pest management, crop rotation and so on 
(Fig. 4). While we found higher coverage for interventions around 
irrigation, tillage, soil amendments, cropping systems, crop varieties 
and pest management (145–210 articles), we found little work on 
key interventions of interest, including livestock interventions (43 
articles), solutions that protect natural resources at the farm scale, 
such as buffer strips and contouring (15 articles) and digital tech-
nology interventions (three articles) (see Supplementary Table 1 for 
full definitions of interventions). Changes in the number of stud-
ies increased for all interventions over time but the relative share 
of studies per intervention remained stagnant since the early 1990s 
(Supplementary Fig. 3).

Research on environmental impacts and effects on gender. We 
found relatively high coverage of research that examined environ-
mental impacts of the intervention assessed (68.9% of interven-
tions and 50.4% of articles; Fig. 5a). Most of these studies assessed 

Box 1 | Method summary

Spatial analysis
To calculate how many small-scale farmers live in water 

scarce regions, we overlaid spatial datasets of farm size and water 
scarcity. We then estimated the disparity that small-scale farmers 
face in accessing irrigation, a critical on-farm resource in water 
scarce regions. While this was a coarse method that relied on 
spatial overlays, it enabled us to take a high-level view on where 
water scarce areas and small-scale farmers are colocated and 
estimate the number of these farms that probably have access to 
irrigation.
Evidence synthesis

To identify research trends and gaps, we synthesized academic 
and grey literature from 26 databases. We focused on studies that 
tested the effects of on-farm interventions on small-scale farmers’ 
incomes or yields in water scarce regions across LMICs. We used 
a ‘systematic mapping’ method51 assisted by machine learning to 
quantify the number of studies per type of intervention and to 
identify countries that had few studies.

The inclusion criteria for our scoping review were that:
	(1)	 studies explicitly addressed small-scale farmers
	(2)	 studies examined on-farm production management tech-

niques or technologies that explicitly addressed water scar-
city, drought adaptation or water efficiency adaptation

	(3)	 studies examined the effect on yield or incomes of an 
on-farm intervention

	(4)	 study assessments needed to include either a control case 
for comparison (temporal or spatial) for identifying the 
outcomes in the absence of the intervention (this can be 
from a randomized control trial, pre–post design, post–
post design and so on) or a comparison between alternative 
interventions

Full description available in Methods. Evidence synthesis 
protocol available in the Supplementary Information.
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win–wins between farmers and the environment in the context of 
water scarcity, such as improving water efficiency, increasing water 
availability (for example, through rainwater harvesting) and manag-
ing soil for greater water retention. A smaller share of research (7% 
of interventions and 6.3% of articles; Fig. 5b) addressed the nega-
tive environmental effects of interventions, such as greenhouse gas 
emissions, biodiversity loss and land conversion/degradation.

We found few studies that considered gender aspects of the effects 
of interventions on yields and incomes. Only 9.6% of interventions 
(and 9.6% of articles; Fig. 5a) either assessed gender differences in 
the outcomes measured or framed their research with a gender lens, 
with most of these studies examining if the intervention could reduce 
the time burden many female farmers face. This limited number of 
studies was uncovered even though we used broad inclusion crite-
ria to include studies not only if they directly addressed gender out-
comes but also if they were framed in terms of gender issues.

Discussion
This scoping review quantified the global irrigation gap of 
small-scale farms and found that water scarce regions needed equi-
table irrigation infrastructure the most. While our results generally 
found that small-scale farmers face unequal access to one critical 
resource in adapting to water scarcity across LMICs, local politi-
cal, economic and environmental realities may determine irriga-
tion access. These realities may explain the variation in irrigation 
coverage between small-scale and non-small-scale farmers across 
regions. Hence, donors and researchers should focus on water scarce 
regions with the largest disparities in access to critical resources (for 
example, irrigation or other) and the lowest amount of evidence for 
the efficacy of on-farm interventions on yields and livelihoods. A 
limitation to these findings is that our research highlights only one 
type of disparity that small-scale farmers face (irrigation coverage) 
but future studies can build on our methods to examine other types 
of marginalization (for example, poor soil quality, distance to mar-
kets, climate exposure, land use, land tenure/governance and so on) 
to help prioritize research funding towards evidence-backed inter-
ventions for disadvantaged small-scale farmers.

We found that the shift in funding priorities for small-scale 
farmers from improving yields during the Green Revolution to 
including livelihoods, environmental trade-offs and gender impacts 
in the SDGs was not always reflected in the research. Yields have 
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Fig. 1 | Irrigation coverage for small-scale farms in water scarce regions. The percentage of small-scale and non-small-scale farms under irrigation 
(as opposed to rainfed) by region and across all LMICs. The left plot shows the relationships in water scarce regions, while the right plot shows the 
relationships in non-water scarce regions.

0 5 20 40 80

Number of studies

Fig. 2 | Number of studies per country included in literature synthesis. 
A map showing the number of studies that measured the impact of an 
intervention on the incomes and/or yields of small-scale farmers in water 
scarce regions. Countries in grey indicate that no studies met our inclusion 
criteria. High-income countries were only included if they tested an 
intervention relevant to small-scale farmers in water scarce regions of LMICs.
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Fig. 3 | Number of small-scale farms in water scarce regions compared to research coverage. Each point represents the number of small-scale farms in 
a country that are in water scarce regions. The size of the points corresponds to the number of studies that measured the impact of an intervention on the 
incomes and/or yields of small-scale farmers in water scarce regions. The colours indicate the economic grouping of the countries as low, lower-middle or 
upper-middle income.

Table 1 | Results from the eight meta-analyses included in our evidence synthesis

Refs. Intervention Outcome Effect Number of 
studies

Quality score 
(out of 4)

Regions

Ref. 13 Water harvesting Yields Increase 29 2.13 Semi-arid Africa and Asia

Ref. 14 On-farm seed priming Yields Increase 44 2.31 Global

Ref. 15 Agricultural water management 
technology

Yields Increase 1,430 2.25 Southern Africa

Ref. 16 Combined cattle manure and inorganic 
fertilizer

Yields Increase 46 2.19 Global

Ref. 17 Nutrient management Yields Increase 29 2.25 Africa

Ref. 18 Conservation agriculture Yields Decreasea 610 1.88 Global

Ref. 19 Conservation agriculture Yields Decrease 41 2.00 Sub-Saharan Africa

Ref. 20 Conservation agriculture Yields Increase 27 1.94 Southern Africa

Results are from the eight meta-analyses our scoping review identified to synthesize interventions for small-scale farmers to adapt to water scarcity. Each meta-analysis synthesized the effect of the 
intervention on small-scale farms’ yields. The ‘number of studies’ refers to the number of studies the meta-analysis included in their synthesis. The ‘quality score’ was the average score we rated each 
meta-analysis by using CEESAT55. aIncrease occurred only in certain conditions.
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remained the main focus in this research literature since the 1960s 
(Supplementary Fig. 2). Yet, yields only provide a partial farm pro-
ductivity measure based on output per unit of land cultivated. They 
cannot proxy for productivity measures that incorporate more 
production factors (for example, total factor productivity), for eco-
nomic measures (for example, farm profitability or farm household 
welfare measures based on income, consumption or asset holdings) 
or for dynamic measures that address the probability that the wel-
fare of a farm household falls below some threshold in a given year 
(for example, vulnerability or resilience). All of these outcomes can 
be difficult to measure and even yields, which are relatively straight-
forward to measure, are subject to bias when self-reported23. One 
cannot conclude whether an intervention has been successful for 
small-scale farmers without incorporating economic measures that 
properly account for self-provisioned inputs such as family labour 
and capture aspects of farmers’ livelihoods24.

Critical environmental trade-offs of interventions need to be 
tested to ensure that funded projects do not have deleterious effects 
on local natural resources and, in turn, on small-scale farmers’ future 
livelihoods. While clear environmental and productivity win–wins 
were prevalent in the literature, such as water-use efficiency25–27, it 
was concerning that so few studies jointly addressed cost-cutting 
solutions to both environmental degradation and productivity, 
which include, sustainable intensification, minimizing biodiversity 
loss and solutions across the food–energy–water nexus28–30. Future 
research should help identify where and when win–win interven-
tions exist or when environmental trade-offs are inevitable.

Similarly, there was a large research gap on gender dimensions of 
interventions. Donors should focus funding research that assesses 
interventions specifically designed to improve women’s outcomes, 
for example by addressing their large time burden. In addition, 
existing interventions need to be tested to ensure avoidance of  

unintended consequences on women. We were concerned to 
find that gender themes were so rarely addressed, even though 
women comprise 43% of the agricultural labour force, account for 
two-thirds of livestock keepers in LMICs and are often responsible 
for very large shares of agricultural tasks (for example, 90% of hand 
weeding across Sub-Saharan Africa), while consistently farming 
plots that are smaller than male farmers’ plots31. Studies examining 
the gender effects of on-farm interventions in water scarce regions 
should focus on gender-specific interventions, such as reducing 
unpaid labour requirements of women32, to free up women’s time 
towards the most productive activities. Improving the gender bal-
ance of female extension agents or agricultural researchers—for 
instance, only 24% of African agricultural researchers are female31—
may help to better align research priorities towards the needs of 
female small-scale farmers.

Given the importance of livestock for adaptation in water 
scarce conditions, climate solutions that protect farm-level natu-
ral resources, and the benefits of climate services and digital tech-
nology for in-season recommendations and responses, the lack of 
evidence we found suggests a need for more research addressing 
these three types of interventions. While the dearth of research in 
digital technology is probably due to its relatively recent emergence, 
the low interest in livestock and interventions that protect natural 
resources have been persistently low throughout the last several 
decades (Supplementary Fig. 3). The lack of research on livestock 
interventions to improve productivity or incomes in water scarce 
regions was particularly concerning considering an estimated 23% 
of farmers own cattle33. Our findings compliment the notion that 
pastoral systems in LMICs have tended to receive less investment 
from the international research community and other institutions, 
compared to livestock systems in high-income countries and crop-
ping systems more broadly34. While interest in livestock systems 
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Fig. 4 | Number of studies per outcome by intervention. The number of studies classified by intervention type, outcome and methodology. The left 
plot classifies studies that examined the effects of interventions on farmer incomes or expenditures, while the right plot classifies studies examining 
the effects of interventions on yields. Different colours correspond with different methodological approaches (for example, experimental plots, 
observational household or plot surveys, statistical modelling, meta-analysis or systematic review). Interventions are grouped into eight broad classes 
(see Supplementary Table 1 for full definitions). Water refers to direct water interventions (for example, irrigation or water harvesting). Soil includes direct 
soil-based interventions (for example, fertilizer or liming). Crop and pest include crop species and crop variety-based interventions and pest management 
as these can consist of overlapping interventions. Tillage includes all variants of tillage. Cropping system includes crop rotation, intercropping, fallow, 
monocropping and so on. Livestock refers to any intervention directly related to livestock (for example, species feed or vaccinations). Natural resource 
protection includes protection of farm natural resources (for example, via erosion control or buffer strips). Digital technology refers to any digital 
intervention (for example, weather advisories or precision agriculture).
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has, however, been growing in recent years, driven by increasing 
concerns about food security, land competition, the vulnerability 
of remote communities and the environment as well as by a rais-
ing awareness regarding the contribution of livestock systems to 
all these aspects35,36, we did not see relative increases in the num-
ber of studies examining these systems over time (Supplementary 
Fig. 3). Climate resilience strategies for livestock keepers require 
increased institutional support through policies that address the 
issues of land tenure, fragmentation and degradation35. The evi-
dence gap we found pertaining to natural resource protection may 
reflect the focus of this particular literature on different outcome 
metrics, such as contouring to prevent soil erosion or using buffer 
strips to improve biodiversity instead of the focused outcomes of 
improving yields and livelihoods of the SDG 2.3. However, as eco-
system services are an important dimension of a farm’s resilience to 
climate stressors and shocks37, natural resource protecting interven-
tions require more evidence for their effects on farmer livelihoods 
in water scarce regions.

Digital solutions for water scarce, small-scale farms is an emerg-
ing field but funders should prioritize research grants to test the 
livelihood impacts of these solutions. There are more applications 
for small-scale farmers generally38 but there is limited evidence 
to apply these interventions even outside of water scarce regions. 
For example, a meta-analysis carried out in 2019 only found five 
studies with nine observations that examined digital solutions that 
improved small-scale farmers’ yields (researchers found a 0–8% 
increase) and the odds of adopting a recommended agricultural 
input (researchers found a 13–31% increase)38. While the goal 
of our systematic map was not to identify studies suitable for a 
meta-analysis, we found seven studies that examined digital solu-
tions for farmers in water scarce regions. These studies focused on 
providing farmers with tools to improve the water-use efficiency of 
their irrigation systems39, climate information to farmers40 and to 
aid decisions in nutrient, water and weed management to reduce 
production risks41. Despite the promise of digital solutions in 

water scarce environments, we suggest that there needs to be better 
proof of digital technologies that are tested in low-bandwidth set-
tings since many small-scale farmers live outside of 3G and higher 

Box 2 | Recommendations

These recommendations address research funding priorities to 
bolster outcomes for small-scale farmers in water scarce regions.
	(1)	 Geographic focus. Donors should increase their focus on 

water scarce regions, especially in countries with many 
small-scale farmers and little research available, when evalu-
ating the impacts of on-farm interventions to improve out-
comes for small-scale farmers.

	(2)	 Sustainability focus. By requiring funded research to meas-
ure key environmental outcomes associated with interven-
tions in water scarce regions, donors can reduce the gap in 
evidence that quantifies trade-offs between on-farm inter-
ventions and deleterious environmental effects, whether 
they are experienced off-farm, thus harming other farmers, 
or on-farm, thus harming future livelihoods opportunities.

	(3)	 Gender focus. Donors should address the dearth of evidence 
seeking to improve outcomes for women in water scarce re-
gions by requiring funded research to explicitly address gen-
der themes.

	(4)	 Intervention focus. Donors can earmark research funds for 
addressing digital solutions and livestock interventions, two 
intervention types that have been neglected by research-
ers focusing on on-farm interventions to assist small-scale 
farmers in water scarce regions. Digital solutions comprise 
an emerging field that holds promise for improving farm 
management in water scarce regions. Interventions to en-
hance livestock productivity in mixed farming systems also 
offer an important opportunity to enhance the productivity 
of small-scale farmers in water scarce regions.
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mobile coverage areas42. Research in these geographies, metrics and 
outcomes will bring us closer to meeting the needs of water scarce, 
small-scale farms on the ground.

To achieve the SDG 2.3 goal of bolstering small-scale farmers’ 
yield and livelihoods, a greater research focus is needed in water 
scarce regions of LMICS. Future research needs to test the effects of 
on-farm interventions not only on yields but also on more outcomes 
that are relevant for farmer livelihoods, such as farm profitability, 
farmer income and resilience. Trade-offs between interventions 
and the environment need to continue to become part of research  
designs and donor requirements to ensure that unintended  
environmental impacts can be avoided, especially in regions with 
limited water resources and for populations that are systemati-
cally disadvantaged from accessing critical on-farm infrastructure. 
Similarly, gender dimensions of interventions require a tremen-
dous amount of support in research funding since these remain 
under-researched despite being an SDG cross-cutting theme. We 
suggest that funders incorporate these outcomes into their impact 
assessment frameworks for research grants. For specific policy  
recommendations see Box 2.

Methods
Spatial analysis. To contextualize the disparity small-scale farmers face in 
accessing critical resources, we quantified the number of small-scale farms 
with irrigation in water scarce regions in LMICs. We created a spatial layer of 
small-scale farms and overlaid it with available water scarcity and irrigation spatial 
layers. Our analysis provided estimates aggregated to the country level. While 
this was a coarse method that relied on spatial overlays, it enabled us to take a 
high-level view on where water scarce small-scale farmers live and how many of 
these farms have access to irrigation.

To create the small-scale farms layer, we implemented the SDG 2.3 definition 
of small-scale farms through spatial proxies at 10 km2 resolution. SDG 2.3 defines 
small-scale farms as the smallest 40% of farms in a country and farms with the 
lowest 40% of agricultural revenue in a country43. We used an available farm size 
map at 10 km2 resolution with a global spatial extent42. It was created by using a 
crowd-sourced field size map44 to downscale the national farm size distributions of 
the World Census of Agriculture8. Each grid cell contains the most common farm 
size using World Census of Agriculture categories: 0–1 ha, 1–2 ha, 2–5 ha, 5–10, ha, 
10–20 ha, 20-50 ha, 50–100 ha, 100–200 ha, 200–500 ha, 500–1,000 ha and farms 
>1,000 ha. We computed the smallest 40% of farms in a country on the basis of this 
map. Since there are no comparable spatial data on agricultural revenue, we used 
a proxy for agricultural revenue. We used a downscaled gross domestic product 
(GDP) per capita dataset available at 110 km2 resolution45, which we subsetted 
to cropland area46. We computed the lowest 40% of GDP per capita per country 
using this data. We aggregated the farm size map to the same spatial resolution 
as the GDP per capita map and overlaid these two layers to find pixels that were 
both the smallest 40% of farms in each country and in agricultural areas with the 
lowest 40% of GDP per capita in each country. We estimated the number of farms 
in each pixel by dividing the agricultural area by the predominant farm size of that 
pixel. This approach allowed us to identify the poorest agricultural areas with the 
smallest farms in each country.

We created the water scarcity layer by combining two different measures 
of water scarcity at 10 km2 resolution. Each grid cell needed to be either green 
(rainwater stored in the soil) or blue (fresh surface water and groundwater) water 
scarce. We defined green water scarcity according to the IPCC definitions of a 
semi-arid region, which is an area with <250 mm of rainfall in a year47. We used the 
Global Precipitation Climatology Centre rainfall dataset (full v.2018)48 to calculate 
the median rainfall per grid cell from 1996 to 2005. We relied on Mekonnen and 
Hoekstra’s blue water scarcity dataset to identify grid cells that had on average at 
least one month of blue water scarcity a year from 1996 to 200549. Through using 
subnational and intra-annual green and blue water scarcity data, we implemented a 
more detailed view on water scarcity than commonly reported country-level water 
scarcity metrics reported at annual intervals.

To determine the irrigation area for small-scale farms compared to 
non-small-scale farms, we used the global rainfed and irrigated croplands (GRIPC) 
layer, which is a global irrigation map at 500 m2 resolution50. The irrigation map 
was created through remote sensing and calibrated to nationally reported irrigation 
coverage statistics to represent circa 2005 values. This irrigation map provided 
the percentage of agricultural area in a grid cell covered by irrigated cultivation, 
rice paddy or rainfed cultivation. For our analysis, we only used the irrigated 
and rainfed categories. We excluded paddy cropland (and the corresponding 
farming populations) from our analysis because GRIPC does not further classify 
paddy fields as irrigated or rainfed in their pixel level dataset but they do offer 
that irrigated paddy accounts for 66 Mha of global cropland and non-irrigated 
paddy accounts for 63 Mha of global cropland in their manuscript; put another 

way, this near 50/50 split should not have a major effect on our estimates of the 
share of water scarce areas that are irrigated but future studies would benefit from 
better spatial data that splits irrigated and non-irrigated paddy. To provide the full 
range of values, our scoping review did not include paddy and found that 37.22% 
of crop area farmed by small-scale farmers in water scarce regions is irrigated 
(versus 43.19% farmed by not small-scale farmers). If we assume all paddy fields 
are rainfed, then 26.48% of crop area farmed by small-scale farmers in water 
scarce regions is irrigated (versus 37.24% farmed by not small-scale farmers). 
If we assume all paddy fields are irrigated, then 55.07% of crop area farmed by 
small-scale farmers in water scarce regions is irrigated (versus 52.82% farmed by 
not small-scale farmers).

We overlaid the small-scale farm layer, the water scarcity layer and the 
irrigation layer to calculate the number of farms with and without irrigation. We 
repeated this analysis for non-small-scale farms and non-water scarce regions. 
Results were aggregated to the country level and summed across all LMICs and per 
world region.

Evidence synthesis. We used a ‘systematic map’ assisted by machine learning and 
natural language processing (NLP) to perform our evidence review. Systematic 
maps (also referred to as ‘evidence maps’ and ‘gap maps’) are an emerging type of 
systematic review that attempt to identify patterns of research, to identify gaps in 
a field and future priorities for research51. A systematic map is not like traditional 
expert-based or narrative reviews in that it attempts to capture all of the research 
on a given topic and reduce the authors’ biases51. Systematic maps can capture 
the full-breadth of interventions relevant to a population, such as our scoping 
review that asks: What is the spectrum of farm-level interventions that have been 
tested to increase small-scale farmers’ incomes, yields and productivity in water 
scarce regions?

Our systematic map method had six steps: (1) forming the research question; 
(2) querying academic and grey literature databases for relevant studies; (3) 
screening titles and abstracts to determine if a study should be included in our 
synthesis; (4) screening the full text of studies that passed step 3 to determine if a 
study should be included in our synthesis; (5) extracting relevant data from each 
included study; and (6) summarizing and reporting the results. The protocol for 
this scoping review was registered on the Open Science Framework (https://osf.io/
c6n4k/) before study selection, which can also be accessed in our Supplementary 
Information.

The guiding question for this systematic map was: ‘What spectrum of 
farm-level interventions to alleviate water scarcity has been tested to increase 
small-scale farmers’ incomes, yields and productivity?’

An exhaustive search strategy was developed and applied to 26 academic and 
grey literature databases to identify all available research pertaining to on-farm 
interventions that have been tested to increase small-scale farmers’ incomes 
and yields in water scarce regions in low- and middle-income countries. 
Search terms included variations of the key concepts in the research question: 
small-scale farmers, water scarcity, and income, yield and productivity. Searches 
were performed in the following bibliographic databases: CAB Abstracts 
and Global Health (access via CAB Direct), Web of Science Core Collection 
(access via Web of Science), Scopus (access via Elsevier), Agricola (access via 
EBSCOhost), EconLit (access via EBSCOhost) and ProQuest Dissertations & 
Theses Global (access via ProQuest). A search of grey literature sources (20 
specialist organizations and online databases) was also conducted. Full search 
strategies for each database, including grey literature, can be accessed in their 
entirety in our protocol available in our Supplementary Information or at 
https://osf.io/c6n4k/. Search results were de-duplicated to remove redundant 
citations identified from multiple sources, resulting in 18,365 unique  
publication records.

We screened the 18,365 titles and abstracts to include or exclude from our 
scoping review. Two independent reviewers assessed each title and abstract. 
If there was disagreement between reviewers on whether the study was to be 
included, a third independent reviewer decided. Articles needed to meet the 
following eligibility criteria for inclusion in our systematic map. (1) Studies needed 
to address small-scale farms explicitly. For inclusion in the evidence synthesis, 
we defined a small-scale farm to meet two of four dimensions: land size, labour 
input (especially of family members), market orientation and economic size. (2) 
Studies examining on-farm production management techniques or technologies 
explicitly addressing water scarcity, drought adaptation or water efficiency 
adaptation. For the systematic map, we erred on the side of inclusivity and used 
a general definition of water scarcity to include a broad range of studies and 
interventions across a spectrum of agricultural regions as well as the concept of 
water stress. We considered water scarcity as when there is not enough water to 
be used by a farmer for agricultural purposes, which includes blue and green 
water. We considered water stress to be an additional subset of water scarcity 
where certain farmers are economically disadvantaged due to poor access to water 
resources. (3) Studies examining the effect of an on-farm intervention on yields 
or incomes. While interventions that improve small-scale farmers welfare can 
range across plot-level technologies, farm-level management, collective action, 
government infrastructure projects and bi/multilateral trade agreements, we 
only focused on-farm-level interventions to represent a toolbox of actions that 
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farmers can take to tackle water scarcity directly. (4) Studies including either a 
control case for comparison (temporal or spatial) for identifying counterfactual 
outcomes in the intervention’s absence (for example, by using randomized control 
trials, pre–post designs, random block designs, modelling and so on) or studies 
comparing alternative interventions. We included reviews if they were systematic 
reviews or meta-analyses. The most common reason an article was excluded was 
because it characterized a farming practice, rather than measuring the effects of 
the farming practice on yields or livelihoods. Other common reasons that studies 
were excluded were because the interventions were not explicitly linked to water 
scarcity, water savings or improving adaptation to drought. Several studies were not 
in English, which was a limitation of our research.

To assist the time-consuming task of sorting the 18,365 titles and abstracts 
that we identified in the academic and grey literature databases, we used a 
machine learning approach. Using NLP and machine learning for this stage of 
systematic reviews is an emerging method52. While studies have used Naive Bayes 
and Support Vector Machines (SVM) models52,53 the Google Development Team 
released the Bidirectional Encoder Representations from Transformers (BERT) 
model on Tensorhub in 2019 and it has outperformed other NLP models in a 
variety of tasks54. BERT is a deep learning language representation model that is 
context aware, in which the word in context of the sentence and the sentence in the 
context of the paragraph are embedded in the structure of the model. The BERT 
comes pretrained, which speeds up processing time since the end user only needs 
to fine-tune the model. Our scoping review tests the BERT model against other 
classification models to assist a systematic review.

Our team manually classified 1,500 titles and abstracts to include or exclude 
from our scoping review. We split the manually classified titles and abstracts into 
training and test data to build and validate several machine learning classifiers. 
We tested the accuracy of Naive Bayes and SVM, where we used a bag-of-words 
model with term-frequency times inverse document-frequency (TFIDF) to 
construct the features of the model. We conducted cross-validated grid searches 
to identify optimal sets of hyperparameters, which included removing stop 
words (common words in the English language) and stemming (converting 
the word to the root word); all hyperparameters assessed can be found in the 
supplemental code provided. We compared these scores to a BERT model that 
we fine-tuned to minimize binary cross entropy loss in a classification layer. We 
used the multilanguage base version of BERT (12-layer, 768-hidden, 12-heads, 
110 M parameters), which was trained on the top 102 languages with the largest 
Wikipedias. Our supplemental code details all parameterization (https://github.
com/vinnyricciardi/Ricciardi_etal_2020_ceres). For all models, we calculated 
accuracy, precision, recall and F1 scores through k-fold cross validation (k = 10) 
(Supplementary Table 3). The goal was for the model to perform better than the 
level of agreement our team achieved during the manual classification of titles and 
abstracts. During the manual classification, two random reviewers (out of a team of 
ten reviewers) classified each title and abstract. If there was disagreement, a third 
reviewer broke the tie. Reviewers agreed on the classification 82% of the time. Each 
of the NLP models performed better than 82%. BERT was the best-performing 
model with an 88% accuracy (Supplementary Table 3). We applied this final model 
to the 18,365 titles and abstracts to classify each study to be included or excluded 
from our scoping review. The model included 1,423 studies in our scoping review 
for full-text review, of which we were able to find and download 1,355 texts.

In the next phase of our assessment, we downloaded the 1,355 full-texts and 
manually checked if they were to be included or excluded from our scoping review. 
In the fourth stage of our assessment, for each of the 560 articles included, we 
manually extracted the location each study was conducted, the type of method, 
the type of farming system (crop, livestock or mixed), the intervention assessed 
(see Supplementary Table 1 for full list), the outcome assessed (yield or income) 
and whether the study measured a cross-cutting theme (gender effects or 
environmental impacts). This final stage consisted of one reviewer extracting the 
information from each text, with communication between reviewers to ensure 
consistency. Supplementary Fig. 4 shows the number of publications included 
and excluded at each stage. Our final analysis consisted of cross-tabulations and 
descriptive statistics.

Through our evidence synthesis, we identified eight meta-analyses. We 
extracted the intervention and outcome assessed, the location(s) that the 
meta-analysis included, also the number of studies the meta-analysis included. 
We recorded the main finding of the meta-analysis to understand the impact 
of the intervention on the outcome (for example, did water harvesting increase, 
decrease or have no effects on yields of water scarce, small-scale farms). To assess 
the quality of each meta-analysis, we relied on Collaboration for Environmental 
Evidence Synthesis Assessment Tool (CEESAT)55, which provides a score sheet of 
16 questions to appraise the rigour, transparency and limitations of the systematic 
review or meta-analysis. For each question, the meta-analysis can receive a red 
score for the lowest score, an amber score, a green score or a gold score for the 
highest rating. We converted these scores from one to four, averaged the scores and 
presented them in Table 1. Our Supplementary Information provides our scoring 
for the CEESAT score sheet.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
For reproducibility, updatability and future research to further develop our 
methods, the data that support the findings of this scoping review are available in 
figshare: https://doi.org/10.6084/m9.figshare.12867038

Code availability
For reproducibility, updatability and future research to further develop our 
methods, all analysis codes are available in the public GitHub repository: https://
github.com/vinnyricciardi/Ricciardi_etal_2020_ceres
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in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Covidence and Microsoft Excel softwares were used for data collection and storage, respectively.

Data analysis Python and R were use for all analyses.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

All data generated or analysed during this study are included in this published article (and its supplementary information files).
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Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description This study was comprised of three analyses. The first analysis overlaid several global spatial datasets to identify where small-scale 
farmers lived in water scarce regions. The second analysis identified the percentage of area covered by irrigation on small-scale farms 
compared to non-small-scale farms in water scarce and non-water scarce areas. The third analysis was systematic review to identify 
the available evidence for solutions for small-scale farmers to adapt to water scarcity.

Research sample The first two analyses were not samples, but global estimates using available spatial datasets that contained full spatial extents of all 
agricultural area globally. The systematic review sampled 26 academic and grey literature databases for all available evidence. The 
systematic review was partially automated by supervised machine learning.

Sampling strategy The systematic review's abstract screening phase was automated by supervised machine learning. 1500 abstracts were chosen at 
random from the 18,000+ articles returned from the 26 academic and grey literature databases. These 1500 abstracts were manually 
classified by the author team to be included in our study. Each abstract was classified by two reviewers. A third reviewer decided any 
disagreement between the two reviewers. The 1500 articles were then used as the training/testing data for a machine learning 
classification model. K-folds cross validation was used (k=10) for validation, where folds were created by random sampling.

Data collection A set of boolean terms were created to query 26 academic and grey literature databases. These boolean terms are provided in the in 
our a priori protocol available at Open Science Framework (https://doi.org/10.17605/OSF.IO/EFK7B).  

Timing and spatial scale The spatial analyses were bounded between 1996 and 2005 due to the spatial datasets we relied upon. The systematic review was 
performed in June 2019 and included any articles prior.

Data exclusions No data was excluded.

Reproducibility All code and compiled data are available in the supplemental material provided. Additionally, we wrote an a priori systematic review 
protocol available at Open Science Framework (https://doi.org/10.17605/OSF.IO/EFK7B) to assist in reproducibility.

Randomization See sampling strategy section for details of random sampling.

Blinding Blinding was not relevant to our spatial analysis since we relied on previously created datasets. For the systematic reviews, only titles 
and abstracts were screened by reviewers.

Did the study involve field work? Yes No

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
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MRI-based neuroimaging


	A scoping review of research funding for small-scale farmers in water scarce regions

	Method summary

	Results

	Research needs versus research effort. 
	Research focus on yields versus livelihoods. 
	Research on environmental impacts and effects on gender. 

	Discussion

	Recommendations


	Methods

	Spatial analysis
	Evidence synthesis
	Reporting Summary

	Acknowledgements

	Fig. 1 Irrigation coverage for small-scale farms in water scarce regions.
	Fig. 2 Number of studies per country included in literature synthesis.
	Fig. 3 Number of small-scale farms in water scarce regions compared to research coverage.
	Fig. 4 Number of studies per outcome by intervention.
	Fig. 5 Number of studies per cross-cutting theme over time.
	Table 1 Results from the eight meta-analyses included in our evidence synthesis.




