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An overview of clinical decision support systems: benefits,
risks, and strategies for success
Reed T. Sutton 1, David Pincock2, Daniel C. Baumgart1, Daniel C. Sadowski1, Richard N. Fedorak1 and Karen I. Kroeker1*

Computerized clinical decision support systems, or CDSS, represent a paradigm shift in healthcare today. CDSS are used to augment
clinicians in their complex decision-making processes. Since their first use in the 1980s, CDSS have seen a rapid evolution. They are
now commonly administered through electronic medical records and other computerized clinical workflows, which has been
facilitated by increasing global adoption of electronic medical records with advanced capabilities. Despite these advances, there
remain unknowns regarding the effect CDSS have on the providers who use them, patient outcomes, and costs. There have been
numerous published examples in the past decade(s) of CDSS success stories, but notable setbacks have also shown us that CDSS
are not without risks. In this paper, we provide a state-of-the-art overview on the use of clinical decision support systems in
medicine, including the different types, current use cases with proven efficacy, common pitfalls, and potential harms. We conclude
with evidence-based recommendations for minimizing risk in CDSS design, implementation, evaluation, and maintenance.
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INTRODUCTION: WHAT IS A CLINICAL DECISION SUPPORT
SYSTEM?
A clinical decision support system (CDSS) is intended to improve
healthcare delivery by enhancing medical decisions with targeted
clinical knowledge, patient information, and other health informa-
tion.1 A traditional CDSS is comprised of software designed to be a
direct aid to clinical-decision making, in which the characteristics
of an individual patient are matched to a computerized clinical
knowledge base and patient-specific assessments or recommen-
dations are then presented to the clinician for a decision.2 CDSSs
today are primarily used at the point-of-care, for the clinician to
combine their knowledge with information or suggestions
provided by the CDSS. Increasingly however, there are CDSS
being developed with the capability to leverage data and
observations otherwise unobtainable or uninterpretable by
humans.
Computer-based CDSSs can be traced to the 1970s. At the time,

they had poor system integration, were time intensive and often
limited to academic pursuits.3,4 There were also ethical and legal
issues raised around the use of computers in medicine, physician
autonomy, and who would be at fault when using the
recommendation of a system with imperfect ‘explainability’.5

Presently, CDSS often make use of web-applications or integration
with electronic health records (EHR) and computerized provider
order entry (CPOE) systems. They can be administered through
desktop, tablet, smartphone, but also other devices such as
biometric monitoring and wearable health technology. These
devices may or may not produce outputs directly on the device or
be linked into EHR databases.6

CDSSs have been classified and subdivided into various
categories and types, including intervention timing, and whether
they have active or passive delivery.7,8 CDSS are frequently
classified as knowledge-based or non-knowledge based. In
knowledge-based systems, rules (IF-THEN statements) are created,
with the system retrieving data to evaluate the rule, and
producing an action or output7; Rules can be made using

literature-based, practice-based, or patient-directed evidence.2

CDSS that are non-knowledge based still require a data source,
but the decision leverages artificial intelligence (AI), machine
learning (ML), or statistical pattern recognition, rather than being
programmed to follow expert medical knowledge.7 Non-
knowledge based CDSS, although a rapidly growing use case
for AI in medicine, are rife with challenges including problems
understanding the logic that AI uses to produce recommenda-
tions (black boxes), and problems with data availability.9 They
have yet to reach widespread implementation. Both types of
CDSS have common components with subtle differences,
illustrated in Fig. 1.
CDSS have been endorsed by the US Government’s Health and

Medicare acts, financially incentivizing CDS implementation into
EHRs.10 In 2013, an estimated 41% of U.S. hospitals with an EHR,
also had a CDSS, and in 2017, 40.2% of US hospitals had advanced
CDS capability (HIMSS Stage 6).11 Elsewhere, adoption rates of
EMRs have been promising, with approximately 62% of practi-
tioners in Canada in 2013.12 Canada has had significant
endorsement from the government level, as well as Infoway, a
not-for-profit corporation.13 England has also been a world leader
in healthcare IT investment, with up to 20 billion euros invested
back in 2010.13 Several countries have also managed to
implement national health records, at least for patient-facing
data, including Denmark, Estonia, Australia, and others.14

The scope of functions provided by CDSS is vast, including
diagnostics, alarm systems, disease management, prescription
(Rx), drug control, and much more.15 They can manifest as
computerized alerts and reminders, computerized guidelines,
order sets, patient data reports, documentation templates, and
clinical workflow tools.16 Each CDSS function will be discussed in
detail throughout this review, with the potential and realized
benefits of these functions, as well as unintended negative
consequences, and strategies to avoid harm from CDSS. Metho-
dology used to inform the review is shown in Box 1.
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FUNCTIONS AND ADVANTAGES OF CDSS
Patient safety
Strategies to reduce medication errors commonly make use of
CDSS (Table 1). Errors involving drug-drug interactions (DDI) are
cited as common and preventable, with up to 65% of inpatients
being exposed to one or more potentially harmful combina-
tions.17 CPOE systems are now designed with drug safety
software that has safeguards for dosing, duplication of
therapies, and DDI checking.18 The types of alerts generated
by these systems are among the most disseminated kind of
decision support.19 However, studies have found a high level of
variability between how alerts for DDIs are displayed (e.g.,
passive or active/disruptive), which are prioritized,20,21 and in
the algorithms used to identify DDIs.18,22 Systems often have
varying degrees of irrelevant alerts presented, and there is no
standard for how best to implement which alerts to providers.
The US Office of the National Coordinator for Health Information
Technology has developed a list of ‘high-priority’ list of DDIs for
CDS, which has reached various levels of endorsement and

deployment in CDSS’ of other countries including the U.K.,
Belgium, and Korea.20,21,23

Other systems targeting patient safety include electronic drug
dispensing systems (EDDS), and bar-code point-of-care (BPOC)
medication administration systems.24 These are often implemen-
ted together to create a ‘closed loop’, where each step of the
process (prescribing, transcribing, dispensing, administering) is
computerized and occurs within a connected system. At admin-
istration, the medication is automatically identified through radio-
frequency identification (RFID) or barcodes and crosschecked with
patient information and prescriptions. This presents another target
for CDSS and the potential benefit is the prevention of medication
administration errors occurring at the ‘bedside’ (opposed to
further upstream). Adoption is relatively low, partly due to high
technology requirements and costs.25 However; studies show
good efficacy for these systems in reducing errors.26 Mohoney
et al. showed that many of these systems can be combined with
CPOE and CDSS simultaneously, with reduced prescribing error
rates for drug allergy detection, excessive dosing, and incomplete
or unclear ordering.24 As with most CDSS, errors can still be made
if providers omit or deliberately work around the technology.27

CDSS also improve patient safety through reminder systems for
other medical events, and not just those that are medication
related. Among numerous examples, a CDSS for blood glucose
measurement in the ICU was able to decrease the number of
hypoglycemia events.28 This CDSS automatically prompted nurses
to take a glucose measurement according to a local glucose
monitoring protocol, which specified how often measurements
should be done according to specific patient demographics and
previous glucose levels/trends.28

Overall, CDSS targeting patient safety through CPOE and other
systems have generally been successful in reducing prescribing
and dosing errors, contraindications through automated warnings,
drug-event monitoring and more.29 Patient safety can be
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Fig. 1 Diagram of key interactions in knowledge-based and non-knowledge based CDSS. They are composed of (1) base: the rules that are
programmed into the system (knowledge-based), the algorithm used to model the decision (non-knowledge based), as well as the data
available, (2) inference engine: takes the programmed or AI-determined rules, and data structures, and applies them to the patient’s clinical
data to generate an output or action, which is presented to the end user (eg. physician) through the (3) communication mechanism: the
website, application, or EHR frontend interface, with which the end user interacts with the system9.

Box 1. Methods and sources used for this overview

● MEDLINE search 1980-January 2018. Key words: CDSS, diagnostic decision
support system/DDSS, personal health record/PHR decision support, EHR
decision support

● Hand searches of the references of retrieved literature
● University libraries searching for texts on clinical decision support systems

and other keywords mentioned above
● Personal and local experience working with healthcare technology and

decision support systems
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Table 1. Benefits of clinical decision support systems (CDSS), possible harms, and evidence-based mitigation strategies.

1. Functions and advantages
of CDSS

2A. Potential harm of CDSS 2B. Solution(s) to mitigate harm 2C. Explanation of solution(s)

Patient Safety
Reducing incidence of
medication/prescribing errors
and adverse events.

Alert fatigue
A phenomenon where too many
insignificant alerts or CDSS
recommendations are presented,
and providers start to dismiss them
regardless of importance.

Prioritize critical alerts, minimize use
of disruptive alerts for non-critical
indications.

Alert fatigue might be thwarted by
prioritizing and selecting alerts that
are critically important, that will have
the greatest impact, and by tailoring
alerts to specific specialties and
severities (personalization).109

DDI testing software should ideally
be programmed with an algorithm
that incorporates concomitant
medication, lab values, patient
demographics, and administration
times, to be as specific as possible.18

Clinical management
Adherence to clinical guidelines,
follow-up and treatment
reminders, etc.

Negative impact on user skills
One example is reliance on, or
excessive trust in the accuracy of a
system.

Avoid prescriptiveness in system
design. Evaluate system impact on
an ongoing basis.

Systems should be set up to be
useful to clinicians, without
jeopardizing autonomy or being too
‘prescriptive’ and definitive. It is
important to conduct analysis to see
how the system is being used in the
long term, after implementation. If
accuracy is an issue, design changes
might need to be taken to prompt
extra checks or confirmation of
orders.85

Cost containment
Reducing test and order
duplication, suggesting cheaper
medication or treatment options,
automating tedious steps to
reduce provider workload, etc.

Financial challenges
Setup can be expensive (capital or
human resource), and long-term
cost-effectiveness is not
guaranteed.

Design and plan for longitudinal cost
analysis at the outset. Specify
measurements for non-financial
benefits where possible.

An analysis should be done to
determine if the costs are justified
and if there is a good return on
investment.110 Cost analysis is
notoriously missing in the literature,
but examples can be found.107,111,112

Payers may be more willing to
support CDSS if cost-savings can be
shown elsewhere in the system /
process. This means looking at more
than just direct costs a using metrics
such as patient outcomes or quality-
adjusted life years (QALY).

Administrative function/
automation
Diagnostic code selection,
automated documentation and
note auto-fill.

System and content maintenance
challenges
As practice changes, there can be
difficulty keeping the content and
knowledge rules that power CDSS
up to date.

(1) Knowledge Management (KM)
Service in place, with a focus on
translation to CDSS systems.
(2) System for measurement and
analysis of CDSS performance.

(1) Facilitates scheduled review,
methods for acquiring and
implementing new knowledge, and
streamlined processes for gathering
physician feedback on the system as
well as training users on why certain
data entry and standardization of
data entry practices. Standards for
organizing KM management have
been published.113,114

(2) It is important to identify changes
in performance and use over time. In
addition, the quality of the data
repository should be monitored and
it is also important to ensure that
conclusions are not being made on
corrupted or poor quality data
beforehand.115

Diagnostics support
Providing diagnostic suggestions
based on patient data,
automating output from test
results.

User distrust of CDSS
Users may not agree with the
guideline provided by the CDSS.

Reference expert knowledge—
include scientific references in
messages where appropriate.

To provide a verifiable source of
information to the user on why the
recommendation exists.116 In
addition to increasing trust, this may
provide direction for users to update
their knowledge in case they were
not aware of the recommendation.
Many systems also query reasons for
not following a recommendation in
order to elucidate the source of
mistrust.117 This is a good idea, but
should not be mandatory or ‘bulky’
in design.
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Table 1 continued

1. Functions and advantages
of CDSS

2A. Potential harm of CDSS 2B. Solution(s) to mitigate harm 2C. Explanation of solution(s)

Diagnostics Support: Imaging,
Laboratory, and Pathology
Augmenting the extraction,
visualization, and interpretation
of medical images and
laboratory test results.

Transportability/interoperability
CDSS face challenges regarding
integration with other hospitals or
systems, making it inefficient for
otherwise high-quality systems to
be disseminated and scaled.

(1) Adoption of industry standards.
(2) Secure cloud services and
blockchain.

Major open standards for structural
and semantic interoperability and
exchange continue to be developed
and improved by organizations such
as Health Level 7 International
(HL7),118 SNOMED International,119

Digital Imaging and
Communications (DICOM) for
imaging standards, and many
others.120 As much as possible, these
standards should be adopted at all
levels within the healthcare
organization, and with the external
systems being used.
Cloud-based EHR architecture allows
for more open architecture, and
flexible connectivity between
systems. As with any medical system,
security must be assured through
compliance with legislation such as
Health Insurance Portability and
Accountability Act (HIPAA) in the
USA, Personal Information Protection
and Electronic Documents Act
(PIPEDA) in Canada, and the Data
Protection Directive and General
Data Protection Regulation (GDPR) in
Europe. In the future, we may also
see blockchain used to enable
greater interoperability and improve
security for health information
exchange (HIE).121,122

Patient decision support
Decision support administered
directly to patients through
personal health records (PHR)
and other systems.

Dependency on computer literacy
CDSS may require a very high
technological proficiency to use

(1) Conform to existing functionality.
(2) Adequate training made available
at launch.

(1) Maintaining consistency with the
user interface of the pre-existing
system (if there is one) is crucial to
ensure users don’t have a steep
learning curve to use the system.
(2) Adequate training should be
available and easily accessible for
users. Training should ideally be
done in person by a clinician leader
with vast EHR experience to generate
buy-in.123 Training needs to be
available on an ongoing basis, as
new staff and users join. One
strategy is to have on-site team
members designated as elite users,
and capable of providing training
sessions.

Better Documentation Inaccurate and poor-quality data/
documentation
CDSS may aggregate data from
multiple sources that are not
synced properly. Users may develop
manual workarounds that
compromise data.

(1) Expert Knowledge of interlinked
systems.
(2) IT testing/debugging during
development and
implementation stage.

The team needs to be familiar and
have expert knowledge of all
external systems that feed data into
the database used by the CDSS.
Experts recommend testing clinical
rules for PPV and NPV during the
process of development and
implementation.109 If user generated
data is an issue, it may be that
physicians have not received the
proper training on how to read,
interpret and respond to alerts, or
are depending on pharmacists to
check medication orders before
dispensation.124,125

Workflow improvement
CDSS can improve and expedite
an existing clinical workflow in
an EHR with better retrieval and
presentation of data.

Disrupted/fragmented workflow
CDSS can also disrupt existing
workflows if they require interaction
external to the EHR, or don’t match

(1) Usability evaluation.
(2) Workflow modeling.

(1) Rigorous and iterative usability
evaluations and pilot testing should
be conducted on CDSS before using
them in clinical settings. Many
usability assessment tools are
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considered a secondary objective (or requirement) of almost all
types of CDSS, no matter the primary purpose for their
implementation.

Clinical management
Studies have shown CDSS can increase adherence to clinical
guidelines.30 This is significant because traditional clinical guide-
lines and care pathways have been shown to be difficult to
implement in practice with low clinician adherance.31,32 The
assumption that practitioners will read, internalize, and implement
new guidelines has not held true.33 However, the rules implicitly
encoded in guidelines can be literally encoded into CDSS. Such
CDSS can take a variety of forms, from standardized order sets for
a targeted case, alerts to a specific protocol for the patients it
pertains to, reminders for testing, etc. Furthermore, CDSS can
assist with managing patients on research/treatment protocols,34

tracking and placing orders, follow-up for referrals, as well as
ensuring preventative care.35

CDSS can also alert clinicians to reach out to patients who have
not followed management plans, or are due for follow-up, and
help identify patients eligible for research based on specific
criteria.36 A CDSS designed and implemented at Cleveland Clinic
provides a point-of-care alert to physicians when a patient’s
record matches clinical trial criteria.37 The alert prompts the user
to complete a form which establishes eligibility and consent-to-
contact, forwards the patient’s chart to the study coordinator, and
prints a clinical trial patient information sheet.

Cost containment
CDSS can be cost-effective for health systems, through clinical
interventions,38 decreasing inpatient length-of-stay, CPOE-
integrated systems suggesting cheaper medication alternatives,39

or reducing test duplication. A CPOE-rule was implemented in a
pediatric cardiovascular intensive care unit (ICU) that limited the
scheduling of blood count, chemistry and coagulation panels to a
24-h interval.40 This reduced laboratory resource utilization with a
projected cost savings of $717,538 per year, without increasing
length of stay (LOS), or mortality.
CDSS can notify the user of cheaper alternatives to drugs, or

conditions that insurance companies will cover. In Germany, many
inpatients are switched to drugs on hospital drug formularies.
After finding that 1 in 5 substitutions were incorrect, Heidelberg
hospital developed a drug-switch algorithm and integrated it into
their existing CPOE system.41 The CDSS could switch 91.6% of 202
medication consultations automatically, with no errors, increasing
safety, reducing workload and reducing cost for providers.

Administrative functions
CDSS provide support for clinical and diagnostic coding, ordering
of procedures and tests, and patient triage. Designed algorithms
can suggest a refined list of diagnostics codes to aid physicians in
selecting the most suitable one(s). A CDSS was conceived to
address inaccuracy of ICD-9 emergency department(ED)

admission coding (ICD is International Statistical Classification of
Diseases, standardized codes used to represent diseases and
diagnoses).42 The tool used an anatomographical interface (visual,
interactive representation of the human body) linked to ICD codes
to help ED physicians accurately find diagnostic admission codes
faster.
CDSS can directly improve quality of clinical documentation. An

obstetric CDSS featured an enhanced prompting system, sig-
nificantly improving documentation of indications for labor
induction and estimated fetal weight, compared to control
hospital.43 Documentation accuracy is important because it can
directly aid clinical protocols. For example, a CDSS was
implemented to ensure patients were properly vaccinated
following splenectomy, to combat the increased risk of infections
(including pneumococcal, Haemophilus influenzae, meningococcal,
etc.) that comes with spleen removal. However, the authors found
that 71% of patients with the term ‘splenectomy’ in their EHR did
not have it documented on their problem list (which was what
triggers the CDSS alert).44 A supplemental CDSS was then
developed to enhance problem list documentation of splenect-
omy,45 and improve the utility of the original vaccination CDSS.

Diagnostics support
CDSS for clinical diagnosis are known as diagnostic decision
support systems (DDSS). These systems have traditionally
provided a computerized ‘consultation’ or filtering step, whereby
they might be provided data/user selections, and then output a
list of possible or probable diagnoses.46 Unfortunately, DDSS have
not had as much influence as other types of CDSS (yet) for reasons
including negative physician perceptions and biases, poor
accuracy (often due to gaps in data availability), and poor system
integration requiring manual data entry.47,48 The latter is
improving with better EHR-integration and standardized vocabu-
lary like Snomed Clinical Terms.
A good example of an effective DDSS is one which was created

by Kunhimangalam et al.49 for diagnosis of peripheral neuropathy
using fuzzy logic. Through 24 input fields which include symptoms
and diagnostic test outputs, they achieved 93% accuracy
compared to experts at identifying motor, sensory, mixed
neuropathies, or normal cases. While this has great utility,
especially in countries with less access to established clinical
experts, there is also a desire for systems that can supplement
specialist diagnostics. DXplain is an electronic reference based
DDSS that provides probable diagnosis based on clinical
manifestations.50 In a randomized control trial involving 87 family
medicine residents, those randomized to use the system showed
significantly higher accuracy (84% vs. 74%) on a validated
diagnosis test involving 30 clinical cases.50

Given the known incidence of diagnostic errors, particularly in
primary care,51 there is a lot of hope for CDSS and IT solutions to
bring improvements to diagnosis.52 We are now seeing diagnostic
systems being developed with non-knowledge-based techniques
like machine learning, which may pave the way for more accurate
diagnosis. The Babylon AI powered Triage and Diagnostic System

Table 1 continued

1. Functions and advantages
of CDSS

2A. Potential harm of CDSS 2B. Solution(s) to mitigate harm 2C. Explanation of solution(s)

the providers’ real world
information processing sequences.

available, along with other
quantitative methods and
frameworks.126–129

(2) Unless a goal of the CDSS is to
change the care process, the CDSS
should be designed to fit within or
conform to the current user
workflows.
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in the U.K. is a good example of the potential, but also of the work
that still has to be done before these systems are ready for
primetime.53,54

Diagnostics support: imaging. Knowledge-based imaging CDSS
are typically used for image ordering, where CDSS can aid
radiologists in selecting the most appropriate test to run,
providing reminders of best practice guidelines, or alerting
contraindications to contrast, for example.55 An interventional
CDS for image ordering at Virginia Mason Medical Center was
shown to substantially decrease the utilization rate of lumbar MRI
for low back pain, head MRI for headache, and sinus CT for
sinusitis.56 The CDS required a series of questions to be answered
by providers prior to image ordering (POC), to verify appropriate-
ness. Importantly, if an image was denied, an alternative was
suggested by the system. Another commercialized example is
RadWise®, which guides clinicians to the most relevant imaging
order by analyzing patient symptoms and matching them with a
large database of diagnoses, while also providing appropriate use
recommendations at the point of care.57

There is great interest in non-knowledge based CDS for
enhanced imaging and precision radiology (‘radiomics’).58,59 With
images accounting for increasing amounts of medical data, but
requiring extensive manual interpretation, providers need tech-
nologies to aid them in extracting, visualizing, and interpreting.60

AI technologies are proving capable of providing insights into
data beyond what humans can.61 To do so, these technologies
make use of advanced pixel recognition and image classification
algorithms, most prominently: deep learning (DL).62 IBM Watson
Health, DeepMind, Google, and other companies are at the
forefront, developing products for use in tumor detection,63

medical imaging interpretation,64 diabetic retinopathy diagno-
sis,65 Alzheimer’s diagnosis through multimodal feature learning,62

and countless more. IBM Watson’s ‘Eyes of Watson’, has been able
to combine image recognition of a brain scan with text
recognition of case descriptions to provide comprehensive
decision support (or what IBM describes as a ‘cognitive
assistant’).60

Several projects have been able to demonstrate performance
that is disputably ‘on par’ with human experts.65–68 For example,
Google’s team trained a deep convolutional neural network (CNN)
to detect diabetic retinopathy (blood vessel damage in the eye)
from a dataset of 130,000 retinal images with a very high
sensitivity and specificity.65 The algorithms performance was on
par with US board certified ophthalmologists. Another study just
recently published by the Stanford group demonstrated a CNN for
detecting arrhythmias on electrocardiogram that exceeded the
accuracy (F1 and sensitivity with matched specificity) of the
average cardiologist on all rhythm classes.68 With the current rate
of progress, some experts controversially speculate that in 15–20
years, the majority of diagnostic imaging interpretation will be
done (or at least pre-processed) by computers.69 For the time
being however, we should think of these early systems as an
addition or augmentation to a clinician’s available toolset.

Diagnostics support: laboratory and pathology. Another subset of
diagnostics where CDSS can be useful is laboratory testing and
interpretation. Alerts and reminders for abnormal lab results are
simple and ubiquitous in EHR systems. CDSS can also extend the
utility of lab-based tests for the purpose of avoiding riskier or
more invasive diagnostics. In Hepatitis B and C testing, liver
biopsies are considered the gold standard for diagnosis, while
non-invasive lab tests are not accurate enough to be accepted.
However; AI models are being developed that combine multiple
tests (serum markers, imaging, and gene tests) to produce much
greater accuracy.70 There is also application for CDSS as an
interpretation tool where a test’s reference ranges are highly
personalized, for example age, sex, or disease subtypes.71

Pathology reports are crucial as decision points for many other
medical specialties. Some CDSS can be used for automated tumor
grading. This was done for urinary bladder tumor grading and
estimating recurrence, with up to 93% accuracy.72 The same has
been done for brain tumor classification and grading.73 There are
many other examples including computerized ECG analysis,
automated arterial blood gas interpretation, protein electrophor-
esis reports, and CDSS for blood cell counting.46

Patient-facing decision support
With the advent of the ‘Personal Health Record’ (PHR), we are
seeing CDS functionality integrated, similar to EHRs, with the
patient as the end user or ‘manager’ of the data. This is a great
step towards patient-focused care, and CDS-supported PHRs are
the ideal tool to implement shared decision-making between
patient and provider, specifically because CDSS can remove a ‘lack
of information’ as a barrier to a patient’s participation in their own
care.74 PHRs are frequently designed as an extension of
commercial EHR software, or as standalone web-based or
mobile-based applications.75 When connected to EHRs, PHRs can
have a two way relationship, whereby information entered directly
by the patient can be available to their providers, and also
information in the EHR can be transmitted to the PHR for patients
to view.76

One of the earliest PHRs, the “Patient Gateway”, was simply a
dashboard for patients to view medications and labs, and
communicate with their physicians.77 This has expanded and
some systems now allow patients to modify their own record of
care, effecting the EHR data as well.78 Another example is
Vanderbilt University’s MyHealthAtVanderbilt, a PHR fully inte-
grated into the institutional EHR. In addition to disease-targeted
delivery of patient educational materials, they incorporated a Flu
Tool for patients with flu-like symptoms to decide the level of care
they need and then help them seek treatment.79 Symptom
tracking is a useful and common feature of PHRs, but the variety of
collected data is virtually limitless, from allergies to insurance
coverage to prescription and medication information.80 Further-
more, PHRs and other patient monitoring applications can be
designed to collect information from health devices and other
wearables, to create actionable insights for providers. An excellent
example exists in diabetes care. Many systems are already in use,81

but one in particular pioneered by the Stanford School of
Medicine uses a wearable glucose monitor which transmits data
to an Apple device (HealthKit).82 Apple has made HealthKit
interoperable with the Epic EHR and Epic PHR, “MyChart”. This
successfully allows providers to monitor glucose trends in their
patients in between visits, and contact them through MyChart for
follow up or urgent recommendations. The pilot study demon-
strated improved provider workflow, communication with
patients, and ultimately quality of care.82 Various other medical
fields are deploying similar systems for monitoring that combines
PHR/EHR, wearable technologies, and CDSS, including but not
limited to heart failure (cardiology), hypertension, sleep apnea,
palliative/elder care, and more.
It is worth noting that as PHRs have become more advanced

with CDSS capabilities, there has also been increasing emphasis
on the design of these systems to serve shared decision making
between patient and provider, and to be interactive tools to make
patients more knowledgeable/involved in their own care. PHRs
that only serve as a repository for health information are now seen
as missing the mark, particularly by patients themselves.75

PITFALLS OF CDSS
Fragmented workflows
CDSS can disrupt clinician workflow, especially in the case of
stand-alone systems. Many early CDSS were designed as systems
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that required the provider to document or source information
outside their typical workspace. CDSS also disrupt workflow if
designed without human information processing and behaviors in
mind. In response, CDSS have been designed using the ‘think-
aloud’ method to model practitioners’ workflow and create a
system with better usability.83

Disrupted workflow can lead to increased cognitive effort, more
time required to complete tasks, and less time face-to-face with
patients. Even when CDSS are well integrated within existing
information systems, there can be disconnect between face-to-
face interactions and interaction with a computer workstation.
Studies have found that practitioners with more experiential
knowledge are less likely to use, and more likely to override
CDSS.84

Alert fatigue and inappropriate alerts
Studies have found up to 95% of CDSS alerts are inconsequential,
and often times physicians disagree with or distrust alerts.85 Other
times they just do not read them. If physicians are presented with
excessive/unimportant alerts, they can suffer from alert fatigue.86

Disruptive alerts should be limited to more life-threatening or
consequential contraindications, such as serious allergies. How-
ever; even allergy alerts can be incorrect, and clinicians will often
verify themselves, especially if the source is another site/hospital/
practitioner.85,87 Medication alerts can also be specialty specific,
but irrelevant when taken out of context. For example, an alert
against using broad-spectrum antibiotics such as vancomycin may
be inappropriate in ICU.85 An alert against duplicate medications
may be inappropriate in inflammatory bowel disease clinics,
where the same class of drug can be applied through different
administration routes for increased effect.

Impact on user skill
Prior to CPOE and CDSS, healthcare providers, pharmacists, and
nurses were relied upon exclusively to double-check orders. CDSS
can create the impression that verifying the accuracy of an order is
unnecessary or automatic.85 This is an important myth to dispel.
It is also important to consider the potential long-term effect of

a CDSS on users. Over time a CDSS can exert a training effect, so
that the CDSS itself may no longer be required. Coined the “carry-
over effect”, it is most likely with CDSS that are educational in
nature.88 Conversely, providers may develop too much reliance or
trust on a CDSS for a specific task.89 This could be compared to
using a calculator for mathematical operations over a long period
of time, and then having poorer mental math skills. It is potentially
problematic as the user has less independence and will be less
equipped for that task should they switch to an environment
without the CDSS.

CDSS may be dependent on computer literacy
Lack of technological proficiency can be hindering when
engaging with a CDSS.90,91 This can vary by the design details
of the CDSS, but some have been found to be overly complex,
relying too much on user skill.90,92 Systems should aim to stay as
close to the core functionality of the pre-existing system as
possible. Regardless, all new systems have a learning period, and
so baseline evaluations of users’ technological competence may
be appropriate. Further training can then be provided to facilitate
full use of CDSS capabilities,93 or more explicit guidance
incorporated into the CDSS’ recommendations themselves.94 This
information could be implemented as info buttons to be non-
disruptive.95

System and content maintenance
Maintenance of CDSS is an important but often neglected part of
the CDSS life-cycle. This includes technical maintenance of

systems, applications and databases that power the CDSS.
Another challenge is the maintenance of knowledge-base and
its rules, which must keep apace with the fast-changing nature of
medical practice and clinical guidelines. Even the most advanced
healthcare institutions report difficulty keeping their systems up to
date as knowledge inevitably changes.85 Order sets and the
algorithmic rules behind the CDSS have been identified as
particularly difficult.85

Operational impact of poor data quality and incorrect content
EHRs and CDSSs rely on data from external, dynamic systems and
this can create novel deficiencies. As an example, some CDSS
modules might encourage ordering even when the hospital lacks
adequate supplies. In a study by Ash et al.85, a number of experts
indicated that at their hospital, Hemoccult tests or pneumococcal
vaccine inventories run out quickly, but this is not communicated
to the CDSS.
Medication and problem lists can be problematic, if not

updated or used appropriately. At one site, the medication list
might be a list of dispensations, which means patients may or may
not be taking them(and thus must still be asked in person).85

Other medication lists are generated from CPOE orders only, thus
still requiring manual confirmation that patients are taking the
medication. Systems that make it easy to distinguish these are
ideal. It is also a major area where PHRs could create a solution, by
collecting medication adherence data directly from patients.
In poorly designed systems, users may develop workarounds

that compromise data, such as entering generic or incorrect
data.85 The knowledge base of CDSS is dependent on a
centralized, large clinical data repository. Quality of data can
affect quality of decision support. If data collection or input into
the system is unstandardized, the data is effectively corrupted.
You may design a system for use at the point-of-care, but when
applied to real world environments and data, will not be utilized
properly. The importance of using informational standards such as
ICD, SNOMED, and others, cannot be understated.

Lack of transportability and interoperability
Despite ongoing development for the better part of three
decades, CDSS (and even EHRs in general) suffer from interoper-
ability issues. Many CDSS exist as cumbersome stand-alone
systems, or exist in a system that cannot communicate effectively
with other systems.
What makes transportability so difficult to achieve? Beyond

programming complexities that can make integration difficult, the
diversity of clinical data sources is a challenge.96 There is a
reluctance or perceived risk associated with transporting sensitive
patient information. Positively, interoperability standards are
continuously being developed and improved, such as Health
Level 7 (HL7) and Fast Healthcare Interoperability Resources
(FHIR). These are already being utilized in commercial EHR
vendors.97 Several government agencies, medical organizations
and informatics bodies are actively supporting and some even
mandating the use of these interoperability standards in health
systems.98–100

The cloud also offers a potential solution to interoperability (and
other EHR ailments such as data sync, software updating, etc.101).
Cloud EHRs have open architecture, newer standards, and more
flexible connectivity to other systems.102 It is also a common
misconception that data stored on a cloud is more vulnerable. This
is not necessarily true. Web-based EHRs are required to store data
in high-level storage centers with advanced encryption and other
safeguards. They must comply with national data security
standards including the Health Insurance Portability and Account-
ability Act (HIPAA) in the USA, Personal Information Protection and
Electronic Documents Act (PIPEDA) in Canada, or the Data
Protection Directive and General Data Protection Regulation
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(GDPR) in Europe, to name a few.103 They can be just as safe (or
just as vulnerable) as traditional, server-based architecture.103 In
fact, there are often fewer people who have access to
unencrypted data in cloud storage centers vs. server-based
records.103

Financial challenges
Up to 74% of those with a CDSS said that financial viability
remains a struggle.104 Outset costs to set up and integrate new
systems can be substantial. Ongoing costs can continue to be an
issue indefinitely as new staff need to be trained to use the
system, and system updates are required to keep pace with
current knowledge.
Results from cost analyses of CDSS implementations are mixed,

controversial, and sparse.105–108 Whether an intervention is cost-
effective depends on a wide range of factors, including those
specific to the environment, both political and technological.105

Cost benefit assessment in itself can be limited, with challenges
such as a lack of standardized metrics.107 This is an emerging
research area and much work needs to be done to advance our
understanding of the financial effects of CDSS.

CONCLUSION
CDSS have been shown to augment healthcare providers in a
variety of decisions and patient care tasks, and today they actively
and ubiquitously support delivery of quality care. Some applica-
tions of CDSS have more evidence behind them, especially those
based on CPOE. Support for CDSS continues to mount in the age
of the electronic medical record, and there are still more advances
to be made including interoperability, speed and ease of
deployment, and affordability. At the same time, we must stay
vigilant for potential downfalls of CDSS, which range from simply
not working and wasting resources, to fatiguing providers and
compromising quality of patient care. Extra precautions and
conscientious design must be taken when building, implement-
ing, and maintaining CDSS. A portion of these considerations were
covered in this review, but further review will be required in
practice, especially as CDSS continue to evolve in complexity
through advances in AI, interoperability, and new sources of data.
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