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Linear indium atom chains at graphene edges
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The presence of metal atoms at the edges of graphene nanoribbons (GNRs) opens new possibilities toward tailoring their physical
properties. We present here formation and high-resolution characterization of indium (In) chains on the edges of graphene-
supported GNRs. The GNRs are formed when adsorbed hydrocarbon contamination crystallizes via laser heating into small ribbon-
like patches of a second graphitic layer on a continuous graphene monolayer and onto which In is subsequently physical vapor
deposited. Using aberration-corrected scanning transmission electron microscopy (STEM), we find that this leads to the preferential
decoration of the edges of the overlying GNRs with multiple In atoms along their graphitic edges. Electron-beam irradiation during
STEM induces migration of In atoms along the edges of the GNRs and triggers the formation of longer In atom chains during
imaging. Density functional theory (DFT) calculations of GNRs similar to our experimentally observed structures indicate that both
bare zigzag (ZZ) GNRs as well as In-terminated ZZ-GNRs have metallic character, whereas in contrast, In termination induces
metallicity for otherwise semiconducting armchair (AC) GNRs. Our findings provide insights into the creation and properties of long

linear metal atom chains at graphitic edges.
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INTRODUCTION

Graphene is of significant importance for future applications
including next-generation integrated circuits'. The absence of a
bandgap in graphene limits, however, its use in nanoelectronic
and optoelectronic devices>~°. The fabrication of one-dimensional
confined graphene structures—graphene nanoribbons (GNRs)—
can enable tunable bandgaps'’~°. The electronic nature of GNRs
depends on their width, chirality and edge structure’'®'', When
the edges are oriented along zigzag (ZZ) or chiral directions, the
ribbons are metallic but a magnetic ordering emerges due to
localized edge states'?. An external transverse electric field may
alter their electronic properties, inducing half-metallicity'>.
Instead, narrow GNRs with armchair (AC) edges have a bandgap,
which depends strongly on the ribbon width*'>,

The functionality of GNRs can be enhanced via doping and
edge madifications'®'”. Theoretical studies have shown that the
electronic and magnetic properties of GNRs are modulated with
the adsorption of metal atoms such as Cu, Fe, Co, Ni, Ag, Au, Mn
and Pt at their edges'®2'. Boron (B) doping at the edges of ZZ-
GNRs results in half-metallic behavior, while nitrogen (N) atoms
induce metallic behavior in ZZ-GNRs?2?3, The antiferromagnetic
ZZ-GNRs become ferromagnetic with the adsorption of C, B and N
atoms at their edges®*. Additionally, Ni atoms lying at the edges of
ZZ-GNRs change their magnetization®®. Compared to these ample
theoretical studies, little experimental work has however explored
the edge decoration of GNRs. So far, several elements in the form
of individual metal atoms (e.g. Fe, Cr, Cu, Sn, Ni, Al, Pt and Au)
attached to graphene edges have been revealed via transmission
electron microscopy (TEM)**=3°. Via single-walled carbon nano-
tube (SWNTs) opening, also the creation and atomic-resolution
characterization of sulfur (S)-terminated GNRs by TEM has been
reported®', In contrast, experimental synthesis and high-

resolution characterization of metal atom chains at GNR or
graphene edges remains elusive.

To address this gap, we report here the experimental creation of
linear indium (In)-atom chains along the edges of graphene-
supported GNRs. The element In is interesting in this regard since
as an atomic adsorbate, it modifies the electronic properties of
graphene®® and also is a potent single-atom catalyst for, e.g., CO,
reduction when anchored as single atoms onto carbon materi-
als®”8, We form these GNRs in ultra-high-vacuum (UHV) condi-
tions in a scanning transmission electron microscope (STEM) via
laser-induced high-temperature crystallization of adsorbed hydro-
carbons to form small GNR-like patches of a second layer of
graphene supported on suspended monolayer chemical vapor
deposited (CVD) graphene membranes, following prior work in
the literature®®°, The In-atom chains are then formed without
breaking the vacuum via in-situ physical vapor deposition (PVD) of
In onto the GNR/CVD graphene samples and subsequent laser
annealing.

The existence of In-terminated near-ZZ and near-AC edges of
GNRs is verified by atomic-resolution STEM imaging and electron
energy-loss spectroscopy (EELS). Detailed structures of In-
terminated near-ZZ- and near-AC-oriented GNR edges are further
confirmed through STEM image and density functional theory
(DFT) simulations. The electron-beam-induced dynamics of In
atoms along the near-ZZ and near-AC edges of the GNRs are
monitored via sequential atomic-resolution STEM imaging. Finally,
DFT simulations indicate that such In-atom termination can
modify the electronic properties of ZZ- and AC-GNRs. While there
is limited difference in the electronic structures of the bare and In-
terminated ZZ-GNRs, In decoration strongly alters the lowest
unoccupied bands as well as dopes the semiconducting AC-GNR.
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Our data thus provides insights into the creation and properties of
long linear metal atom chains at graphene and GNR edges.

RESULTS

Formation of In-atom chains

We have recently established the in-situ synthesis and atomic-
resolution characterization of single In atoms and few-atom In
nanoclusters anchored on monolayer graphene*'. Here, we apply
the same methodology for the creation of In-atom chains at the
edges of GNRs (see Methods). We note that for the majority of the
sampled areas, we observe anchored In atoms and few-atom In
nanoclusters as described in our prior work*!, while for few
regions on the same samples, we observe the here reported In-
decorated GNRs. As earlier described*!, the experiments pre-
sented in this work are performed in a coupled STEM setup, which
involves the microscope and an in-situ UHV preparation system
comprising deposition and laser-annealing chambers, enabling
sample transfer between preparation steps and imaging without
ambient air exposure?’*2, In short, the sample preparation is as
follows: First, a suspended CVD monolayer graphene membrane is
loaded into UHV, followed by laser annealing of the membrane to
remove adsorbed hydrocarbons that are typically present from
ambient air exposure**** We find that a small fraction of these
adsorbed hydrocarbons does not desorb, but instead crystallizes
into small ribbon-like patches of an additional layer of graphene
under laser irradiation, similar to prior reports in the literature34°,
Subsequently, we use PVD to deposit In onto the membrane and
then subject the sample to a second laser anneal, which leads to
diffusion of the deposited In across the sample surface*'. Finally,
the samples are imaged using STEM.

Figure 1a displays a medium-angle annular dark-field (MAADF)
STEM image of the structures arising from our preparation. In Fig.
1a, we find a small laser-crystallized graphene patch on the
continuous monolayer graphene membrane. This ribbon-like
patch notably has what appear to be In-terminated edges, as
indicated by the bright MAADF signal at the ribbon edges and as
further confirmed below. The only few-nm width of this graphene
patch motivates us to call it a GNR. However, due to the imperfect
preparation process, the termination of the edges of the GNR in
Fig. 1a is not straightforward to assign. Atomic-resolution STEM
images reveal that the crystallinity of the GNR on graphene is
imperfect and it contains structural defects (Supplementary Fig.
1a). Fourier-transform (FT) data recorded on the laser-induced
GNR and the adjacent supporting monolayer graphene areas
shows the co-existence of two slightly rotated graphitic reflections
(Supplementary Fig. 1c-e). Together with the real space MAADF
data in Supplementary Fig. 1a this suggests that the GNR is almost
AA-stacked with respect to the supporting monolayer graphene
membrane with a small misorientation of ~2°. The structural
disorder in the GNRs and their misorientation with respect to the
continuous graphene support hinders exact edge assignments.
Combined, the atomic-resolution images and the FT data do,
however, indicate that the GNR edges labeled in Fig. 1a are close
to ZZ and close to AC directions, respectively. Thus, for the
purposes of further discussion and analysis, we term these as
“near-ZZ" and “near-AC”, respectively.

In Fig. 1a, we find the In atoms to be lined up along these near-
ZZ and near-AC graphene edges of the GNR. Figure 1b
correspondingly shows a schematic exhibiting In-decorated
graphene ZZ- and AC-edges of an idealized model GNR located
on a graphene monolayer. The identity of the In atoms at the GNR
edges is confirmed by the EELS spectra shown in Supplementary
Fig. 2. Compared to prior experimental literature on metal-
decoration of graphene edges, which had only reported isolated
metal atoms?®=3°, the decoration of graphitic edges observed here
is by many metal atoms lined up along edges. However, a small
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amount of In also remains in the amorphous residual (hydro-)
carbon adsorbate areas on the bare graphene (Fig. 1a, left).

Figure 1c shows a close-up MAADF image of the near-ZZ
graphene edge decorated with In atoms. To corroborate the edge
termination, we simulated a ZZ graphene edge terminated with In
in Klein configuration*>*¢ using DFT (Fig. 1d), and then performed
a MAADF image simulation of the DFT-relaxed model (Fig. 1e).
When comparing the In-atom spacing as well as the MAADF
intensity derived from the experimental and simulated MAADF
images (Fig. 1f), we find a good agreement in the measured and
simulated intensity profiles. To determine the spacing, we
measured a histogram of experimental In-In distances for the
near-ZZ edge (Fig. 1k). By fitting a Gaussian lineshape, we estimate
the In-In distance along the experimental near-ZZ GNRs to be
0.27 + 0.02 nm, which matches our DFT-relaxed model remarkably
well (0.26 nm). This corroborates our assignment of In atoms in
Klein configuration terminating this near-ZZ graphene edge of
the GNR.

We performed a similar analysis for the near-AC edges (see Fig.
1g-j, 1), which suggests for near-AC In decoration in a bivalent
configuration®®. The slight apparent mismatch in the spacing of
the experimental and simulated MAADF line profiles (see Fig. 1f, j)
may be ascribed to poor crystallinity of GNRs and the misorienta-
tion of the actual near-AC-edge in this case. A statistically more
robust histogram of In-In distances on the AC-GNR (Fig. 11) yields
0.42 + 0.03 nm, which is in good agreement with our DFT-relaxed
model (0.42 nm). Overall, these findings support In atom termina-
tion on the near-AC edge of the GNR with the In in a bivalent
configuration.

Prior literature indicates that also curvature induced by folding
can alter the local chemical reactivity of graphene membranes®’.
Interestingly, we observe here that In atoms do not form an atomic
chain at the highly symmetric edge of a graphene layer folded
upon itself to form a local bilayer (see Supplementary Fig. 3).

Dynamics of In atoms at GNR edges

To study the impact of energetic electron irradiation in STEM on
the spacing of In atoms, we show images acquired during
electron-beam irradiation in Fig. 2. Here, the images are
sequentially acquired, thus corresponding to increasing irradiation
dose. No obvious changes occur until a dose of 0.4 x 10° e nm~—2,
With an increase of dose up to 0.5x 10° e'nm~2, the In atom
marked by the dashed yellow circle in the third frame is ejected
from the near-AC GNR edge. Subsequently, another In atom
marked by a dashed yellow circle shown in the fourth frame
moves to the neighboring site when the electron dose reaches
0.9x10° enm~2. The same In atom then moves back to its
previous location at a dose of 1.2 x 10° e-nm~2. A further increase
of the dose also enables capturing additional In atoms at the edge
of the GNR (see In atom marked by the dashed yellow circle in the
last frame). Consequently, electron-beam irradiation induces
variations in the interatomic distances of the In-atom chains due
to the migration of atoms along the near-AC edge. Our prior work
indicated significant diffusion of In across graphene membranes
faster than our imaging timescales even at room temperature due
to the combination of In’s low melting point (~160°C) and low
vapor pressure*!*® We thus also here rationalize the capture of
additional In atoms by In diffusion and then preferential
decoration of chemically highly reactive sites such as graphitic
edges by these atoms. The continuous graphene support
membrane stabilizes the GNR edges and acts as a platform for
mobile In atoms moving on its surface.

Figure 3a shows electron-beam-induced dynamics and forma-
tion of long In-atom chains along a near-ZZ GNR edge. Since these
images were acquired at a high scan rate to capture the dynamics,
the image resolution is rather poor. To verify the edge termination,
we measured the spacing of the In atoms at the chain formed
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Fig. 1 In-terminated near-ZZ and near-AC graphene edges. a MAADF-STEM image of In-terminated graphene edges of a GNR formed on the
supporting graphene monolayer. The image is double Gaussian filtered (raw image is shown in Supplementary Fig. 1b). The scale bar is 1 nm.
b A simplified schematic showing In-terminated graphitic edges of GNRs on graphene, corresponding to an idealized model of the structure
in (a). c, g MAADF images of the near-ZZ and near-AC graphene edges terminated with In atoms. d, h DFT-relaxed models of In-terminated ZZ-
and AC-edges (C and In atoms are represented by black and blue colored spheres, respectively) and (e, i) their corresponding simulated
MAADF images. The images are double Gaussian filtered (the raw images are shown in Supplementary Fig. 4). f, j Intensity profiles measured
along the semi-transparent blue lines on the In-terminated (near-)ZZ and (near-)AC-edges shown in the experimental and simulated MAADF
images. The scale bars in (c, e, g, i) are 0.5 nm. k, | Histograms showing the experimentally measured interatomic In-In distance along near-ZZ
and near-AC GNRs, respectively.
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Fig. 2 Dynamics of In atoms at AC-edges. MAADF-STEM image series of an In-terminated graphene AC-edge, with cumulative irradiation
doses and corresponding irradiation times indicated. The images are double Gaussian filtered, and the scale bar is 0.5 nm.

along the edge, again comparing it to DFT-relaxed models (see
Supplementary Fig. 5). At low electron doses, there are only a few
In atoms lined up at the near-ZZ edge. Notably, at electron doses
reaching 0.4 x 108 e'nm~2, the edge gains more In atoms and the
chain grows further. As discussed above, this again suggests that
diffusing In atoms from outside of the field-of-view can be
captured at the edges during imaging. More In atoms are attached
to the GNR edge at higher electron doses. The explicit increase in
the number of In atoms is obvious at an electron dose of 0.6 x 10®
e"nm~2. The higher the cumulative electron dose, quantitatively,
the more atoms does the near-ZZ-edge gain and the longer the
chain becomes, culminating in the last frame corresponding to an
electron dose of 3.2 x 108 e'nm~2. Figure 3b plots the correspond-
ing interatomic In-In distances along this near-ZZ edge as a
function of electron dose. The initial decrease in In-In distance
reflects the increasing decoration of the GNR edge by In. Notably,
the In-In distance remains also after extended electron dose and a
fully decorated edge larger (~0.31nm) compared to Fig. 1
(~0.26 nm). We ascribe this to the imperfection and misorientation
of the particular near-ZZ in Fig. 3.

The finding that In-In distances for near-ZZ can vary to some
extent (compare Fig. 1 versus Fig. 3) suggests that In termination
of GNR is not limited to perfect AC and ZZ edges (models in Fig. 1)
but can also occur at chiral GNRs (Figs. 2 and 3) with certain
misorientations from AC and ZZ, respectively. Unfortunately, the
HAADF data of the GNRs in Figs. 2, 3 is not of sufficient quality to
fully assess for us the exact chiral indices of their near-AC and
near-ZZ edges.

The maximum lengths of linear In chains along near-ZZ, near-
AC edges of GNRs are measured to be ~3.1nm and ~2nm,
respectively. For (kinked) edges comprised of both near-ZZ and
near-AC sections (“mixed edges”) we measure the longest In chain
with length of ~4.9 nm.

The electronic properties of In-decorated GNRs

Having experimentally established that graphene edges in
supported GNRs can be decorated by In atom chains along their
edges, we now turn to investigate how the electronic properties of
GNRs could be affected by such decoration. In particular, in Fig. 4
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we show the DFT-calculated band structures of bare, commonly
suggested H-terminated and here reported In-terminated ZZ- and
AC-GNRs of widths N=6 and N =9, respectively. Here, N is the
total number of zigzag chains across the ZZ-GNR whereas it is the
total number of dimer lines across the AC-GNR. The reason we
chose the supercell sizes of N =6 and N = 9 is that their respective
widths are close to our experimentally observed GNR widths of
~1nm (Fig. 1a). Figure 4a shows the characteristic flat bands of
bare ZZ-GNRs alongside two edge states that are suppressed by H
saturation as seen by comparison to Fig. 4b. Earlier reports have
shown that the nonbonding orbitals localized at the edges of ZZ-
GNRs constitute these flat bands and give rise to a steep peak in
the density of states (DOS)*°, which depend on the ribbon
width®®. When the ZZ-GNR is terminated by In atoms, a
rearrangement of these edge states corresponding to the highest
occupied bands can be observed especially towards X, but the
structure remains metallic (see Fig. 4c). Unlike ZZ-GNR, the bare
AC-GNR is a semiconductor with a small bandgap (see Fig. 4d),
which is reduced with increasing ribbon width>'>2, Interestingly,
when its edges are terminated with In atoms (see Fig. 4f), the
lowest unoccupied band that is suppressed by H saturation (Fig.
4e) is significantly modified especially towards T, and the
semiconducting AC-GNR is doped into a metallic state. No prior
calculations for In decoration are available, but iron (Fe) and
titanium (Ti) adsorption at the AC-edges of GNRs has previously
been predicted to turn them into half-metals>3.

Besides band structures, we also study the energetics of In-
chain formation on GNR edges by DFT (Supplementary Fig. 6 and
Supplementary Tables 1, 2) using a supercell obtained by
repeating the unit cell by six times along the ribbon length,
inserting additional In atoms, and relaxing the structures to
calculated their total energies. By comparing these to the bare
ribbon, we can estimate the energy gain for each additional In
atom saturating the highly reactive edges.

For the AC-GNR (Supplementary Fig. 6 and Supplementary
Table 2), each In atom added to the edge results in a relatively
larger energy gain—until the six most favorable adsorption sites
are saturated, after which the energy gain starts to decrease. This
suggests that full decoration of the AC edge by In is energetically
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Fig. 3 Dynamics of In atoms at ZZ-edges. a MAADF-STEM image series of an In-terminated graphitic ZZ-edge acquired at increasing
cumulative irradiation doses and corresponding times indicated. The images are double Gaussian filtered and the scale bar is 1 nm. The near-
ZZ-edge is indicated by the white arrows shown in the first and last frames. b The interatomic In-In distances along the near-ZZ GNR as a
function of electron dose. The error bars show the standard error of the mean.

favored, but if additional edge sites are available, this relatively
sparse decoration is the overall energy minimum. Throughout the
simulated formation sequence until six added atoms, all In atoms
show a bivalent bonding to the AC edge (except for four In atoms
where their bonding dimerizes), same as in the final bivalent In
configuration that we also experimentally observe (Figs. 1, 2).
More In atoms can be accommodated, but at diminishing
energetic returns.

For ZZ-GNRs (Supplementary Fig. 6 and Supplementary Table 1),
we find that the addition of each In atom to the graphene edge
also leads to an energy gain up to the fully saturated edge,
suggesting that formation of In chains at ZZ edges is energetically
favored. Interestingly however, the energy gain for each atom
added is in this case reducing in relative terms with increasing In
number. While the final configuration of the fully decorated edge
from DFT in Supplementary Fig. 6 is similar to the experimentally
observed Klein configuration in Figs. 1, 3, we note that for lower In
numbers the non-saturated ZZ-edge shows different intermediate
bonding types than the fully saturated edge. Individual In atoms,
when there is space available at the non-saturated ZZ-GNR edge,
appear to prefer to bond to multiple edge C atoms in a mixed
(partly bivalent) bonding type. We have not experimentally
observed such intermediate states in our experiments, but note
that this may be related to the limited number of intermediate
states that we have captures in our in-situ formation data that has
a limited time resolution.

Since the GNRs in our experimental data are rather defective,
we have also tentatively calculated the impact of exemplary
defects within the GNR on the In adsorption at edges adjacent to
the defects. As shown in Supplementary Fig. 7, the energy gain
from adding an In atom to the edge of AC-GNR with a defect is in
some cases slightly greater than that of a single In atom attached
to a perfect AC-GNR (Supplementary Fig. 6). This suggests that
defects in the GNRs may even be conducive towards In decoration
of the GNR edges, although certainly the configuration as a whole
is not energetically favorable due to the defect.

Overall, these energetic considerations support the finding that
In decoration of both AC and ZZ GNR edges is favored and DFT
predicts the same final In configurations for the fully In-decorated
GNR edges that we have experimentally observed.

We finally turn to discuss the limitations of this study: While we
have demonstrated the viability of In-chain decoration of GNRs
under UHV conditions with stability at room temperature, the
presented structures require additional steps towards future
application screening. These steps in particular include i. improv-
ing the scalability and the selectivity of the preparation route
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towards In-chain/GNR structures (i.e. beyond their sparse forma-
tion as in this proof-of-existence study) and ii. assessing the
stability of the structures under oxidative or reductive conditions
in future operando-type work, as typically encountered in, e.g.,
realistic GNR device fabrication process flows or possible catalysis
applications.

DISCUSSION

In summary, we demonstrate long linear In-atom chains along
edges of GNR-like graphitic structures supported on continuous
graphene monolayer membranes. The In-terminated near-ZZ and
near-AC graphitic edges are imaged at a high spatial resolution
using aberration-corrected STEM. All the structures observed
experimentally are verified via DFT and image simulations, and the
identity of In is confirmed by EELS. The electron-beam irradiation
leads to the displacement of In atoms along the edges promoting
the formation of long attached atomic In chains. The electronic
properties of similar In-terminated GNRs are predicted by DFT
simulations, whereby In atoms adsorbed at the edges of ZZ-GNRs
do not induce a distinct change in the electronic structure, but
doping and an explicit reduction in the bandgap of semiconduct-
ing AC-GNR is observed, when their edge is terminated by In
atoms. Our findings experimentally extend the concept of metal
decoration of graphene edges from isolated atoms to atomic
chains along the edges. Thus, not only single atoms can be
prepared on graphene edges (as in prior literature?®=3%), but also
metal-atom chains can decorate them. This may be of future
interest in tuning electronic properties of GNRs by metal-atom
chain decoration. Our data also suggests that In particularly well
lends itself for such atom chain decoration of graphene edges.
Because atomic In is a potent single-atom catalyst for, e.g., CO,
reduction®’, we suggest that it could be also attractive in future
work to explore how such metal atom chains fare in catalysis®®.

METHODS
Samples

We used commercial graphene samples grown via chemical vapor
deposition and transferred onto Quantifoil TEM grids
(Graphenea Inc.).

STEM and EELS measurements

STEM imaging was performed using a Nion UltraSTEM100
operated at a 60 kV accelerating voltage in UHV (~10~° mbar).

npj 2D Materials and Applications (2023) 2
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Fig. 4 The electronic band-structures. The electronic band-structures of bare, H-terminated and In-terminated (a-c) ZZ (N = 6) and (d-f) AC
(N=9) GNRs calculated by DFT along the I'-X direction which corresponds to conduction direction in the periodic real-space direction along
the ribbons. The unit cells of the DFT-relaxed models used in the band-structure simulations are shown above, where the C, H and In atoms

are represented by black, red and blue colored spheres, respectively.

The collection angles of the high-angle annular dark-field (HAADF)
and medium-angle annular dark-field (MAADF) detectors were
80-300 mrad and 60-80 mrad, respectively. The probe conver-
gence angle was 30 mrad. A Gatan PEELS 666 spectrometer,
retrofitted with an Andor iXon 897 electron-multiplying charge-
coupled device camera, was used for the EELS experiments®>.
During measurements, the energy dispersion, the beam current
and the EELS collection semi-angle were 1 eV per channel, 30 pA,
and 35 mrad, respectively. The direct transfer of samples without
ambient exposure was enabled using a STEM with a customized
sample loading and transfer system?'4256,

In-situ laser irradiation

Graphene samples were irradiated with a tunable 6 W diode laser
(445 nm, Lasertack GmbH) through a viewport in both STEM and
UHV sample preparation chambers. The laser used in the
experiments was operated at a 10% duty cycle that reduces the
laser power to 600 mW to prevent structural damage in graphene
and the sample support*'43,

In-situ In deposition

After the first laser irradiation, In was evaporated in-situ using a
custom-built preparation chamber (base pressure ~10~° mbar)
coupled to the STEM. For the deposition of In onto graphene, a
Knudsen cell with In pellets (99.99% purity, Kurt J. Lesker) was
heated to 700°C, while the graphene was kept at room
temperature. The nominal thickness of the In measured on quartz
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microbalance was estimated to be ~10nm. However, the
observed thicknesses of In particles are in the range of 0.9 to
1.6 nm. Having completed the evaporation, the samples were laser
irradiated once more to drive In diffusion.

DFT simulations

Density functional theory (DFT) simulations were performed using
the grid-based projector-augmented wave (GPAW) software
package®’. For the relaxation of atomic structures, we used the
PBE functional and periodic boundary conditions (with >10 A of
vacuum in the perpendicular direction between the images) in the
planewave mode with a cutoff energy of 500eV and a 5x5x 1
k-point mesh so that maximum forces were <0.02eVA~" %8 To
study the effect of In decoration on the electronic properties of
the GNRs, we calculated their band-structures via spin-polarized
DFT. We first converged the ground-state charge density of each
system, and to include unoccupied states, we fixed the charge
density and doubled the number of bands of which 80% were
converged. We calculated the I-X band path with 51 k-points,
corresponding to the real-space direction along the ribbons. Due
to the even number of both In and C atoms in all models, the total
magnetic moment was zero and both spin channels were nearly
identical.

STEM image simulations

Independent atom model STEM image (HAADF and MAADF)
simulations were performed on the DFT-relaxed models using the
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QSTEM software with the following experimental parameters:
Chromatic aberration coefficient of 1 mm, a spherical aberration
coefficient of 1 um and energy spread of 0.48eV. The detector
semi-angular ranges were set to 80-300 mrad for HAADF and
60-80 mrad for simultaneous MAADF. Similar to the experiment,
the probe convergence angle was set to 30 mrad.
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The authors declare that the data supporting the findings of this study are available
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