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Towards precision oncology discovery: four less known genes
and their unknown interactions as highest-performed
biomarkers for colorectal cancer
Yongjun Liu1, Yuqing Xu 2, Xiaoxing Li3✉, Mengke Chen3, Xueqin Wang 4, Ning Zhang5, Heping Zhang6 and
Zhengjun Zhang 2,7,8✉

The goal of this study was to use a new interpretable machine-learning framework based on max-logistic competing risk factor
models to identify a parsimonious set of differentially expressed genes (DEGs) that play a pivotal role in the development of
colorectal cancer (CRC). Transcriptome data from nine public datasets were analyzed, and a new Chinese cohort was collected to
validate the findings. The study discovered a set of four critical DEGs - CXCL8, PSMC2, APP, and SLC20A1 - that exhibit the highest
accuracy in detecting CRC in diverse populations and ethnicities. Notably, PSMC2 and CXCL8 appear to play a central role in CRC,
and CXCL8 alone could potentially serve as an early-stage marker for CRC. This work represents a pioneering effort in applying the
max-logistic competing risk factor model to identify critical genes for human malignancies, and the interpretability and
reproducibility of the results across diverse populations suggests that the four DEGs identified can provide a comprehensive
description of the transcriptomic features of CRC. The practical implications of this research include the potential for personalized
risk assessment and precision diagnosis and tailored treatment plans for patients.
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INTRODUCTION
Colorectal cancer (CRC) is a significant public health issue, being
one of the most prevalent human malignancies worldwide and
the second leading cause of cancer-related deaths1–3. While
surgical resection, chemoradiation, and immunotherapy have
advanced, they remain inadequate in many cases. Moreover, the
incidence of CRC is increasing in younger individuals, particularly
in the United States and other countries4–6. Genetic predisposition
plays a crucial role in the development of CRC, with hereditary and
sporadic causes accounting for a significant proportion of
cases2,6,7. The etiology of CRC can be broadly classified into two
categories: hereditary or sporadic. Hereditary CRC accounts for
10−15% of the overall incidence and is attributable to mutations
in APC or DNA mismatch repair genes. Sporadic CRC is more
frequent, representing >80% of CRCs, and is characterized by
chromosomal instability, microsatellite instability (MSI), or CpG
island methylation6,7.
Over the past decades, many transcriptomic studies have been

performed which have shed light on the molecular mechanisms
underlying CRC development, with a large number of genes being
identified as differentially expressed between tumor and non-
tumor tissues8–15. At the molecular level, CRC are classified into
four consensus molecular subtypes (CMS), each of which is
characterized by distinct expression profiles of oncogenic/tumor
suppressive genes and pathways, mutation states of particular
genes, MSI, and clinical outcomes16,17, however their clinical utility
remains to be validated.

So far, most transcriptomic studies have used traditional
analytical approaches which rely on fold changes of individual
genes between tumor and control tissues or pathway enrichment
analysis based on current knowledge of genes and biological
processes11,18–20. As a result, the number of genes/transcripts
reported is large and it is uncertain which of them plays a critical
role in cancer identification and classification. Furthermore, gene-
gene interactions were not well addressed in traditional analytical
models. Thus, there is a need to develop novel analytical methods
to identify critical DEGs with high sensitivity and specificity. Recent
advances in the machine learning community have shown great
promise for applying new methods to improve cancer identifica-
tion/classification and have demonstrated superior performance
over traditional methods21–23.
In this study, we applied a newly proven and powerful machine-

learning method to identify a parsimonious subset of critical
differentially expressed genes (DEGs) for CRC. Our method is
based on the max-logistic competing structure, which takes into
account the competing relationships among genes in predicting
the outcome variable, including gene-gene interactions, a feature
not captured by traditional analytical models21–23. We analyzed
ten transcriptome profiling datasets, including nine public
datasets and one separate transcriptome dataset collected from
a Chinese population. Using the max-logistic competing risk factor
models, we identified four critical DEGs, namely, CXCL8 (C-X-C
Motif Chemokine Ligand 8), PSMC2 (Proteasome 26S Subunit,
ATPase 2), APP (Amyloid Beta Precursor Protein), and SLC20A1
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(Solute Carrier Family 20 Member 1), that demonstrated the
highest sensitivity, specificity, and robustness for identifying CRC,
compared to the existing literature. Furthermore, the results are
interpretable and reproducible across different studies of diverse
human populations. Our study represents a significant advance-
ment in the identification of critical genes for CRC and
demonstrates the potential of interpretable machine learning in
cancer identification and classification. We note that many
existing machine learning approaches lack interpretability and
often exhibit limited robustness across diverse cohorts. Thus, our
findings can be considered as valuable contributions to precision
oncology, providing insights that may have practical applications
in the field of CRC precision medicine.

RESULTS
Identification of critical DEGs
Using the data described in Table 1 and Section Data Availability,
we identified four critical DEGs, namely, CXCL8, PSMC2, APP, and
SLC20A1. We note that PSMC2 has been linked to CRC cancers, but
its interactions with other genes haven’t been reported. The other
three genes are less known in the CRC literature though they have
been listed in the literature. We will discuss further of these four
genes.

Identification of classifiers based on the four critical DEGs
Each of the CFs (competing factors) that are in competition with
each other (CFi; i¼1; 2; 3Þ can be expressed as a linear combina-
tion of gene expressions from critical DEGs. The final classifiers
used were the combination of these three competing factors, as
presented in Table 2. The risk probability was calculated by
applying the logistic function of exp(Data_i_CFmax)/(1+ exp(Da-
ta_i_CFmax)) for the combined classifiers in each dataset, and of
exp(Data_i_CFj)/(1+ exp(Data_i_CFj)) for each individual classifier
i = 1, 2, 3, j = 1, 2, 3. Data_i_CFj represents one of the gene-CRC
relationships and reflects how genes interact with each other.
There may be multiple gene expression combinations (e.g., j = 1,
2, 3) for a particular patient, representing the competing risk
factors for that patient. Data i CFmax, i = 1, 2, 3, represents the
combined maximum of linear competing factors of the ith dataset.
In the first, second, eighth, and ninth datasets, two classifiers,

CF1 and CF2, had sufficiently high powers to identify CRC patients,
and additional CFs were not required. In the third and seventh
datasets, however, three classifiers (CF1, CF2 and CF3) were needed
to accurately predict the presence of CRC tumors, due to the low
sensitivity of CF2 in those datasets. In the remaining datasets, only
one classifier (CF1) was needed to achieve the highest sensitivity
and specificity in identifying CRC.
For illustration purposes, Fig. 1 displays the risk probabilities

estimated by the final classifiers in all datasets. Figure 2 is four-
dimensional plots that visualize the signature patterns formed by
each classifier in all datasets. Each plot demonstrates how the
genes create signature patterns in a geometry space, with the
classifiers separating yellow from blue and green colors. Notably,
these signature patterns are unique to the four specific genes
utilized and cannot be replicated by arbitrarily selecting three
different genes.
Figure 3 depicts a Venn diagram that showcases the patient

subgroups, which were classified by the classifiers in the first three
cohorts and the validating Chinese cohort. The results demon-
strate that in the first and second cohorts, CRC patients were
categorized into three distinct subgroups based on the classifiers
mentioned above. The first subgroup included patients who were
detected only by CF1, while the second subgroup included
patients who were only detected by CF2. The third subgroup
comprised patients who were identified by CF1 and CF2
simultaneously (as seen in Fig. 3). In the third cohort, patients Ta
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were classified into seven subgroups based on the classifiers CF1,
CF2, and CF3. Similarly, the validating Chinese cohort also had
seven distinct subgroups. However, in datasets 4, 5, 6 and 10,
patients were not further categorized, as one classifier had
sufficient power to identify CRC patients. This figure highlights the
intricate nature of disease status as patients were categorized into
different subgroups based on their gene-gene interactions at the
genomic level. Such categorization would be valuable in
determining the effectiveness of CRC diagnosis, prognosis, and
management. We note applying other machine-learning and AI
approaches cannot identify subtypes of CRC.
Table 2 displays the coefficients associated with the classifiers in

all ten datasets. It demonstrates the highest performance of the
CFmax classifier in discriminating between tumor and nontumor
samples, with an overall sensitivity of over 98%, specificity of over
80%, and accuracy of over 94%. Furthermore, the combined use of
CF1, CF2, and CF3 improved the ability to detect cancer. Notably, in
dataset 4, which comprised early-stage CRC cases in a Han
Chinese population, the CXCL8 classifier alone achieved 100%
sensitivity, specificity, and accuracy in identifying CRC. Therefore,
we conducted focused analyses on early-stage CRC (stage 1) in
other datasets. The results revealed that CXCL8 alone demon-
strated high sensitivity (>89%), specificity (>75%), and accuracy
(>85%) in identifying stage 1 CRC in datasets 1, 2, 3, and 6.
However, focused analysis was not conducted on the remaining
datasets, as there were not enough cases of early-stage CRC.

The classifiers in Table 2 were used to determine the risk
probability of CRC based on the direction and absolute value of
the gene expression coefficient. A positive coefficient indicated
that higher gene expression was associated with a higher risk
probability of CRC, while a negative coefficient indicated that
lower gene expression was associated with a higher risk
probability of CRC. For instance, in datasets 1, 2, 3, and 6, a
decrease in APP gene expression was associated with a reduced
risk probability of CRC, whereas in datasets 5, 7, 8, 9, and 10, APP
showed the opposite direction, indicating a different effect of this
gene in White and Asians. SLC20A1 was consistently associated
with an increased risk probability of CRC across all datasets,
indicating that its expression was suppressed in diverse CRC
patient populations. Additionally, CXCL8 and PSMC2 were
consistently associated with a reduced risk probability of CRC
across all datasets, suggesting that their decreased expression was
protective against CRC development. The different signs of APP in
different classifiers suggest that the relationship of a single human
gene with disease status can be nonlinearly correlated, and its
interaction with other genes can be either positively or negatively
correlated. We note that the existing CRC literature never reported
such interpretations.
Notably, positive coefficients were observed for CXCL8 and

PSMC2 across all datasets, indicating their central roles in gene-
gene interactions and as competing risk factors for CRC
development. The varying coefficients of APP in different

Table 2. The four critical DEGs and the classifiers identified in the 10 datasets.

Dataset Data source Tumor Non-tumor Classifier Intercept APP CXCL8 PSMC2 SLC20A1 Accuracy Sensitivity Specificity

1 TCGA329 288 41 CF1 −90.3645 2.8598 5.5149 −0.8795 86.02% 85.07% 92.68%

CF2 −26.5288 0.5692 3.1516 −1.0474 95.74% 96.18% 92.68%

Max 97.87% 98.61% 92.68%

CF_Stage 1 −6.3439 0.8358 85.71% 90.70% 80.49%

2 TCGA512 471 41 CF1 9.7471 3.8373 3.4912 −14.1533 96.29% 97.66% 80.49%

CF2 −8.5448 2.6917 17.7379 −13.4588 97.27% 98.73% 80.49%

Max 98.24% 99.79% 80.49%

CF_Stage 1 −11.1078 5.7651 88.50% 95.83% 75.63%

3 GSE39582 566 19 CF1 −44.7356 1.3067 3.133 89.40% 89.22% 94.74%

CF2 −47.3452 9.0331 −5.8066 26.15% 23.85% 94.74%

CF3 −28.1527 3.4292 4.936 −4.6261 98.46% 98.76% 89.47%

Max 99.32% 99.82% 84.21%

CF_Stage 1 −4.0848 0.5331 90.38% 96.97% 78.95%

4 GSE9348 70 12 CF_Stage 1 −0.2712 0.0011 100% 100% 100%

5 GSE18105 94 17 CF1 −3.1785 −4.3298 0.4519 4.305 −1.9872 99.10% 100% 94.12%

6 GSE41258 186 54 CF1 −1.7889 0.6933 11.5492 −0.1163 94.58% 95.70% 90.74%

CF_Stage 1 −2.9511 0.0238 91.46% 89.29% 92.59%

7 Self-collected 45 47 CF1 0.4565 −1.6293 53.26% 4.44% 100%

CF2 −0.4722 1.3083 −1.6565 64.13% 35.56% 91.49%

CF3 −1.963 −1.677 2.9094 82.61% 77.78% 87.23%

Max 88.04% 91.11% 85.11%

8 TCGA_READ 167 10 CF1 6.9125 3.3834 −5.007 72.32% 71.26% 90.00%

CF2 −24.4459 −4.8627 13.8489 90.40% 91.02% 80.00%

Max 97.18% 98.20% 80%

9 GSE103512 57 12 CF1 −16.337 −4.9005 9.4632 −3.6135 85.51% 84.21% 91.67%

CF2 −34.282 3.456 2.9659 −2.0026 85.51% 84.21% 91.67%

Max 98.55% 100% 91.67%

10 GSE156451 72 72 CF1 −11.7722 −0.0677 3.1961 −0.8797 90.97% 90.28% 91.67%

Total 2341 2016 325 97.74% 98.81% 91.08%

The final classifiers are combined classifiers of individual competing factors.
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classifiers suggest that its relationship with CRC is non-linearly
correlated and can be modulated by other genes.
For the purpose of illustration, a subset of gene expression

values for the four critical DEGs is shown in Table 3. The complete
datasets, including original gene expression values and calculated
risk probabilities, are available online.
The risk probability of a sample with CRC can be calculated

using the logistic function in Data_i_CFj. Table 4 shows the patient
subgroups defined by individual classifiers and their combinations
in each dataset. The table demonstrates that there were at least
seven subgroups of CRC patients, each with different genetic
characteristics and determinations. For instance, in Dataset 1, four
patients were detected by Data-3-CF1, one patient by Data-3-CF2,
94 patients by Data-3-CF3, and 60 patients were detected
simultaneously by all three classifiers. This illustrates the hetero-
geneity of CRC and the potential utility of genetic subtyping for
CRC diagnosis, prognosis, and management.

Analysis in validating Chinese cohort
We evaluated the performance of the four crucial DEGs (CXCL8,
PSMC2, APP, and SLC20A1) identified in the aforementioned
public datasets in a validating Chinese cohort from Sun Yat-sen
University Cancer Center, China. By setting K¼1 and solving Eq.
(5), we obtained the classifiers (Table 2). The classifier achieved an
overall accuracy of 88.04%, sensitivity of 91.11%, and specificity of
85.11%. Notably, the coefficient of APP exhibited a different
direction (negative) in this Chinese cohort compared to the North

American, European, and Israeli cohorts, suggesting diverse effects
of this gene in different populations.

Analysis in validating the consensus molecular subtypes
Given well-documented heterogeneity of CRC, we performed
additional analysis to validate the CMS proposed by other groups
(source: https://www.cell.com/trends/cancer/pdf/S2405-8033(16)
30098-X.pdf). Theoretically, when we have access to CMS subtype
information, it is possible to integrate CMS with the subtypes
generated by our competing risk classifiers (CF), creating more
nuanced subtypes. This amalgamation can offer a deeper insight
into CRC pathology. To illustrate, consider a CMS subtype, let’s say
CMS1, and our model-defined subtypes CFiCFj. The combination
of (CMS1, CFiCFj) gives rise to a novel subtype, as it possesses
distinct characteristics not found in other subtypes. The dataset
GSE15645117 included four distinct CMS with divergent biology
and clinical behavior. Therefore, we directly fitted our model using
the identified four genes and we found the four genes led to high
accuracy (accuracy 90.9722%, sensitivity 90.2778%, specificity
91.6667%). The performance is similar to that in the Chinese
cohort that we collected for this study (i.e., the seventh dataset).
The following table shows its performance within each CMS
subtype. We note that there are 7 patients that were listed as “No
group” in the published paper17. In addition, there are 8 patients
whose information was not disclosed in the published paper, and
we denote those as “Others” in Table 5.
We conducted further analysis within each CMS subtype and

obtained Table 6.

Fig. 1 Probabilities of risk estimated by final classifiers for all ten cohorts. CRC samples and normal controls are designated by asters and
circles, respectively. A horizontal line at 0.5 (50%) probability threshold is shown in each panel.
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From above tables, it is apparent that the identified four genes
show greater universality and specialty. When fitting them directly
to each CMS subtype, the results are further refined to achieve
higher accuracy, which shows the four critical genes contain not

only general genomic-level information for CRC but also CMS
subtype information.
Looking at group “Others”, the accuracy is much lower than the

other four types and “No group”, which suggests these patients’

Fig. 2 Diagnostic Views of classifiers in each dataset. Gene expression values and their combination effects with different strengths are
shown in each plot. The fourth dimension represents the risk probabilities, providing a simple way to identify patients with a high risk of CRC.
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CRC types are not typical. Once again, this finding reinforces the
connection between the four genes and CRC.
It is evident that the classifiers established by the four critical

genes have distinct forms, implying the heterogeneity of CRC,
which aligns with the CMS theory24.

Results interpretation through heatmaps
We present heatmaps using classes of normal vs. CRC, the
subtypes classified by our max-logistic competing classifiers, and
CMS subtypes. All plots are displayed in Fig. 4. Here, we briefly
summarize what the heatmaps tell about the four critical genes.
The first heatmap is a heatmap of the selected genes for all

cohorts and samples. It can be clearly seen that the relative mean
changes of CXCL8 and PSMC2 are uniformly positive, while the
signs of SLC20A1 are all negative. This observation shows that
these three genes contain pathological information of CRC. Also,
we can notice that the strengths of changes of CXCL8 are much
larger/stronger than the strengths from other genes. This
phenomenon suggests CXCL8 responded to CRC symptoms
earlier and stronger, which is consistent with our analysis with
those datasets of Stage I CRC.
For the first dataset TCGA-COAD-329, the mean value (5.953) of

CXCL8 in the normal cell (0,0) is significantly smaller than the
mean values (9.914, 9.634) of CXCL8 in CRC cells (1,2), (1,3); the
mean value (10.26) of PSMC2 in (0,0) is smaller than all mean
values in all other cells; the mean value (11.58) of SLC20A1 in (0,0)
is larger than the mean values in all other cells. This phenomenon
confirms CXCL8, PSMC2, and SLC20A1 have essentially important
CRC information.
For the second dataset TCGA-COAD-512, the mean value (1.419)

of CXCL8 in the normal cell (0,0) is significantly smaller than the
mean values (6.027, 2.193, 4.553) of CXCL8 in CRC cells (1,1), (1,2),
(1,3); the mean value (4.156) of PSMC2 in (0,0) is smaller than the
mean values (4.842, 4.911) of PSMC2 in cells (1,2) and (1,3); the
mean value (4.969) of SLC20A1 in (0,0) is larger than the mean
values in all other cells. This phenomenon confirms CXCL8, PSMC2,
and SLC20A1 have essentially important CRC information.
For the third dataset GSE39582, the mean value (6.303) of

CXCL8 in the normal cell (0,0) is significantly smaller than the
mean values of CXCL8 in CRC cells (1,1), (1,3), (1,5), (1,6), (1,7); the
mean value (9.507) of PSMC2 in (0,0) is smaller than the mean
values of PSMC2 in cells (1,1) and (1,3-7); the mean value (10.19) of
SLC20A1 in (0,0) is larger than the mean values in all other cells.
This phenomenon confirms CXCL8, PSMC2, and SLC20A1 have
essentially important CRC information.

For the fourth dataset GSE9348, the mean value (64.33) of
CXCL8 in the normal cell (0,0) is significantly smaller than the
mean value (39.47) of CXCL8 in CRC cells (1,1); the mean value
(458) of PSMC2 in (0,0) is smaller than the mean value (509.6) of
PSMC2 in cell (1,1); the mean value (4577) of SLC20A1 in (0,0) is
twice larger than the mean value (1969) in cell (1,1). This
phenomenon confirms CXCL8, PSMC2, and SLC20A1 have
essentially important CRC information.
For the fifth dataset GSE18105, the mean value (7.569) of CXCL8

in the normal cell (0,0) is smaller than the mean value (10.72) of
CXCL8 in CRC cells (1,1); the mean value (11.6) of PSMC2 in (0,0) is
smaller than the mean value (12.46) of PSMC2 in cell (1,1); the
mean value (10.69) of SLC20A1 in (0,0) is larger than the mean
value (9.725) in cell (1,1). This phenomenon confirms CXCL8,
PSMC2, and SLC20A1 have essentially important CRC information.
For the sixth dataset GSE41258, the mean value (686.8) of CXCL8

in the normal cell (0,0) is significantly smaller than the mean value
(1133) of CXCL8 in CRC cells (1,1); the mean value (49.8) of PSMC2 in
(0,0) is ten times smaller than the mean value (534.3) of PSMC2 in cell
(1,1); the mean value (545.7) of SLC20A1 in (0,0) is larger than the
mean value (459.1) in cell (1,1). This phenomenon confirms CXCL8,
PSMC2, and SLC20A1 have essentially important CRC information.
For the self-collected dataset, the mean value (0.3774) of CXCL8 in

the normal cell (0,0) is significantly smaller than the mean value
(0.8049) of CXCL8 in CRC cells (1,2), but 30-80 times smaller than
those (11.43, 24.78) in (1,3) and (1,6); the mean value (0.9826) of
PSMC2 in (0,0) is smaller than the mean values of PSMC2 in cell (1,2),
(1,3), (1,6); the mean value (1.956) of SLC20A1 in (0,0) is larger than
the mean value in all other cells. This phenomenon confirms CXCL8,
PSMC2, and SLC20A1 have essentially important CRC information.
For the eighth dataset TCGA-READ, the mean value (1.795) of

CXCL8 in the normal cell (0,0) is significantly smaller than the
mean values of CXCL8 in all CRC cells; the mean value (4.303) of
PSMC2 in (0,0) is smaller than the mean values of PSMC2 in all CRC
cells; the mean value (3.903) of SLC20A1 in (0,0) is larger than the
mean value in all CRC cells. This phenomenon confirms CXCL8,
PSMC2, and SLC20A1 have essentially important CRC information.
For the ninth dataset GSE103512, the mean value (5.334) of

CXCL8 in the normal cell (0,0) is significantly smaller than the
mean values (7.669, 7.291) of CXCL8 in CRC cells (1,2) and (1,3); the
mean value (7.422) of PSMC2 in (0,0) is smaller than the mean
values of PSMC2 in all CRC cells; the mean value (5.298) of
SLC20A1 in (0,0) is larger than the mean value in cells (1,1) and
(1,3). This phenomenon confirms CXCL8, PSMC2, and SLC20A1
have essentially important CRC information.
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Fig. 3 Venn Diagrams for Four Datasets. Venn diagrams displaying the classification of CRC patients into distinct subgroups for selected
cohorts (Venn diagrams for Datasets 8 and 9 are similar to Datasets 1 and 2).
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For the tenth dataset GSE156451, the mean value (28.17) of
CXCL8 in the normal cell (0,0) is three times smaller than the mean
value (109.2) of CXCL8 in CRC cells (1,1); the mean value (13.98) of
PSMC2 in (0,0) is twice smaller than the mean value (29.04) of
PSMC2 in cell (1,1); the mean value (65.64) of SLC20A1 in (0,0) is
twice larger than the mean value (25.92) in cell (1,1). This
phenomenon confirms CXCL8, PSMC2, and SLC20A1 have
essentially important CRC information.
For the tenth dataset GSE156451and CMS subtypes, the mean

values of CXCL8 in the normal column are significantly twice or
much smaller than the mean values of CXCL8 in CRC column with
respect to each CMS subtype; the mean values of PSMC2 in
normal column are twice or nearly twice smaller than the mean
values of PSMC2 in CRC column with respect to each CMS
subtype; the mean values of SLC20A1 in normal column are twice
larger than the mean values in CRC column with respect to each
CMS subtype. This phenomenon confirms CXCL8, PSMC2, and
SLC20A1 have essentially important CRC information and CMS
subtype information.
In summary, all ten cohorts demonstrate that CXCL8, PSMC2,

and SLC20A1 contain essentially important CRC information.

Table 3. Gene expression values, competing factors, and risk probability in a portion of the samples for selected cohorts.

Sample ID Sample type APP CXCL8 PSMC2 SLC20A1 CF1 CF2 CF3 CFmax Pmax

Dataset 1 (North American cohort)

TCGA-AA-3522-11 0 14.46 2.57 10.12 12.36 −4.05384 −6.10284 −4.05384 0.01706

TCGA-AA-3518-11 0 14.71 2.84 9.95 12.12 −4.08397 −6.24816 −4.08397 0.016562

TCGA-DM-A1DA-01 1 13.32 5.64 10.92 9.79 −0.68019 0.829748 0.829748 0.696302

TCGA-AD-6965-01 1 14.11 5.66 11.10 10.39 2.072846 0.802252 2.072846 0.888236

Dataset 2 (North American cohort)

TCGA-AA-3511-11A 0 7.865804 0.840519 4.230288 3.752095 −1.66003 −1.22637 −1.22637 0.226818

TCGA-AA-3517-11A 0 7.346597 0.735178 4.032976 6.230919 −9.56825 −9.26049 −9.26049 9.51E-05

TCGA-AZ-4323-01A 1 6.716108 5.586939 4.427988 3.826772 4.067608 4.417109 4.417109 0.988075

TCGA-AA-3971-01A 1 7.566649 4.029144 5.304325 3.394695 5.079653 8.352782 8.352782 0.999764

Dataset 3 (European cohort)

1353 0 10.90443 4.798452 9.339269 9.580673 −1.15919 −5.59369 −9.92037 −1.15919 0.238814

1354 0 10.95167 8.181189 9.176233 9.897567 −1.91304 −6.76058 −0.59102 −0.59102 0.356402

1961 1 11.19171 9.436294 10.13665 9.334996 1.29651 −2.77754 11.05611 11.05611 0.999984

1962 1 11.05174 11.19743 10.72173 9.063379 2.788005 −3.34919 21.23988 21.23988 1

Dataset 7 (Independent Chinese cohort)

1359 T 1 1.81 4.63 0.82 0.35 −2.54 0.03 8.46 8.46 1

1360 T 1 0.95 5.1 0.91 0.44 −1.17 −0.01 11.28 11.28 1

1368 N 0 0.45 0.2 1.4 3.19 −0.51 −3.92 −2.15 −0.51 0.38

1369 N 0 2.68 0.23 0.71 0.98 −3.93 −1.16 −5.79 −1.16 0.24

Columns CFj ; j ¼ 1; 2; 3 correspond to Data� i � CFj ; i ¼ 1; 2; 3; j ¼ 1; 2; 3 with the ith dataset in row blocks and the jth competing risk factor. Column CFmax
corresponds to Data� i � CFmax , i ¼ 1; 2; 3, i.e., the combined maximum of linear competing factors of the ith dataset. Column Pmax corresponds to Data-i,
i ¼ 1; 2; 3 and the risk probability (truncated to 2 decimal digits for illustration purpose) of a CRC sample evaluated from the ith dataset. In the column “Sample
type”, value ‘0’ stands for normal control sample, while value ‘1’ stands for CRC.

Table 4. Subgroups of patients by individual classifiers and their
combinations.

Dataset CF1
only

CF2
only

CF3
only

CF1&2
only

CF1&3
only

CF2&3
only

All CF1,CF2,CF3

1 7 39 NA 238 NA NA NA

2 5 10 NA 455 NA NA NA

3 4 1 94 1 399 6 60

7 2 4 23 NA NA 12 NA

8 12 46 NA 108 NA NA NA

9 6 4 NA 51 NA NA NA

Since only one classifier was defined for datasets 4, 5, 6, and 10, patients
were not further subgrouped.

Table 5. Direct check of model performance in CMS subtypes.

CMS subtype Sample size Accuracy Sensitivity Specificity

1 10+ 10 95% 100% 90%

2 19+ 19 92.11% 94.74% 89.47%

3 13+ 13 92.31% 84.62% 100%

4 15+ 15 93.33% 93.33% 93.33%

Overall 1-4 57+ 57 93.86% 92.99% 94.74%

No group 6+ 6 100% 100% 100%

Others 9+ 9 72.23% 66.67% 77.78%

Overall 72+ 72 90.97% 90.28% 91.67%

Table 6. Performance of fitting withing each CMS subtype.

CMS subtype Sample size Accuracy Sensitivity Specificity

1 10+ 10 100% 100% 100%

2 19+ 19 94.74% 94.74% 94.74%

3 13+ 13 96.15% 92.31% 100%

4 15+ 15 96.67% 100% 93.33%

Overall 1-4 57+ 57 96.49% 96.49% 96.49%
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Characterization of clinical and pathological features
In order to compare the characteristics of subgroups defined by
the classifiers, we analyzed various attributes such as sex, age,
histologic grades, and TNM tumor stages (as shown in Table 7). It
should be noted that some samples did not have complete clinical

or pathological information. Datasets 4, 5, and 6 were excluded
from this analysis as the CRC patients in these datasets were
identified by only one CF. In the first and second datasets, the
majority of CRC patients were identified by CF(1,2), which means
either CF1 or CF2 could determine the cancer status. There was no
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significant difference in gender distribution among subgroups,
and patients were found in almost all age groups. In the second
dataset, patients identified by individual CF1 or CF2 appeared to
have a higher frequency of late-stage CRC, but the sample size in
these subgroups was small. In the third dataset, CF3 was the
classifier that identified the majority of patients. There was no
significant gender preference between groups, but stages 2 and 3
CRC were more common in subgroups associated with CF3.

DISCUSSION
Transcriptomic studies are crucial in identifying significant genes
and biological pathways associated with CRC. However, current
transcriptomic data analyses have limitations. Firstly, the number
of genes/transcripts analyzed is significantly larger compared to
the number of study samples. Secondly, traditional statistical
methods based on gene expression fold change used in most
studies lack the power to determine key drivers of cancer
development due to a large number of genes analyzed. Lastly,
gene-gene interaction effects are not adequately addressed in
existing analytical models. As a result, some of the DEGs identified
in previous studies may be noise effects or chance findings25. In
contrast, the newly introduced interpretable machine learning
method employed in our study is unique as it considers complex
gene-gene interactions and competition, which more closely
resemble biological processes underlying cancer development.
The proposed method identifies critical DEGs and signatures in
heterogeneous cohorts, even on different platforms with varying
gene expression values. This method has been successfully

applied in our early efforts to identify critical DEGs in lung
cancer26, breast cancer27, and COVID-1923. Our current study
further supports the power and validity of the method.
Importantly, our method stands apart from other artificial
intelligence methods that function as a black box since our new
method follows a transparent and interpretable formula that can
be easily validated.
Our study identified four critical DEGs (CXCL8, PSMC2, APP, and

SLC20A1) that demonstrated high performance in identifying CRC
in diverse populations and ethnicities, covering a range of tumor
stages and histologic grades. These genes may serve as
biomarkers that can capture the underlying characteristics of
CRC at the transcriptomic level. As such, they may have significant
practical implications. Given the high performance of our classifier,
we hypothesize that individuals who have higher risk of
developing CRC can be identified by the classifiers based on four
critical genes. For example, colon biopsy specimens from screen-
ing colonoscopy procedures can be sequenced for transcriptomic
profiles to identify the individuals with a risk to develop CRC. The
colon biopsy specimens may include those random biopsies or
colon polyp biopsies without definitive histologic evidence of CRC.
It is important to emphasize that the gene-gene interaction

effects in our model are distinct from those commonly used in
other experimental designs, such as row-column or chemical-
laboratory interactions in industrial and agricultural studies. Our
method goes beyond the interaction term in a typical linear
regression model, where interactions are often analyzed by
multiplying two predictors to construct an additional covariate.
In our model, the combination of genes in each CF determines the

Fig. 4 Heatmaps of heteogeneous populations and classification patterns. First row Left: Heatmaps of heteogeneous populations and
classification patterns: A heatmap of the selected genes for all cohorts and samples. Middle: For the first dataset TCGA-COAD-329, the mean
value of CXCL8 in the normal cell (0,0) is significantly smaller than the mean values of CXCL8 in CRC cells (1,2), (1,3); the mean value of PSMC2
in (0,0) is smaller than all mean values in all other cells; the mean value of SLC20A1 in (0,0) is larger than the mean values in all other cells. This
phenomenon confirms CXCL8, PSMC2, and SLC20A1 have essentially important CRC information. Right: For the second dataset TCGA-COAD-
512, the mean value of CXCL8 in the normal cell (0,0) is significantly smaller than the mean values of CXCL8 in CRC cells (1,1), (1,2), (1,3); the
mean value of PSMC2 in (0,0) is smaller than the mean values of PSMC2 in cells (1,2) and (1,3); the mean value of SLC20A1 in (0,0) is larger than
the mean values in all other cells. This phenomenon confirms CXCL8, PSMC2, and SLC20A1 have essentially important CRC information.
Second row Left: For the third dataset GSE39582, the mean value of CXCL8 in the normal cell (0,0) is significantly smaller than the mean values
of CXCL8 in CRC cells (1,1), (1,3), (1,5), (1,6), (1,7); the mean value of PSMC2 in (0,0) is smaller than the mean values of PSMC2 in cells (1,1) and
(1,3-7); the mean value of SLC20A1 in (0,0) is larger than the mean values in all other cells. This phenomenon confirms CXCL8, PSMC2, and
SLC20A1 have essentially important CRC information. Middle: For the fourth dataset GSE9348, the mean value of CXCL8 in the normal cell (0,0)
is significantly smaller than the mean values of CXCL8 in CRC cells (1,1); the mean value of PSMC2 in (0,0) is smaller than the mean values of
PSMC2 in cell (1,1); the mean value of SLC20A1 in (0,0) is twice larger than the mean value in cell (1,1). This phenomenon confirms CXCL8,
PSMC2, and SLC20A1 have essentially important CRC information. Right: For the fifth dataset GSE18105, the mean value of CXCL8 in the
normal cell (0,0) is smaller than the mean values of CXCL8 in CRC cells (1,1); the mean value of PSMC2 in (0,0) is smaller than the mean values
of PSMC2 in cell (1,1); the mean value of SLC20A1 in (0,0) is larger than the mean value in cell (1,1). This phenomenon confirms CXCL8, PSMC2,
and SLC20A1 have essentially important CRC information. Third row Left: For the sixth dataset GSE41258, the mean value of CXCL8 in the
normal cell (0,0) is significantly smaller than the mean values of CXCL8 in CRC cells (1,1); the mean value of PSMC2 in (0,0) is ten times smaller
than the mean values of PSMC2 in cell (1,1); the mean value of SLC20A1 in (0,0) is larger than the mean value in cell (1,1). This phenomenon
confirms CXCL8, PSMC2, and SLC20A1 have essentially important CRC information. Middle: For the self-collected dataset, the mean value of
CXCL8 in the normal cell (0,0) is significantly smaller than the mean values of CXCL8 in CRC cells (1,2), but 30-80 times smaller than those in
(1,3) and (1,6); the mean value of PSMC2 in (0,0) is smaller than the mean values of PSMC2 in cell (1,2), (1,3), (1,6); the mean value of SLC20A1 in
(0,0) is larger than the mean value in all other cells. This phenomenon confirms CXCL8, PSMC2, and SLC20A1 have essentially important CRC
information. Right: For the eighth dataset TCGA-READ, the mean value of CXCL8 in the normal cell (0,0) is significantly smaller than the mean
values of CXCL8 in all CRC cells; the mean value of PSMC2 in (0,0) is smaller than the mean values of PSMC2 in all CRC cells; the mean value of
SLC20A1 in (0,0) is larger than the mean value in all CRC cells. This phenomenon confirms CXCL8, PSMC2, and SLC20A1 have essentially
important CRC information. Fourth row Left: For the nineth dataset GSE103512, the mean value of CXCL8 in the normal cell (0,0) is significantly
smaller than the mean values of CXCL8 in CRC cells (1,2) and (1,3); the mean value of PSMC2 in (0,0) is smaller than the mean values of PSMC2
in all CRC cells; the mean value of SLC20A1 in (0,0) is larger than the mean value in cells (1,1) and (1,3). This phenomenon confirms CXCL8,
PSMC2, and SLC20A1 have essentially important CRC information. Middle: For the tenth dataset GSE156451, the mean value of CXCL8 in the
normal cell (0,0) is three times smaller than the mean values of CXCL8 in CRC cells (1,1); the mean value of PSMC2 in (0,0) is twice smaller than
the mean values of PSMC2 in cell (1,1); the mean value of SLC20A1 in (0,0) is twice larger than the mean value in cell (1,1). This phenomenon
confirms CXCL8, PSMC2, and SLC20A1 have essentially important CRC information. Right: For the tenth dataset GSE156451and CMS subtypes,
the mean values of CXCL8 in the normal column are significantly twice or much smaller than the mean values of CXCL8 in CRC column with
respect to each CMS subtype; the mean values of PSMC2 in normal column are twice of nearly twice smaller than the mean values of PSMC2
in CRC column with respect to each CMS subtype; the mean values of SLC20A1 in normal column are twice larger than the mean values in
CRC column with respect to each CMS subtype. This phenomenon confirms CXCL8, PSMC2, and SLC20A1 have essentially important CRC
information and CMS subtype information.
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interaction effects, which can be seen in the coefficient values of
each CF. This was observed across all datasets analyzed, indicating
the presence of gene-gene and gene-subtype interactions.
Furthermore, each classifier identified in our study can serve as
a potential marker for CRC, and the effects of these classifiers may
be modulated by critical genes such as PSMC2 and CXCL8, which
are associated with CRC of different tumor stages. To illustrate this
concept, we take two classifiers from Table 2 (TCGA COAD data) as
an example:
CF1− 90.3645 +2.8598*APP +5.5149*PSMC2 −0.8795*

SLC20A1
CF2−26.5288 +0.5692*CXCL8 +3.1516*PSMC2−1.0474*

SLC20A1
Consider these classifiers like assembling a basketball team,

where each critical gene corresponds to a player on the team. The
various combinations of players determine the team’s scoring
ability. In this analogy, the gene combinations in each CF influence
our model’s classification performance. A positive coefficient
associated with a gene in a CF suggests that the presence of that
gene increases the likelihood of classifying a sample as CRC, while
a negative coefficient indicates the opposite. For instance, let’s
envision a basketball team with five players: PSMC2 as the Point
Guard, SLC20A1 as the Shooting Guard, CXCL8 as the Center, APP
as the Power Forward, and the fifth player to be determined. The
accuracy of these two classifiers is 97.87%, leaving room for one
more player. This team has two main scoring combinations: (APP,
PSMC2, SLC20A1) and (CXCL8, PSMC2, SLC20A1). The negative
sign associated with SLC20A1 suggests that its role is to guard
against the opponent’s ball handling time, increasing the team’s
scoring probability. For the CXCL8, increasing the ball handling
time will increasing team’s scoring probability, so do PSMC2 and
APP. For SLC20A1, different coefficients in both combinations
mean its interactions with other players in the team are different,
which decides the different scoring abilities. Other genes and their
associated coefficients can be interpreted similarly. While this

analogy simplifies gene interactions, it’s important to note that
gene-gene interactions are much more complex. They involve
intricate interactions, analogous to player playing time, ball
handling, coordinated defense, and the overall dynamics of the
entire game, including the spectators in the stadium.
The functional relevance of the four critical DEGs to carcinogen-

esis has been reported. For example, CXCL8, a member of the CXC
cytokine family, is one of the most significantly upregulated
chemokines in CRC, contributing to tumor growth, invasion, and
metastasis28–33. CXCL8 induces cell migration in colon cancer cells,
acting as an autocrine growth factor34–36. In line with this
evidence, our results suggest CXCL8 could be a marker for early-
stage CRC. Similarly, PSMC2, a key member of the 19 S RP, has
been implicated in the progression of several types of cancer,
including ovarian cancer, pancreatic cancer, and osteosar-
coma37–40. High expression of PSMC2 in CRC is associated with
poorer survival, and silencing of PSMC2 is a potential therapeutic
strategy for CRC41. Interestingly, in our study, decreased APP
expression was associated with reduced CRC risk in the US,
European, and Israel populations, but a reverse effect was
observed in Asian populations (Chinese and Japanese) and rectal
cancer. SLC20A1, a sodium-phosphate symporter involved in
tumor formation by HeLa cells in xenografted mice42–45, has a
negative coefficient in all datasets, suggesting its expression is
inhibited in CRC, although its significance in CRC is currently
unknown. We note that although the literature has sparse reports
about these four genes as discussed above, their functions are still
less known, and their interactions with each other and other
genes are totally unknown due to the limitations of the earlier
studying methods. As a result, they cannot be used in precision
cancer diagnostics. Our new study is the first to achieve precision
cancer diagnostics at the genomic level. We note that (CXCL8,
PSMC2, SLC20A1) formed classifiers appeared in all North
American CRC Cohorts and a European cohort, but not in Asian
cohorts, Israel cohort, and the TCGA READ cohort. Such a

Table 7. Distribution of clinical and pathological characteristics.

Classifiers Sex Age at diagnosis (years) TNM Stage

Male Female (20,50] (50,60] (60,70] (70,80] (80,100] I II III IV

The first dataset (North American cohort)

CF1 4 2 1 0 2 3 0 1 3 1 1

CF2 19 19 5 5 14 8 5 4 14 13 5

CF(1,2) 131 100 38 49 55 62 26 39 89 62 33

The second dataset (North American cohort)

CF1 1 1 1 0 1 0 0 0 0 2 0

CF2 4 4 2 2 3 0 1 0 0 8 0

CF(1,2) 229 198 55 73 109 126 62 73 167 115 61

The third dataset (European cohort)

CF1 3 1 1 2 0 1 0 0 1 2 1

CF2 0 1 0 1 0 0 0 0 1 0 0

CF3 47 47 11 13 27 31 12 9 44 33 8

CF(1,2) 1 0 0 0 1 0 0 0 1 0 0

CF(1,3) 222 177 55 58 114 122 49 20 184 153 41

CF(2,3) 4 2 0 1 3 1 1 0 4 2 0

CF(1,2,3) 33 27 9 6 20 15 10 4 28 15 10

The seventh dataset (our Chinese cohort)

CF1 0 2 0 1 0 0 1 0 2 0 0

CF2 1 3 1 1 1 0 1 2 0 0 1

CF3 13 10 5 3 3 8 4 0 7 11 5

CF(2,3) 8 4 0 1 6 3 2 1 7 2 2
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phenomenon suggests there is genomic heterogeneity among
CRC patients due to their ethnicity and subtypes.
Our method has the advantage of being applicable to gene

expression data generated by different platforms, including RNA-
seq and microarrays, without requiring batch correction. We note
that many existing models cannot handle heterogeneous
populations, and data have to be corrected for batch effects,
which may make the inference inaccurate. Notably, our classifiers
achieved the highest accuracy in cancer detection without
adjusting for variables such as tumor stage or ethnicity. However,
we acknowledge that some public datasets lack complete clinical
and pathological information, which limits our ability to explore
the prognostic value of the four DEGs. Nonetheless, our study is
unique in its adoption of a novel machine learning approach,
which has not been previously used in transcriptomic studies of
human malignancies. Additionally, our findings were validated
across diverse populations and ethnicities, further highlighting the
potential of this approach for cancer research.
This study has a few limitations that should be acknowledged.

Firstly, as a retrospective analysis of public datasets, it was not
possible to conduct a comprehensive prognosis analysis to
determine the prognostic value of the identified critical genes in
CRC. However, the four-gene-based classifiers identified in this
study exhibit the highest performance, providing a promising
starting point for future studies to explore their prognostic
potential. Secondly, since clinical diagnosis of CRC currently
depends mainly on traditional methods such as colonoscopy and
tissue biopsies, it may be challenging to identify clinical significance
for the critical DEGs identified in this study. However, examining
molecular subtypes based on transcriptomic patterns is crucial to
understanding the genetic mechanisms underlying carcinogenesis.
Integrating reliable genomic biomarkers like the four-gene-based
classifiers into the CRC diagnosis algorithm will enhance the
accuracy of disease identification and patient classification, leading
to personalized and precision oncology. Finally, our study was
based exclusively on gene expression profiles of CRC tissues, and it
is unclear whether the four-gene-based classifiers can be used to
detect CRC patients in the general population using blood samples.
To address this issue, future studies could include cohorts with both
CRC tissues and blood samples.
One note pertains to the computational aspect and how to

solve Eq. (4) across all cohorts and how to integrate the critical
gene criteria. As of the present stage, we have yet to develop a
complete, fast, and efficient computer program for this purpose,
and it remains an open challenge. In our study, we have adopted a
simplified approach discussed in methodology section.
While further experimental studies are needed to validate our

findings and confirm the significance of the identified critical
DEGs, we employed rigorous criteria to define these genes, and
the high accuracy of the classifiers, reaching 100% in some
cohorts, suggests that the findings are unlikely to be due to
chance (probability less than 10−11). Moreover, each of the four
genes has been previously reported to be functionally relevant to
carcinogenesis, and our study is the first to demonstrate their
interaction effects in CRC. These findings provide a solid
foundation for future investigations, including gene network
analysis, exploring related genes and their functional interactions,
and identifying potential causal relationships.

METHODS
Data acquisition and processing
Table 1 presents an overview of the datasets used in this study,
including information on data sources, experimental platforms,
sample sizes, populations, and tumor stages. The discovery
analyses involved nine publicly available whole-transcriptome
profiling datasets, including three from the Cancer Genome Atlas

(TCGA) obtained through RNA-seq and six from the Gene
Expression Omnibus (GEO) database using the keywords “colon
cancer”, “CRC”, and “Homo sapiens,” which were based on mRNA
expression (microarray-based). The datasets were collected from a
diverse population, including North American and European
White, Blacks, Asians, and Jewish. In addition, clinical and
pathological information, such as age, sex, TNM tumor stages,
and histologic grades, were also obtained when available.

Analytical methodology
Our approach to building a competing risk factor classifier for CRC
involved utilizing the max-logistic regression model. This model
offered an advantage over existing models in its ability to provide
nonlinear prediction and classification. Our aim was to identify a
concise subset of key genes with the highest predictive accuracy. The
theoretical basis of the competing risk factor models can be found in
previous literature21,22. To ensure consistent analysis of DEGs across
the nine public datasets and our Chinese validation cohort, we
utilized the heterogeneous extension of the max-logistic regression.
Starting with each competing risk factor in the max-logistic regression
models, we randomly selected three genes from each dataset’s
available genes/transcripts. To determine the final model with the
highest sensitivity and specificity while using the smallest number of
genes, we employed a Monte Carlo method that required extensive
computation. Our criteria for defining critical DEGs were stringent.

1. The critical DEG subset should contain no more than 15
genes (such a number has been widely reported in the
literature). We note that we only need four in CRC study.

2. The critical DEG subset should exhibit an overall accuracy of
at least 95% in at least three distinct study cohorts, with a
total of at least 1000 patients/subjects.

3. The critical DEG subset should exhibit an overall accuracy of
100% in at least one study cohort, with a minimum of
10 subjects.

4. At least one gene functions and shows the same sign (+ or
-) in each study cohort.

5. The critical DEG subset should demonstrate at least 80%
accuracy in any given cohort, with either sensitivity or
specificity values exceeding 75%.

6. The competing classifiers should include the smallest
number of genes possible.

7. The number of competing classifiers should be minimized to
avoid redundancy.

We remark that many published work didn’t report cohort-to-
cohort validations, i.e., they cannot satisfy (2), (3) and (5). Many
existing machine-learning approaches lack interpretability and didn’t
satisfy (4). Most published work couldn’t apply to heterogeneous
populations, e.g., the ten cohort studies in this paper.
The basic ideas of competing risk classifiers for heterogeneous

populations are briefly described below.
Suppose there are K cohorts with their binary (1 for CRC, 0 for

CRC-free) response variables being Y ð1Þ; ¼ ; Y ðKÞ where

Y ðkÞ ¼ ðY1k ; Y2k ; ¼ ; Ynk ;kÞT ; k ¼ 1; ¼ ; K: (1)

Each of the Yik , (i ¼ 1; ¼ ; nk ; k ¼ 1; ¼ ; KÞ may be related to G
groups of genes

Φijk ¼ ðXi;j1;k ; Xi;j2;k ; ¼ ; Xi; jgj ;k
Þ; j ¼ 1; ¼ ;G; gj � 0 (2)

where i is the ith individual in the sample, gj is the number of
genes in j th group. The competing (risk) factor classifier for the k
th outcome variable is defined as

log
pik

1� pik

� �
¼ maxðβ01k þ Φi1kβ1k ; β02k þ Φi2kβ2k; ¼ ; β0Gk þ ΦiGkβGkÞ

(3)
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where β0jk ’s‘are intercepts, Φijk is a 1 ´ gj observed vector, βjk is a
gj ´ 1 coefficient vector which characterizes the contribution of
each predictor to the outcome variable Y ðkÞ in the j th group to the
risk, and β0jk +Φijkβjk is called the j th competing risk factor, i.e., j
th signature.
Remark 1. With β0jk ¼ �1; j ¼ 2; ¼ ;G, (3) is reduced to the

classical logistic regression classifier. It is clear that every
component of β0jk þ Φijkβjk ; j ¼ 1; ¼ ;G is a risk factor for a
patient to have CRC, and the highest risk is from the largest one,
i.e., these risk factors compete against each other to win out to
make the final effect, i.e., to determine whether or not a patient
has CRC. As such, they are called competing risk factors.
The unknown parameters are estimated from

ð ^βðkÞ; ŜÞ ¼ argminβðkÞ;Sj�S;j¼1;2;¼ ;G

Xn
i¼1

½Iðpik � 0:5ÞIðYik ¼ 1Þ þ Iðpik > 0:5ÞIðYik ¼ 0Þ�

(4)

where 0.5 is a probability threshold value that is commonly used
in machine learning classifiers, Ið:Þ is an indicator function, pi is
defined in Eq. (3), S ¼ 1; 2; ¼ ; 54675f g is the index set of all
genes, S1 ¼ f11; 12; ¼ ; 1g1g, S2 ¼ f21; ¼ ; 2g2g, ¼ , SG ¼
fG1; ¼ ;GgGg are index sets corresponding to (2), and Ŝ ¼
f11; 12; ¼ ; 1g1 ; 21; ¼ ; 2g2 ; ¼ ;G1; ¼ ;GgGg is the final gene set
selected in the final classifiers.
To introduce sparsity for both the number of variables (genes) and

the number of groups (competing factors, signatures) into the model,
the following optimization problem with penalties is considered:

ðβ̂; Ŝ; ĜÞ ¼ argminβ;Sj�S;j¼1;2;¼ ;Gfð1þ λ1 þ jSujÞ
PK
k¼1

Pn
i¼1

½Iðpik�0:5ÞIðYik¼1ÞþIðpik>0:5ÞIðYik¼0Þ�

þ λ2ðjSuj � jSujþG�1
ðjSujþ1Þ ´G�1Þg

(5)

where Su is the union set of fSjgGj¼1, j � j is the cardinality. Tuning

parameters λ1 and λ2 are both non-negative. jSujþG�1
ðjSujþ1Þ ´G�1 is

monotone decreasing in both jSuj and G. Additional properties
of this bivariate function are described elsewhere21.
Remark 2. The S4 property of (5) and its capability to

simultaneously classify multiple heterogeneous populations with
common variables (genes) make the new competing risk factor
classifier different from existing ones.
Remark 3. The details of computational steps were described

elsewhere23 and demo Matlab�R codes are publicly available
online. Note that Eq. (5) is an optimization problem with extremely
high computational complexity, as it’s an integration of integer
programming, combinatorial optimization, and continuous opti-
mization. Therefore in practice and for this study, we adopted
Monte Carlo approach to solve Eq. (5). Here, we restate the
computational guidance for this optimization problem elaborated
in our earlier work23 with slight modifications according to our
setting and references therein.

1. Set G= 1, S1= 3 (or 4, 5). Pre-define sensitivity level
sen= 0.6 (or 0.7, 0.8, 0.9) and specificity level spe= 0.90
(or 0.95). The initial selection of pre-defined sen and spe
levels may rely on previous literature or researchers’ target.

2. Perform 50,000 (or larger numbers) random draws of sets of
S1 genes.

3. Evaluate each set of S1 genes in Step 2 and calculate the
sensitivity and specificity. These genes are recorded if both
of their sensitivity and specificity are larger than the pre-
specified sen and spe levels. This step helps to filter key
genes and reduce the number of genes in scope.

4. If the number of recorded genes in Step 3 is greater than 30
(or 25, 20, depending on the target of gene number
shrinking), raise sen and spe values and repeat Step 2 with
random draws among recorded genes in Step 3. Repeat
Step 3 to further filter the recorded genes.

5. Repeat Step 4 until the number of recorded genes is less
than 30 (or 25, 20). These recorded genes are considered as
candidate genes.

6. Set G= 3 (or 2,4, 1), Si= 3 (2, 4, 1). Perform 50,000 (or larger
numbers) random draws of sets of Si genes among the
candidate genes selected in Step 5.

7. Report the best results with the S4 properties.

In this study, we took advantage of a published paper18 which
studied 1991 genes, and we further reduced the number from
1991 to 9. We conducted a full search to obtain the current results.
The procedure is called merging variable selections and common
ground seeking (MVS-CGS) and is as follows.

● Choose a dataset18.
● For each gene,

1. Compute its mean within CRCs;
2. Compute its mean within non-tumors;
3. Compute its standard deviation within CRCs;
4. Compute its standard deviation within non-tumors;
5. Compute its Sharpe ratio, i.e., mean/standard deviation,

within CRCs;
6. Compute its Sharpe ratio within non-tumors;
7. Compute the absolute relative mean change of means of

CRCs over non-tumors;
8. Compute the absolute relative standard deviation change of

standard deviations of CRCs over non-tumors;
9. Compute the absolute relative Sharpe ratio change of Sharp

ratios of CRCs over non-tumors.
● Sort the changes within mean, standard deviation, and Sharpe

ratio, respectively.

1. Keep genes from the bottom 1% of the sorted changes
related to means;

2. Keep genes from the top 15% of the sorted changes related
to standard deviations;

3. Keep genes from the top 5% of the sorted changes related
to Sharpe ratios.

● Set a threshold 0.5 for genes kept using Sharpe ratio.

1. For each gene in the kept set using Sharpe ratio,

1. Compute the mean (Tm) of Sharpe ratios within CRCs;
2. Compute the mean (Nm) of Sharpe ratios within non-

tumors;
3. If Tm > Nm and the proportion of CRC patients whose

gene expression values are greater than the maximum of
gene expression values of non-tumors, keep this gene as
a final candidate.

4. If Tm < Nm and the proportion of CRC patients whose
gene expression values are smaller than the minimum of
gene expression values of non-tumors, keep this gene as
a final candidate.

● Set a threshold 0.7 for genes kept using mean, do the same
as above.

● Set a threshold 0.8 for genes kept using standard deviation, do
the same as above.

● Now we have a set of genes with which we can run a full search.
● If we want to further reduce the size of the final gene set, we can

take squared transformation of the data (or other transforma-
tions), do the above procedure to get a new set of genes, than
take the common genes as the final gene set.

DATA AVAILABILITY
The first public dataset was obtained from the NCI’s Genomic Data Commons (GDC)
and included 288 CRC samples and 41 normal controls. This RNA-seq study was
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performed in the TCGA Colon Cancer (COAD) cohort using the Illumina HiSeq 2000
RNA Sequencing platform46. Gene expression values were log2(norm count+1)
transformed. The “normal” samples were adjacent nontumor colorectal tissues. The
data link is https://gdc-hub.s3.us-east-1.amazonaws.com/download/TCGA-
COAD.htseq_counts.tsv.gz. We noted that this dataset was expanded from 349
samples to 512 samples since we first downloaded from the website. We used
349 samples in our initial data analysis. In our analysis of the second dataset, we used
512 samples which had different measurements from the first dataset (see below).
The second public dataset was also obtained from the NCI’s GDC and included 471
CRC samples and 41 normal controls (a total of 512 samples). This RNA-seq study was
performed in the TCGA COAD cohort using the Illumina HiSeq 2000 RNA Sequencing
platform46. The expression values were normalized with log2(Fragments Per Kilobase
of transcript per Million mapped reads (FPKM)+ 1). In our computation, the
expression values were further transformed using a natural logarithm operator. The
“normal” samples were adjacent normal colon/rectal tissues. The data link is: https://
gdc-hub.s3.us-east-1.amazonaws.com/download/TCGA-COAD.htseq_fpkm.tsv.gz.
The first dataset and the second dataset had measurement heterogeneity which may
cause batch effects when applying classical statistical models and classifications. Our
newly proposed max-logistic competing regression can overcome the batch effects
by logarithm transformation of the second dataset (see below for details).
The third public dataset (GEO Accession: GSE39582) was obtained from a study
performed in Europe using the Affymetrix Human Genome U133 Plus 2.0 Array
platform11. This dataset included 566 CRC samples and 19 normal controls with
54,675 genes/transcripts. The expression values were derived from log2(normalized
intensity signal). This dataset included frozen tissue of primary colorectal
adenocarcinoma and its “normal” samples were frozen tissue of non-tumoral
colorectal mucosa.
The fourth public dataset (GEO Accession: GSE9348) was obtained from a study
performed in a Han Chinese CRC cohort including 82 age-, ethnicity- and tissue-
matched healthy controls using the Affymetrix U133 Plus 2 array47. The patients were
classified as early-stage CRC (Stage 1 or 2). Gene expression values were calculated
using the MAS5 algorithm. This dataset included tumor tissue collected and archived
within 30 minutes after surgery, and its “normal” was colonic mucosa collected and
archived within 30 minutes after biopsy.
The fifth public dataset (GEO Accession: GSE18105) was obtained from a study
performed in a Japanese cohort containing 77 CRC samples and 17 paired samples
from adjacent nontumor tissues48. The patients were classified as stages 2 or 3 CRC.
Gene expression values were derived from RMA signal intensities.
The sixth public dataset (GEO Accession: GSE41258) was obtained from a study
performed in an Israel population containing 299 samples, including 180 CRC, 46
polyps, 43 normal colon, 21 liver metastases, and 9 lung metastases49. Data were
normalized using the PLIER algorithm and batch corrected, then Lowess normalized
signals.
To validate the results of the discovery analysis, we collected a sample at Sun Yat-sen
University Cancer Center in Guangzhou, China, which included 45 CRC samples and
47 normal controls collected from adjacent nontumor colonic tissues (seventh
dataset). The genes identified in the discovery analysis were validated using real-time
quantitative RT-PCR with the TaqMan Gene Expression assays (Applied Biosystems,
Inc.). In addition, the patients’ age, sex, TNM tumor stage, and histologic grade of the
tumor were included in the analyses. Regarding this new data collection,
the following procedure had been utilized. • Complying with the ‘Guidance of the
Ministry of Science and Technology (MOST) for the Review and Approval of Human
Genetic Resources’, this project obtained approval from the institutional ethics
committee (IEC) of Sun Yat-sen University Cancer Center. Experimental procedures
and data collection involving Chinese patients were conducted in China with the
participation of Chinese co-authors. • This study obtained approval from the
institutional ethics committee (IEC) of Sun Yat-sen University Cancer Center, adhering
to the principles of the Declaration of Helsinki. All experimental procedures were
conducted in compliance with the guidelines and regulations for the protection of
human subjects. Informed consent was obtained from all patients prior to their
participation in the study. • No sequencing experiment was performed using the
clinical samples collected from Sun Yat-sen University Cancer Center in Guangzhou,
China. • Participants provided written informed consent to take part in all studies
conducted by Sun Yat-sen University Cancer Center. • The four gene expression
values are made available for download from the datalink specified in Code
availability.
Three additional public datasets (i.e., eighth, ninth and tenth) were included in this
study to further validate the findings and to fit our models into preclassified CMS.
The eighth public dataset was also obtained from the NCI’s GDC and included 167
rectal cancer samples and 10 normal controls (adjacent normal rectal tissues). The
data link is: https://gdc-hub.s3.us-east-1.amazonaws.com/download/TCGA-
READ.htseq_fpkm.tsv.gz. Data from the same sample but from different vials/
portions/analytes/aliquotes was averaged; data from different samples was
combined into genomicMatrix. This RNA-seq study was performed in the TCGA
COAD cohort using the Illumina HiSeq 2000 RNA Sequencing platform46. The

expression values were normalized with log2(Fragments Per Kilobase of transcript per
Million mapped reads (FPKM)+ 1).
The ninth public dataset (GEO Accession: GSE103512) contained formalin-fixed and
paraffin-embedded normal and tumor tissues of four cancer types, in which colon
cancer was included. The platform used was Affymetrix HT-U133plus-2-PM
microarrays50.
In this study, 57 CRC samples and 12 matched normal colon samples were
analyzed50. The tenth public dataset (GEO Accession: GSE156451) contained tumor
tissues from 72 CRC and adjacent nontumor colorectal tissues from a Chinese
population. The platform was Illumina NovaSeq 6000 (Homo sapiens)17.

CODE AVAILABILITY
A MATLAB® R13 demo code for solving Eq. (4) (λ2= 0) and readme files are also
available. The final dataset organized from the original datasets and our computer
program generated datasets and formulas are also available at https://
pages.stat.wisc.edu/~zjz/POsubmissions.zip for review. Readers can also make
requests by sending emails to the corresponding authors if the link is not working.
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