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CheXaid: deep learning assistance for physician diagnosis of
tuberculosis using chest x-rays in patients with HIV
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Tuberculosis (TB) is the leading cause of preventable death in HIV-positive patients, and yet often remains undiagnosed and
untreated. Chest x-ray is often used to assist in diagnosis, yet this presents additional challenges due to atypical radiographic
presentation and radiologist shortages in regions where co-infection is most common. We developed a deep learning algorithm to
diagnose TB using clinical information and chest x-ray images from 677 HIV-positive patients with suspected TB from two hospitals
in South Africa. We then sought to determine whether the algorithm could assist clinicians in the diagnosis of TB in HIV-positive
patients as a web-based diagnostic assistant. Use of the algorithm resulted in a modest but statistically significant improvement in
clinician accuracy (p = 0.002), increasing the mean clinician accuracy from 0.60 (95% Cl 0.57, 0.63) without assistance to 0.65 (95% Cl
0.60, 0.70) with assistance. However, the accuracy of assisted clinicians was significantly lower (p < 0.001) than that of the stand-
alone algorithm, which had an accuracy of 0.79 (95% Cl 0.77, 0.82) on the same unseen test cases. These results suggest that deep
learning assistance may improve clinician accuracy in TB diagnosis using chest x-rays, which would be valuable in settings with a
high burden of HIV/TB co-infection. Moreover, the high accuracy of the stand-alone algorithm suggests a potential value

particularly in settings with a scarcity of radiological expertise.
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INTRODUCTION

Tuberculosis (TB) was responsible for the deaths of an estimated
300,000 patients living with HIV in 2017, making it the leading
cause of preventable HIV-related mortality'. More than 14 million
individuals worldwide are estimated to be dually infected with HIV
and Mycobacterium tuberculosis, yet TB remains undetected at the
time of death in ~46% of patients with HIV>>. Since TB is both
treatable and often fatal in patients with HIV, improving its
diagnosis is of the utmost importance®.

Diagnosis of TB is a significant challenge in patients with HIV
due to nonspecific clinical presentations that can mimic other
respiratory diseases common in this population, as well as
frequently atypical (or even normal) chest radiographs®®. In
addition, patients with HIV are often sputum scarce, presenting a
challenge for microbiological diagnosis with culture or Xpert MTB/
RIF”2, In this clinically challenging setting, chest radiographs can
provide a valuable adjunct diagnostic tool, particularly for
seriously ill patients requiring immediate treatment'. Current
WHO TB diagnostic algorithms recommend the use of chest x-ray
as part of the diagnostic work-up in both ambulatory and seriously
ill HIV-positive patients when initial microbiological assays are
either negative or unavailable'. However, chest x-ray interpreta-
tion in patients with advanced HIV is challenging due to the
presence of atypical findings, and because access to experienced
radiologists is often limited in countries where HIV and TB are
most prevalent®®. This is particularly true in sub-Saharan Africa,
where ~86% of co-infection deaths occur'®.

Computer-aided diagnostic tools, particularly those utilizing
deep learning, have recently emerged as a potential solution to
the gap in TB diagnostic expertise' ™', While such approaches
have shown promise in assisted medical imaging interpretation,

application of deep learning to assist clinicians in their diagnosis
of TB in patients with HIV remains unexplored®**?’. The
development of an accurate deep learning algorithm to help
clinicians diagnose active TB in these patients without sputum, or
in whom sputum tests are negative, has the potential to provide
physicians with an easily accessible and immediately applicable
diagnostic support tool for this vulnerable population, and
improve access to radiology expertise on a task commonly
performed by generalist physicians.

In this study, we developed a TB diagnostic algorithm and
assistant to help clinicians in the diagnosis of TB using chest x-rays
in patients co-infected with HIV. The algorithm was developed to
leverage both the patient’s radiograph and relevant clinical
information together, and the assistant consisted of a web
interface capable of incorporating the algorithm’s predictions
and explanation into a simulated diagnostic workflow. We
measured the effect of this assistance on the diagnostic
performance of clinicians and compared it to the stand-alone
model performance.

RESULTS

Two different datasets consisting of patients in South Africa with
possible HIV/TB co-infection were combined and randomly split
into a training set (n = 563, prevalence = 44.6%) used to train and
select algorithms, and a held out test set (n = 114, prevalence =
41.2%) used to evaluate the final algorithms. There was no overlap
in radiographs between the two datasets. Patient screening,
recruitment, and inclusion for each dataset are summarized in Fig. 1,
and detailed in the Supplementary Note 1. The sizes of training
and testing splits along with the TB diagnostic prevalence in each
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Dataset 1
Jooste/Khayelitsha Hospitals
2013-2014

2054 patients screened

Not enrolled (n = 1260)

Currently undergoing TB treatment (n = 653)
Recently completed TB treatment (n = 30)
Refused HIV test (n = 47)

HIV negative (n = 392)

Declined to participate (n = 63)

Previously enrolled (n = 17)

Age < 18 yrs (n = 18)

‘ 794 patients assessed for

eligibility
Excluded for clinical reasons (n = 310)
e No cough (n =104)
e No danger signs (n = 128)
e COPD exacerbation (n = 28)
e CCF exacerbation (n = 24)
e No sputum samples obtained (n = 26)
484 patients checked for
presence of clinical
information

Excluded for absence of information (n=143)

Oxygen sat (n=5)

Hgb (n=3)

CD4 (n=1)

All x-ray reads (n=143)
Effusion (n=144)
Cultures (n=147)

341 patients checked for
CXR image quality

Excluded for poor image quality (n = 36) }*

Dataset 2
Khayelitsha Hospital
2016-2017

556 patients screened

Not enrolled (n = 129)

HIV negative / test refused (n=40)

Research process-related problems (n=22)

Refused participation (n=21)

On TB treatment (n=19)

>24 hours in EC (n=13)

Discharged or transferred before study

procedures (n=9)

e Mainly neurological / trauma / gynecological /
psychiatric presentation (n= 4)

e Pregnant (n=1)

427 patients assessed for
eligibility

Excluded for clinical reasons (n = 13)

TB workup limited to microscopy (n=10)
HIV confirmation test negative (n=2)
Died before specimens taken (n=1)

414 patients checked for
presence of clinical
information

Excluded for absence of information (n=36)
e Previous TB (n=2)

ART status (n=4)

Temp (n=3)

Oxygen sat (n=9)

Hgb (n=4)

CD4 (n=7)

WBC (n=2)

Lymphadenopathy (n=8)

Nodularity (n=13)

Cavitation (n=8)

Consolidation (n=9)

Ground glass (n=18)

Micronodularity (n=11)

Patients included from Dataset 1 Patients included from Dataset 2
(n=305) (n=378)
683 total patients
(TB+, n = 304)
(TB-, n = 379)
Test set
(n = 120)
Positive TB diagnosis without
pleural/sputum culture or
Xpert (n = 6)
563 train/validation 114 Test
(TB+, n = 251) (TB+, n = 47)
(TB-, n =312) (TB-, n=67)

Fig. 1 Flow diagram of patients. Patient screening, recruitment, and inclusion for each dataset are summarized.

dataset are detailed in Supplementary Table 1. Table 1 contains
demographic and clinical summary statistics for each dataset.

Physicians with and without assistance
We developed a deep learning algorithm, called CheXaid, to
diagnose active pulmonary TB from both chest x-rays and clinical
covariates. Using CheXaid, we performed a diagnostic accuracy
study comparing physicians with and without algorithm assis-
tance at the task of diagnosing active pulmonary TB for HIV
positive patients. A clinician operating without algorithm assis-
tance only had access to the web interface that showed the
original x-ray image and the full set of clinical variables for every
patient. A clinician operating with algorithm assistance also had
access to the algorithm’s prediction (on a scale from very unlikely
to very likely) and visual explanation of the prediction. A total of
13 physicians were recruited from email mailing lists for physicians
in South Africa. All had completed training, with anywhere from
6 months to 25 years of experience diagnosing TB in patients with
HIV in South Africa. Subspecialties represented included hospital-
ists, general practitioners, family medicine specialists, or casualty
officers.

Assistance increased physicians’ accuracy according to the
mixed effects model likelihood ratio test (chi-square =9.64,
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unadjusted p value =0.002), a difference that reached statistical
significance. Physicians’ mean accuracy (correct divided by total
cases) was 0.60 (95% Cl 0.57, 0.63) without the algorithm and 0.65
(95% CI 0.60, 0.70) with assistance. Sensitivity was 0.70 (95% ClI
0.64, 0.77) without assistance and 0.73 (95% Cl 0.66, 0.80) with
assistance; specificity was 0.52 (95% Cl 0.45, 0.59) without
assistance and 0.61 (95% Cl 0.52, 0.70) with assistance.

Assisted physicians vs. stand-alone algorithm

The mean accuracy of the assisted physicians was significantly
lower than the stand-alone algorithm (chi-square = 66.6, unad-
justed p value <0.0001). The stand-alone algorithm achieved a
mean accuracy of 0.79 (95% Cl 0.77, 0.82) evaluated on the cases
the physicians viewed with algorithm assistance, while physicians
achieved a mean assisted accuracy of 0.65 (95% Cl 0.60, 0.70) on
these same cases. The stand-alone algorithm had a sensitivity of
0.67 (95% Cl 0.62, 0.73) and specificity of 0.87 (95% Cl 0.85, 0.90).
Mean accuracy, sensitivity, specificity, PPV, and NPV without and
with assistance are detailed in Supplementary Table 2. Figure 2 (in
addition to Supplementary Table 3) details the accuracy of each of
the individual physicians with and without assistance.
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Table 1. Cohort demographic and clinical characteristics by dataset and TB diagnosis.
Dataset 1 Jooste/Khayelitsha (n = 305) Dataset 2 Khayelitsha (n = 378) All participants (n =677)
TB (n = 146) No TB (n=159) TB (n = 158) No TB (n=220)
Variable Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)
Age (years) 35.9 (9.5) 38.6 (10.5) 36.5 (9.4) 379 (9.7) 373 (9.8)
Temperature (°C) 38.0 (1.3) 37.5 (1.3) 37.1 (1.2) 37.0 (1.2) 37.3 (1.3)
Oxygen saturation (%) 96 (5) 94 (7) 96 (4) 95 (5) 95 (6)
Hemoglobin (mg/dL) 8.8 (2.3) 10.7 (2.3) 9.0 (2.4) 10.3 (2.7) 9.8 (2.6)
WBC count (1000/pL) 8.7 (5.1) 11.7 (6.7) 9.7 (9.7) 11.8 (11.4) 10.7 (9)
CD4 count (cells/mm?3) 127 (117) 203 (200) 116 (151) 203 (274) 167 (208)
n (%) n (%) n (%) n (%) n (%)
Sex: female 96 (66%) 109 (69%) 95 (60%) 238 (58%) 425 (63%)
Current cough 146 (100%) 159 (100%) 136 (85%) 186 (85%) 623 (92%)
Previous TB 96 (66%) 128 (81%) 67 (42%) 133 (60%) 422 (62%)
Currently on ART 49 (34%) 64 (40%) 57 (36%) 125 (57%) 292 (43%)
& 5 approaches to TB in this challenging population; when sputum
~ « can be produced, Xpert MTB/RIF is the recommended test in these
o x patients as it can provide same-day high-sensitivity correlation
10 ° X with smear-positive TB and rifampin resistance?®. Despite its well-
_ X documented reliability, Xpert MTB/RIF nonetheless remains
§ ° e} x v ® Assisted limited by high cost and limited availability, which has led to
5 . ” X “U“'(d extgqsive underytilization particu!arly in the most vulnera.ble HIV-
5 ° x positive populations. In these settings, as few as 4% of co-infected
° X patients are diagnosed using the recommended Xpert MTB/RIF
® X test, and less reliable and time-intensive diagnostic approaches—
. o XX SU§Q335 smear microscopy—are largely relied upon for diagno-
os . o ve , , sis°", Given that underutilization of Xpert MTB/RIF for TB
Accuracy diagnosis is common in HIV-positive populations, CheXaid assisted

Fig. 2 Diagnostic accuracy of the assisted physicians, stand-alone
algorithm, and unassisted physicians. Each cross represents the
stand-alone algorithm’s performance on test data that was assigned
as assisted cases for the correspondent physician.

Algorithm performance under different training strategies
Evaluated on the full test set, the algorithm achieved an accuracy
of 0.78 (95% Cl 0.70, 0.85) and AUC of 0.83 (95% Cl 0.75, 0.91)
evaluated on all of the independent test set. Trained without
clinical covariates, the algorithm achieved an accuracy of 0.61
(95% ClI 0.51, 0.69) and AUC of 0.57 (95% Cl 0.46, 0.68). Without
pre-training on a very large dataset of chest x-rays, but still pre-
trained with ImageNet, the algorithm achieved an accuracy of 0.64
(95% Cl 0.55, 0.72), and AUC of 0.71 (95% Cl 0.62, 0.81). The
algorithm performance under different training strategies is
detailed in Table 2.

DISCUSSION

The purpose of this study was to develop and investigate a deep
learning algorithm to assist physicians in the diagnosis of TB in
patients with HIV. Our approach can incorporate both chest
radiograph image data as well as relevant structured clinical
information to make a diagnostic decision; furthermore, the
physician-facing interface is capable of presenting the model’s
predictions into a convenient diagnostic workflow to assist in
clinical interpretation.

There is a significant opportunity for application of deep
learning assistants like CheXaid for TB diagnosis in HIV-positive
populations. Currently, there are a variety of diagnostic

Seoul National University Bundang Hospital

chest radiographic interpretation may serve as an important aid to
clinicians, particularly if smear microscopy is inconclusive.

We found that CheXaid improved clinician accuracy (60 vs. 65%,
chi-square = 9.64, p=0.002), a difference that was statistically
significant though modest in size and therefore of unclear clinical
significance. While the observed 5% increase in accuracy may not
be of large clinical significance, these results suggest an
opportunity to leverage scalable inexpensive portable applications
to aid clinicians as part of a more comprehensive toolset for TB
diagnosis. Furthermore, our finding that the mean accuracy of
assisted clinicians was significantly lower (60 vs. 79%, chi-square
=66.6, unadjusted p value < 0.001) than that of the stand-alone
algorithm on the same unseen test cases suggests a possible role
for use of the algorithm underlying CheXaid as a stand-alone tool
when access to experts is limited. Possible explanations of our
finding that the stand-alone algorithm performed better than
clinicians who access to its output (79 vs. 65%) include some
degree of mistrust of the algorithm’s output or overconfidence in
a clinician’s own diagnosis when submitting a final answer.
Alternatively, the representation of the algorithm’s diagnostic
probability as a category (one of five, from unlikely to very likely)
rather than a percent may have introduced additional uncertainty
in cases in which the probability was estimated near 50% (i.e,, in
the “possible” category). Future research should examine the
extent to which the performance of physicians can be improved
with additional clinical data or different interpretation methodol-
ogies and interfaces for the algorithm’s decision-making process.
Ultimately, prospective evaluation is necessary to determine
whether similar algorithms can be beneficial in a clinical setting.

There has been some prior work in applications of deep
learning to classify TB and/or identify lesions in chest radiographs,

npj Digital Medicine (2020) 115
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Table 2. Algorithm performance under four training strategies.

Strategy

Accuracy (95% Cl) AUC (95% ClI)

Default w/o Clinical Variables

Default w/o CheXpert Pre-training

Default trained on dataset one, validated on dataset two
Default trained on dataset two, validated on dataset one

Default (w/ Clinical Variables, w/ CheXpert Pretraining, w/ Multi-Label Loss)

0.78 (0.70, 0.85)
0.61 (0.51, 0.69)

( 0.83 (0.75, 0.91)
(
0.64 (0.55, 0.72)
(
(

(

0.57 (0.46, 0.68)

0.71 (0.62, 0.81)
0.67 (0.62, 0.72) (
0.60 (0.55, 0.66) (

0.71 (0.65, 0.76)
0.70 (0.64, 0.76)

The default uses clinical variables, pretraining on CheXpert, and the multi-label loss.

with some reporting considerable success (some with AUCs as
high as 0.98-0.99) mainly with datasets composed of healthy or
asymptomatic screening populations or heterogeneous datasets
with variable ground truth'''% But in HIV positive populations,
diagnosis using chest radiographs is much more challenging even
for trained radiologists, with sensitivities and specificities as low as
0.68 and 0.53, respectively®'. In this challenging setting, clinicians
must also consider clinical data when interpreting chest radio-
graphs for possible TB infection, as these variables may influence
radiological presentation and disease detection®?33. Prior work
has attempted other strategies for integration of demographic
data in deep learning medical imaging applications, such as using
gender and age demonstrating only limited improvement in
model performance in a “late fusion” schema'®>3. Incorporation of
demographic data has also been explored as a way to triage the
use of Xpert testing in resource-constrained settings'®. By
providing structured clinical data in our modeling along with a
clinician-centered interface, our model was able to achieve an
accuracy 0.79 (95% Cl 0.77, 0.82). Without clinical information, the
algorithm’s accuracy was only 0.61 (95% Cl 0.51, 0.69), which is
similar to that of unassisted clinicians (mean accuracy 0.60, 95% Cl
0.57, 0.63), indicating that clinical information had a large
influence on the algorithm’s predicted diagnosis.

This study has several important limitations. First, while the gold
standard diagnostic tool for active pulmonary TB is generally
considered to be culture, we also included patients whose sputum
or pleural fluid tested positive using the Xpert MTB/RIF test. This
diagnostic method has been shown to have a high sensitivity and
specificity for TB detection, even in patients with HIV, yet the
discrepancy should be noted**. Furthermore, although the high
specificity of Xpert MTB/RIF (92-100%) makes false positives
unlikely, the two culture/Xpert MTB/RIF requirement does not
ensure that both tests were successful and there remains a
possibility of false negatives in the test set®>. For patients in the
training set, we did not require that the positive culture or Xpert
MTB/RIF test come specifically from pleural fluid or sputum. This
was to avoid excluding patients unnecessarily from the training
set, while allowing us to maintain a more stringent case definition
limiting false positives in the test set. However, despite the
limitations of available data, we believe that the use of
microbiological confirmation rather than consensus opinion is
an overall strength of the study. Second, while chest x-ray is a
valuable tool for TB diagnosis in certain settings (i.e, urgent
diagnosis or ruling out active disease prior to treating latent
infection), it is not as sensitive or specific as culture or Xpert MTB/
RIF testing, and does not provide information on drug resistance.
As a result, the WHO recommends the Xpert MTB/RIF (and now
Xpert MTB/RIF Ultra) as a first diagnostic step for patients with
suspected HIV/TB co-infection when immediate referral to a
higher level of care is not possible*®. With regard to the data used
for testing and training, the fact that patients were recruited from
a common hospital for both datasets raises the possibility that
there were patients in the test set that were also used for training.
However, for a patient to be included in both datasets, the

npj Digital Medicine (2020) 115

corresponding x-ray and clinical information would correspond to
time points separated by over a year, and therefore knowing a
patient’s previous TB status would not necessarily have given the
model any additional information about their current status. Third,
while we describe the stand-alone CheXaid model performed
consistently better than clinicians aided by the model in our study,
it is important to note when interpreting these data that the task
for this analysis was narrowly defined as simply diagnosis of active
TB, while clinical decisions (i.e, whether or not to prescribe
treatment) are much more complex. Furthermore, the use of
clinical trial data resulted in the exclusion of certain important
patient populations due to presence of diagnoses that were
excluded from the original trials. For example, patients experien-
cing a current exacerbation of COPD or heart failure from one of
the studies, although in clinical practice, these conditions
(whether concurrent with TB or as an alternative diagnosis) may
make the diagnosis of TB using chest radiographs more
challenging. Additional important pulmonary diagnoses, while
not excluded, were not considered by CheXaid (i.e., Streptococcus
pneumoniae, Pneumocystis jirovecii) and thus future implementa-
tion efforts based on these data would always include clinician
input and consideration of these diagnoses in practice. Additional
patients were also excluded due to missing data or poor quality x-
ray images. In the case of missing data, multiple imputation was
not performed in this case because of the relatively large number
of patients who were missing multiple variables (i.e., no findings
reported on chest x-ray). While the exclusion of patients due to
“poor quality x-ray images” was performed in this case by a board-
certified radiologist, the criteria for inclusion comprised of minimal
quality standards (i.e., containing the full lung field, or cell phone
image of the x-ray not in focus) that we believe could be
performed by an x-ray technician in resource-scarce settings.
Fourth, the resolution of the images presented both to the
algorithm and to physicians was not optimized for diagnostic
quality, and future studies should explore the implementation of
similar algorithms employing full resolution images for both
training and evaluation. Finally, clinicians were not given access to
the full spectrum of data that is available when making this
diagnosis in practice, including physical exam, a detailed history,
and other laboratory values. While this was necessitated by the
use of clinical trial data, further work should include prospective
studies that allow clinicians to evaluate patients with and without
the algorithm in real time, allowing them to collect and consider
this information in their ultimate diagnosis and allow for a more
accurate comparison to true clinical practice.

In conclusion, our study found that a deep learning model was
effective in predicting TB from chest x-rays and clinical informa-
tion of HIV-positive patients, and its assistance can significantly
improve clinician performance in TB diagnosis, but not to the level
of diagnostic performance of the stand-alone algorithm. If more
clinical data can be incorporated, and the model can be validated
prospectively in clinical settings with larger and more diverse
groups of patients, a tool like this could be valuable in settings
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with high prevalence of HIV/TB co-infection, where radiological
expertise is scarce and access to low-cost solutions is needed.

METHODS
Dataset

Two different datasets were used in this study, each consisting of patients
in South Africa with possible HIV/TB co-infection. The first dataset was
collected as part of a prospective cohort study of adult inpatients with HIV,
cough of any duration and at least one WHO danger sign from two
secondary level hospitals serving communities with a high burden of HIV
and TB in Cape Town, South Africa: GF Jooste Hospital (November
2011-February 2013), and Khayelitsha Hospital (March 2013-October
2014)*’. The second dataset was collected as part of a cross-sectional
diagnostic study of HIV-positive patients with at least one TB symptom
admigged to the emergency center of Khayelitsha Hospital from 2016 to
20177,

Reference standard

Positive cases were defined as having a positive culture or Xpert MTB/RIF
test from any anatomical site. This was due to the high pretest probability
of active pulmonary TB in this population (including disseminated TB also
including the lungs), and because not all sputum samples collected
resulted in a conclusive positive or negative test result’®. Because the
outcome of interest for this study was a diagnosis of active pulmonary TB,
in the test set, positive cases were required to have at least one positive
culture or Xpert MTB/RIF result from sputum or pleural fluid. Each patient
was required to have had at least 2 sputum cultures collected (with
sputum induction in the cases in which sputum could not be
expectorated) in both training and test datasets.

Al algorithm development

CheXaid was developed to diagnose active pulmonary TB from both chest
x-rays and clinical covariates. The algorithm development is detailed in the
Supplementary Note 2. The clinical covariates inputted to the algorithm
were age, oxygen saturation, hemoglobin, CD4 count, white blood cell
count, temperature, current antiretroviral therapy status, and the patient’s
prior history of TB; covariates were selected based on availability in both
datasets. The algorithm was trained not only to predict the probability of
TB, but also the presence of six x-ray findings to further supervise the
algorithm towards learning relevant x-ray features for TB diagnosis:
micronodularity, nodularity, pleural effusion, cavitation, and ground-glass.
The algorithm was pre-trained on a very large dataset of chest x-rays
(CheXpert), which included 224,316 chest radiographs of 65,240 patients,
with labels for 14 radiological observations, but not for TB, before fine-
tuning on the training set. Figure 3 shows a diagrammatic representation
of the deep learning algorithm architecture.

Al diagnostic assistant development

We developed a web-based TB diagnostic assistant for clinicians that
integrated the algorithm’s predictions and the following “explanatory”
information. First, the algorithm’s estimated likelihood of the patient
having active pulmonary TB was presented in five categories were based
on these probabilities (of the patient having active pulmonary TB): very
unlikely (0.0-0.2), unlikely (0.2-0.4), possible (0.4-0.6), likely (0.6-0.8), and
very likely (0.8-1.0). In addition, the assistance interface also incorporated
an explanation of prediction that highlighted the regions of the x-ray
which were most consistent with TB according to the algorithm.

Experimental setup

To compare performance metrics of clinicians with and without algorithm
assistance, each of the 13 clinicians participating in the study diagnosed
the test set (of 114 cases) designed as a within-subjects, intermodal, multi-
reader study. The clinicians were blinded to the original reports, clinical
histories (beyond the clinical covariates provided), and follow-up imaging
examinations. Clinicians interpreted half of the study cases with assistance
from the algorithm and half of them without (Fig. 4). Cases were randomly
assigned to the “assisted” vs. “unassisted” conditions on a per-subject
basis. Case order was also randomized across clinicians in order to avoid
confounding by reader fatigue. In order to familiarize the clinicians with
the diagnostic assistant and help them overcome the learning curve, each
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Fig. 3 Diagram of the deep learning algorithm architecture. The
architecture takes both the x-ray image and 8 clinical covariates as
input and predicts TB and 6 clinical findings.

experiment began with a training session, in which they reviewed up to
104 training cases (distinct from the testing cases) assisted by the
algorithm’s output. During this training session, the true diagnosis was
presented immediately after the clinician submitted their diagnosis.
Stanford University institutional review board approved this study, and
ethics review and Institutional Review Board (IRB) review and approval was
obtained from the University of Cape Town in South Africa. Informed
consent was obtained from all human participants.

Statistical analyses

The diagnostic accuracy of the physicians with and without assistance was
assessed on the test set using a logistic mixed effects model. Physicians
and cases were included as random effects and an indicator for whether
the case was read with assistance or not was treated as a fixed effect. In
order to evaluate the effect of algorithm assistance, the full model was
compared to a restricted model without the indicator for assistance with
the likelihood-ratio test; significance was assessed at the 0.01 level.

Similarly, the diagnostic accuracy of the assisted physicians was
compared to the accuracy of the algorithm’s diagnostic predictions
without clinician supervision (stand-alone algorithm) using logistic mixed-
effects models, except in this analysis only the cases assigned to the
assisted condition were used per participant, and the fixed effect of
interest was an indicator for whether the case was assessed by the assisted
physician or the stand-alone algorithm. The binarized version of the
algorithm’s prediction was determined using a threshold of 0.5. All models
were generated using the “Ime4” package in R*%,

95% t-score confidence intervals were computed for the accuracy,
sensitivity, and specificity of the physicians with and without assistance as
a group (n=13). A similar analysis was performed for the stand-alone
algorithm, with summary statistics computed per-participant using only
the cases assigned to the assisted condition. 95% Wilson score confidence
intervals were used to assess the variability in the estimates for accuracy,
sensitivity, and specificity per-physician for the unassisted physician,
assisted physician, and stand-alone algorithm.

A sensitivity analysis was performed to determine the performance of
the algorithm'’s diagnostic performance over all examples in the test set,
under different training strategies. First, we compared the diagnostic
accuracy and receiver operating characteristic area under the curve (AUC)
of the final algorithm to one that was not trained on clinical variables.
Second, we compared the final algorithm, pre-trained on CheXpert, to one
that was pre-trained on ImageNet. Variability in estimates were assessed
using the DeLong’s method for the AUC, and the Wilson’s score method for
accuracy.
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Cases

Without model assistance

Patient's Clinical Information
Reference

Variable Value Range
Age 38 NA
Sex Female NA
Temperature (Celsius) 37.84 36.1-37.2
Oxygen Saturation 95 95-100
(Percent)
Haemoglobin 9V 12-15.5
WBC Count 357¢ 4511
CD4 Count 60\ 500-1500
Previous TB Yes NA
HIV status Positive NA
Current ART Status No NA
Cough yes NA
Cough Duration (day(s)) 56 NA

Patient's X-ray

Brightness cn——
]

Contrast

RESET

RESET

With model assistance

Patient's X-ray

Regions Consistent with TB

Patient's Clinical Information
Reference

Variable Value Range
Age 42 NA
Sex Male NA
Temperature (Celsius) 36\ 36.1-37.2
Oxygen Saturation 944 95-100
(Percent)
Haemoglobin 8.3v 13.5-17:5
WBC Count 14851 4511
CD4 Count 681 500-1500
Previous TB No NA
HIV status Positive  NA
Current ART Status No NA
Cough yes NA
Cough Duration (day(s)) ~ Unknown NA

Brightness ~enm— Algorithm's TB Prediction

oa——

RESET

Contrast RESET Very Unlikely Unlikely Possible Likely Very Likely

Fig. 4 Experimental setup. Test cases were randomly assigned to be diagnosed assisted/unassisted by the clinicians. Each clinician analyzed
half the cases without algorithm assistance and half of them with algorithm assistance. The web interface for unassisted and assisted viewing
is illustrated. Upon examining each case, the clinician made a prediction for the likelihood of a positive TB diagnosis.

Reporting summary

are not publicly available. Diagnostic accuracy data for algorithm, assisted and
unassisted physicians are available in aggregated form in Supplementary Table 3 and

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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The raw clinical patient data that support the findings of this study are available from
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