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Transcriptomic analysis of hepatocellular carcinoma reveals
molecular features of disease progression and tumor immune
biology
K. Okrah1, S. Tarighat2, B. Liu2, H. Koeppen3, M. C. Wagle2, G. Cheng2, C. Sun2, A. Dey4, M. T. Chang4, T. Sumiyoshi2, Z. Mounir2,
C. Cummings2, G. Hampton2, L. Amler2, J. Fridlyand1, P. S. Hegde2, S. J. Turley4, M. R. Lackner2 and S. M. Huang2

Hepatocellular carcinoma (HCC) develops in the context of chronic inflammatory liver disease and has an extremely poor prognosis.
An immunosuppressive tumor microenvironment may contribute to therapeutic failure in metastatic HCC. Here, we identified
unique molecular signatures pertaining to HCC disease progression and tumor immunity by analyzing genome-wide RNA-Seq data
derived from HCC patient tumors and non-tumor cirrhotic tissues. Unsupervised clustering of gene expression data revealed a
gradual suppression of local tumor immunity that coincided with disease progression, indicating an increasingly
immunosuppressive tumor environment during HCC disease advancement. IHC examination of the spatial distribution of CD8+
T cells in tumors revealed distinct intra- and peri-tumoral subsets. Differential gene expression analysis revealed an 85-gene
signature that was significantly upregulated in the peri-tumoral CD8+ T cell-excluded tumors. Notably, this signature was highly
enriched with components of underlying extracellular matrix, fibrosis, and epithelial–mesenchymal transition (EMT). Further
analysis condensed this signature to a core set of 23 genes that are associated with CD8+ T cell localization, and were prospectively
validated in an independent cohort of HCC specimens. These findings suggest a potential association between elevated fibrosis,
possibly modulated by TGF-β, PDGFR, SHH or Notch pathway, and the T cell-excluded immune phenotype. Indeed, targeting
fibrosis using a TGF-β neutralizing antibody in the STAM™ model of murine HCC, we found that ameliorating the fibrotic
environment could facilitate redistribution of CD8+ lymphocytes into tumors. Our results provide a strong rationale for utilizing
immunotherapies in HCC earlier during treatment, potentially in combination with anti-fibrotic therapies.
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INTRODUCTION
Hepatocellular carcinoma (HCC) is the second most common
cause of death from cancer worldwide and has an extremely poor
prognosis.1 It is known that the majority of HCC arises from
chronic liver fibrosis or cirrhosis caused by constant cycles of
injury and regeneration originating from various etiologies,
including HBV/HCV viral infection, non-alcoholic fatty liver disease,
excessive alcohol intake, and aflatoxin consumption.2–4 The
prolonged timeline of disease progression from the inception of
chronic liver injury to the subsequent exhibition of cirrhosis and
the eventual manifestation of malignancy, along with the
heterogeneous nature of HCC, add complexity to dissecting the
biology of this disease.3 Recently, publications focusing on whole-
genome or whole-exome sequencing have shed light on HCC
disease biology from the perspective of genetic alterations.5–16

These studies have implied links between genetic mutations to
specific risk factors and recurrently altered pathways, thereby
offering therapeutic hypotheses for further clinical
experimentation.
Nevertheless, as a disease with a lengthy time frame for

development, HCC progression can also be significantly

influenced by multiple additional biological processes including
epigenetics and the immune microenvironment in tumor
tissues.17–19 To provide further insight into the HCC progression
landscape and biology, a comprehensive whole transcriptomic
analysis of specimens representing different disease stages might
offer higher resolution as to the underlying mechanisms of
progression.
Given the indolent nature of HCC, the intimate interactions

between the tumor environment and malignant cells may be of
significance during disease progression. Close associations
between fibrosis and epithelial–mesenchymal transition (EMT)
have been described previously.20 Furthermore, the contribution
of EMT to the maintenance of suppressive tumor immune
environment is well documented.21,22 The liver plays a major role
in controlling metabolism, detoxification, and nutrient storage, all
of which contribute to a somewhat immunosuppressed environ-
ment. Thus, boosting HCC tumor immunity through modulation of
the immediate immune contexture might be an effective way to
combat this disease.23–25

Current therapeutic interventions in HCC have focused largely
on targeting tumor cells through surgery, radiofrequency ablation,
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and local or systemic administration of chemotherapies, especially
in the early stages of HCC.3 Nevertheless, reoccurrence is still a
profound issue in extending patient survival.3,26 Sorafenib is the
only FDA approved therapy recommended as first-line treatment
in the metastatic setting.27 However, most patients progress
rapidly on sorafenib, suggesting a need for additional therapeutic
options for HCC patients. Recently, the PD-1 checkpoint inhibitor
nivolumab showed significant therapeutic benefit in HCC and was
approved for this indication as a second line treatment option in
the metastatic setting.28–31 Specifically, the updated objective
response rate measured by RECIST v1.1 was 20%, with a 9-month
overall survival rate of 74%.30,31 Interestingly, the clinical response
did not appear to correspond with the expression of PD-L1 on
tumor cells, highlighting the importance of the immune
composition of HCC tumors and the surrounding stromal milieu.
These exciting data provide a novel treatment option for patients
with advanced HCC. However, combination therapy will likely be
needed to achieve further improvements in efficacy, thus raising
the question of which therapeutic options and combinations may
be most beneficial.
Here, we investigated prominent biological features that are

associated with HCC disease progression by probing whole-
transcriptome RNA-Seq data from a collection of cirrhotic and HCC
tumor specimens (clinically staged from T1N0M0 to T3N0M0 with
TNM staging system). Our data shows a persistently down-
modulated tumor immune environment, implying increasingly
inferior tumor immunity in more advanced stages of HCC.
Additional analyses exploring the biological determinants of the
spatial distribution of CD8+ T cells indicated a potential
association between increased levels of extracellular matrix/
fibrotic contexture/EMT and the diminished tumor penetrance of
CD8+ T effector cells. Further, administration of α-TGF-β appeared
to ameliorate the fibrotic milieu of STAM™ model of murine HCC

and lead to enhanced distribution of CD8+ T cells, thereby
highlighting the potential benefits of combining anti-fibrotic
therapies with immune checkpoint inhibitors to treat HCC.

RESULTS
A progressively downregulated immune gene profile is associated
with HCC disease progression
The majority of HCC incidences arise from liver cirrhosis following
a progressive course of disease advancement.2 We sought to
investigate the transcriptomic profile of HCC samples and non-
tumor cirrhotic tissues with an emphasis on discovering novel and
unique molecular features associated with the progression of this
deadly disease. To this end, whole transcriptome RNA-Seq was
performed on 98 clinically graded human HCC tumor samples
(tumor staging: T1N0M0 to T3N0M0) and non-tumor cirrhotic
tissues obtained from 78 of the aforementioned HCC patients
(patient classification info; Table 1 and Supplementary Table S1).
Of note, the tumor content of the majority of HCC samples fell
within 60–80% and macrodissection was performed prior to RNA
extraction (Supplementary Fig. S1A). Initial principal component
analysis confirmed that the cirrhotic specimens were indeed
molecularly distinct from the HCC tumor samples (Supplementary
Fig. S1B). Subsequent analysis of variance hypothesis testing was
performed to retain genes whose expression levels were
associated with tumor stages (T1, T2, or T3), but independent of
the ordering of tumor stages. Interestingly, the analysis illustrated
that most specimens of stage T1 remain closely related to cirrhotic
tissues illustrated by highly similar transcriptomic profiles.
Whereas those of T2 and T3 stages are largely distant from non-
tumor cirrhotic tissues, corroborating the epidemiological obser-
vation that majority of HCC cases arise from the preceding
diagnosis of cirrhosis (Fig. 1a).
The resulting genes yielded three distinct gene clusters with

transcript levels directionally associated with disease stages (Fig.
1a, see Materials and methods for the detailed statistical
methods and Appendix 1 for gene signature content). For
example, gene Cluster 1 illustrated a continuous downward
expression from T1 to T3 while Cluster 3 exhibited upward
expression from T1 to T3 (Fig. 1a, b). Cluster 2 demonstrated an
increased expression level in T1, but subsided from T2 to T3 (Fig.
1a, b). Subsequently, we performed an unbiased gene set
enrichment analysis (GSEA) on these gene clusters using the
Hallmark Gene Sets from the Molecular Signature Database.32,33

Interestingly, in Cluster 1, we found an overrepresentation of
Hallmark Gene Sets describing transcriptional events direction-
ally up-regulated by the indicated immune stimulations, such as
inflammatory response, IL2, IFNg, allograft rejection, etc. (Fig.
1c). On the other hand, Cluster 3 was highlighted by genes
representing WNT pathway activation such as DVL1/2, and
conserved downstream transcriptional targets such as AXIN2,
NKD1, RNF43, and ZNRF3 (Fig. 1c, gene list in Appendix 1). These
results are in line with recent findings that increased WNT
pathway activity can exert an immunosuppressive effect on the
tumor microenvironment.34 Of note, no significant biological
features were found to be associated with Cluster 2 (gene lists
are provided in Appendix 1). Our findings, therefore, indicate a
relationship between the deteriorating immune contexture and
progressively worsening liver cancer.
Cytotoxic T effector cells have been shown to be the main

source of anti-tumor immune response.23,35 The aggregated
transcript levels of genes (Teff signature) representing Granzyme
A (GZMA), Granzyme B (GZMB), Perforin 1 (PRF1), Eomesodermin
(EOMES), and CD8A can be closely associated with density of CD8
+ T cells measured by IHC. In fact, we found a strong correlation
(81%) between the Teff signature and CD8A expression evaluated
by IHC in HCC samples (Fig. 1d). Interestingly, the levels of Teff

Table 1. Characteristics of the 98 liver cancer samples summarized
based on demographics, etiology, and tumor stage information

Patient samplesa HCC (n= 98)

Demographics

Sex (n (%))

Male 83 (85)

Female 15 (15)

Age (n (%))

≤50 31 (32)

>50 67 (68)

Region (n (%))

Asia 98 (100)

Etiology (n (%))

HBV 76 (78)

HCV 2 (2)

Non-HBV/HCV 20 (20)

Tumor burden

TNM stage (n (%))

Primary tumor (T)

T1 30 (31)

T2 16 (16)

T3 40 (41)

TX 12 (12)

a78 HCC samples were provided with paired cirrhosis specimens
TX: primary tumor cannot be assessed, T1: solitary tumor without vascular
invasion, T2: solitary tumor with vascular invasion or multiple tumors,
none > 5 cm, and T3: multiple tumors > 5 cm
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Fig. 1 Three distinct gene sets are associated with HCC disease stage and immune environment. a Three distinct gene clusters whose
expression was associated with different disease stages. Clusters were identified by analysis of variance hypothesis testing. Clustering was
done for all patients based on all 15,524 genes (transcriptome), with each patient profile (column) labeled with tissue classification (cirrhosis or
HCC tumor) and tumor stages (T1–T3). b The gene signature (average of z-scores of genes in each cluster) shows a clear association between
stage and signature. Top panel: Cluster 1 genes show a monotonically decreasing trend with progressive disease stages. Middle panel:
expression of genes in Cluster 2 was higher in T1 than in cirrhotic tissues but decreased with more advanced stages of HCC. Bottom panel:
Cluster 3 genes show a steady increase in expression with progressive disease stages. c Geneset enrichment analysis (GSEA) using Hallmark
Gene Sets in Molecular Signature Database was used to identify the top-scoring genes and pathways in Clusters 1 and 3. Cluster 1 was
overrepresented by Hallmark gene sets describing immune response while Cluster 3 was dominated by Hallmark gene sets associated with
WNT pathway activation. None of the Hallmark gene sets were significantly enriched in Cluster 2 (not shown). d Aggregated expression of
genes describing T effector signature (T-eff ), including GZMA, GZMB, PRF1, EOMES, and CD8A, was significantly correlated with Cluster 1, p-
value < 0.001. e Correlation between T-eff gene signature (distilled from RNA-Seq dataset) and CD8A expression (measured by immune
histopathology). Strong directional relationship can be detected between the two assessments
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signature were most strongly correlated with the expression of
genes in Cluster 1, than with genes in either Cluster 2 or 3, further
confirming the increasingly diminishing tumor adaptive immune
environment in HCC (Fig. 1e). As previously mentioned, the tumor

environment in HCC is considered to be less immunogenic.25

However, to our knowledge, this is the first demonstration of a
progressively eroding tumor immune environment corresponding
to the more advanced stages of HCC tumors.

Fig. 2 CD8 excluded immune phenotype is associated with genes representing fibrosis and cirrhosis process. a Hematoxylin and eosin stain
(top) and immunohistology of two immune phenotypes in HCC samples. IHC was performed on FFPE sections stained for CD8 positive T
lymphocytes. The two peri-tumoral and intra-tumoral classifications were based on spatial distribution and infiltration of CD8 cells within the
malignant hepatic cells and stromal content. Scale bar= 300 µm. b Depiction of CD8 cells’ density score determined by image analysis of IHC
slides as compared between the two immune phenotypes. c Genes differentially expressed between peri-tumoral and intra-tumoral HCC
samples. A set of n= 85 genes (red dots: herein called CTL-Ex) were found to be most significantly upregulated in peri-tumoral specimens.
Green dots represent genes in the LM22 leukocyte gene signature matrix.53 d A heatmap representing intra-tumoral and peri-tumoral samples
demonstrating that CTL-Ex genes expression was not associated with disease stages. TX denotes samples with unknown tumor stage. e A
summary of some of the genes in CTL-Ex, including collagens and ECM-related genes
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Exclusion of CD8+ T lymphocytes is associated with the
magnitude of fibrotic/ECM/EMT transcript signals
In general, tumors presenting intra-tumoral CD8+ cytotoxic T
lymphocytes (CTL) are often classified as “inflamed”, while those
featuring peri-tumoral CD8+ CTL localization are collectively
named “excluded-infiltrates”.36 The presence of CD8+ CTL has
been shown to be associated with response to the checkpoint
inhibition by α-PD-1/PD-L1, suggesting the significance of pre-
existing CD8+ CTL in tumors.37 Thus, the localization of CD8+ CTL
appears to be another determinant of tumor immunity architec-
ture. These published observations led us to investigate the tumor
immune environment as described by the spatial distribution of
CD8+ CTL in HCC tumor specimens. As shown in Fig. 2a, two
distinct sub-populations featuring either “intra-tumoral” or “peri-
tumoral” localization of CD8+ CTL emerged after assessing CD8
IHC images, representing 27% and 23% of the total stained
samples, respectively (see Supplementary Table S2 for CD8+ CTL
localization classification for all HCC samples). Protein and mRNA
expression levels of CD8A were relatively indistinguishable
between the two populations (Fig. 2b; Supplementary Fig. S2).
Through differential gene expression analysis, we attempted to
explore potential molecular mechanisms of T cell exclusion. At the

cut-off of false discovery rate (FDR) < 0.125 and ≥2-fold change, 85
genes were found to be upregulated in specimens showing peri-
tumoral phenotype, which we collectively named Cytotoxic T
Lymphocytes Exclusion Gene Set (CTL-Ex) (Fig. 2c, d, Materials and
methods). The expression of CTL-Ex genes does not appear to be
closely associated with disease stages (Fig. 2d). However, the CTL-
Ex gene signature most strongly represents the biological
mechanisms that are involved in Hepatic Fibrosis/Hepatic Stellate
Cell Activation (Supplementary Fig. S3). In addition, the top-
scoring genes in this signature include collagens and components
of extracellular matrix, along with constituents of pathways known
to be positively regulating fibrosis in various organs (e.g., TGF-β2,
PDGFRβ, GLI1, GLI2, JAG1, NOTCH3, MAMLD1, and HEYL,
representing TGF-β, PDGFR, SHH, and NOTCH pathways respec-
tively33) (Fig. 2e). Since all HCC specimens were obtained from
patients that were clinically diagnosed with either cirrhosis or
fibrosis, it was rather surprising that the biological signature of
liver fibrosis was elevated in samples with peri-tumoral distribu-
tion of CD8+ T cells. That said, diagnostic methods for fibrosis in
the clinic are not standardized and have a relatively small dynamic
range. It remains plausible that fibrosis activation as measured by
gene expression profiling may offer a larger dynamic range that
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can more effectively capture correlations between fibrosis and the
differential penetrance of CD8+ T lymphocytes into tumors.

A subset of Cytotoxic T Lymphocytes Exclusion Gene Set (CTL-Ex)
is conserved in various indications
Chronic tissue fibrosis followed by enhanced production of ECM
and soluble factors can suppress local tumor immunity, prevent
CTL infiltration, and promote tumor initiation and growth.38

Therefore, reversing ECM accumulation caused by fibrosis may
enhance tumor-specific immunity across indications.39 To assess
the general applicability of CTL-Ex, we first attempted to extract

the minimal gene set from CTL-Ex signature derived from our HCC
samples. With further correlation analysis, we identified a
collection of 23 genes that clearly forms a distinct cluster (Module
1) from the remaining 62 genes (Module 2) (Fig. 3a; Materials and
methods). Of note, Module 1 mostly represented collagens and
ECM components (Fig. 3a). The extent of correlation for Module 1
was relatively consistent among all indications tested, including
gastric, colorectal, pancreatic, esophageal, bladder, and renal
cancers, whereas Module 2 only maintained a degree of
correlation in HCC (Fig. 3b). In addition, utilizing published
information on a comprehensive subtyping effort in gastric cancer
by Cristescu et al., we demonstrated that Module 1 readily
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identifies EMT subtype that was initially classified by a 149 EMT
upregulated gene signature40 (Fig. 3c). In colorectal cancer, a
recent concerted effort in molecular classification carried out by
the CRC Subtyping Consortium yielded CMS1–4 subtypes in which
the CMS4 subtype was dubbed “mesenchymal”, reflecting the
biology of stromal infiltration, TGF-β activation, and angiogenesis.
In addition, this subtype also conferred worse relapse-free and
overall survival in patients. Similarly to gastric cancer, Module 1
also easily distinguished the majority of CMS4 patients in this
study41 (Fig. 3d). Another recent study in metastatic urothelial
carcinoma showed that lack of response to checkpoint inhibitor
therapy was associated with increased TGFβ signaling in
fibroblasts in the tumor microenvironment.42 These observations
further corroborate that the fibrosis/EMT/ECM biological signals
represented by CTL-Ex signature may be generalizable across
different tumor types (Fig. 2e).
Subsequently, we examined the relationship of Module 1 to

the localization of CD8+ T cells and re-applied Module 1 to the
current cohort of HCC specimens (including all T1–T3 samples).
The analysis illustrated that Module 1 could indeed reasonably
distinguish specimens with intra-tumoral or peri-tumoral CD8+
T cell localization with statistical significance (Fig. 4a(i & ii); 76%
specificity and 85% sensitivity). To further confirm this observa-
tion, a validation study was conducted utilizing an independent
cohort of metastatic HCC specimens (disease staging: T2N1M0
to T3N1M0) (Supplementary Table S3 and Materials and
methods). Both gene expression analysis and CD8 IHC readings
were performed independently. The outcome of this validation
study further demonstrated a potential causal relationship
between high Module 1 expression and the peri-tumoral
localization of CD8+ T cells (Fig. 4b(i & ii); 60% specificity and
80% sensitivity). Together, these findings strongly suggest that a
fibrotic environment may prevent the distribution of CD8+
T cells in tumors.

Blocking TGF-β can ameliorate the fibrotic state in HCC and
promote CTL distribution
Earlier, our analysis revealed that CTL-Ex immune exclusion signature
was enriched by cellular components positively regulated by active
transforming growth factor beta (TGF-β) pathway. Upregulation of
TGF-β, a master regulator of fibrosis, has been shown to be
associated with proinflammatory and profibrotic activities and to be
inhibitory to checkpoint blockade.42–44 Here, we first examined the
preclinical activity of a TGF-β neutralizing antibody (1D11) on
activated human myofibroblast-like hepatic stellate cells (HStec)
in vitro. HStec cells were cultured in the presence of increasing
doses of 1D11 for 72 h and cell growth inhibition was determined.
We found that 1D11 did not have a considerable adverse effect on
the viability and growth of HStec cells during this time frame
(Supplementary Fig. S4A). However, using ELISA to detect soluble
Type I Collagen, we showed that treatment of HStec cells with 1D11
could lead to a dose-dependent downregulation of collagen
secretion (up to 22% reduction, p-value= 0.004, Supplementary
Fig. S4B). Notably, in vitro, 1D11 did not appear to be enhancing or
to be cytotoxic toward activated T cell subpopulations (Supplemen-
tary Fig. S4C). Subsequently, we tested whether 1D11 is capable of
remodeling the fibrotic tumor microenvironment and altering the
localization of cytotoxic T cells within the tumor region. To this end,
we examined the activities of 1D11 in vivo using a STAM™ mouse
model for fibrotic disease and liver carcinogenesis. STAM™ is a
model for non-alcoholic steatohepatitis (NASH) and HCC, created by
a combination of chemical and dietary interventions in mice with a
non-genetic C57BL/6 background (see Materials and methods). For
this study, male mice were subjected to a single streptozotocin
injection after birth and a high fat diet after 4 weeks of age which
progressed to HCC around week 17 (evident by H&E staining, data
not shown). These mice were then randomized and were treated
with either anti-TGF-β (1D11; 10mg/kg, twice a week), or vehicle
control for 6 weeks. At the end of the study, tumor samples were
harvested from the livers of animals for further analysis. Significant
changes in tumor burden, represented by a decrease in the number
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Fig. 5 Inhibiting TGF-β signaling has anti-fibrotic effects in vivo. a Significant reduction in total number of nodules in the liver of HCC mouse
model at the end of study after 6 weeks treatment with 1D11 (10mg/kg) when compared to vehicle control treated animals. b Tumor size
presented as the sum of nodule diameter (mm) in HCC mice treated with 1D11 when compared to vehicle control treated HCC animals. c
Changes in the degree of hepatic fibrosis in a mouse model of HCC. Data points represent the percent positive fibrotic area quantified using
image analysis of light microscopy images per mouse in vehicle control and 1D11-treated groups. d Quantification of the percentage of (i)
trapped and (ii) infiltrated CD8+ T cells following 6 weeks of 1D11 treatment per malignant HCC nodule as contrasted by vehicle control
animals. Trapped T cell immune phenotype was found more commonly in control group. In contrast, after 1D11 treatment to inhibit TGF-β, a
more T cell infiltrated immune phenotype was observed. Bars represent mean with SEM. *p < 0.05, **p < 0.01, ns not statistically significant
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of tumor nodules (Fig. 5a) and tumor size (Fig. 5b) were observed in
mice that received 1D11. In addition, we also found that mice
treated with 1D11 had reduced fibrosis as measured by Sirius Red
staining when compared to the vehicle control group (Fig. 5c and
Supplementary Fig. S5A: representative light microscopy images). To
visualize and quantitate the changes in CD8+ T cell localization with
or without 1D11 treatments, we utilized an α-CD8A-Masson’s
trichrome double stain in IHC. Trichrome staining was used to
distinguish collagenous fibrotic clusters within tumor tissue, whilst
the distance of T cells relative to these fibrotic deposits was used to
define two distinct T cell populations namely: trapped (T cells
overlapping and residing <5 µm from fibrous deposits) and
infiltrated (T cells found >5 µm away from fibrous deposits)
(Supplementary Fig. S5B & C). Although the overall number of
T cells remained somewhat similar in control and 1D11-treated
animals (data not shown), the spatial distribution of CD8+ T cells
within the tumor area was different between the two groups.
Exposure to 1D11 increased the percentage of infiltrated CD8+
T cells in the tumor, whereas vehicle-treated animals displayed
predominantly T cells that were confined within or found in close
proximity (<5 µm) to the fibrotic clusters. Quantitative comparison of
the percentage of T cells revealed an average 3.9-fold reduction in
the extent of trapped T cells (Fig. 5d(i), p-value= 0.06), and a 1.9-fold
increase in the percentage of infiltrated T cells (Fig. 5d(ii), p-value=
0.08) following 1D11 treatment. Though not statistically significant,
the overall data supports a trend where anti-TGF-β intervention
could effectively restructure the highly fibrotic microenvironment in
HCC and allow T cell infiltration within the tumor.

DISCUSSION
HCC typically develops as a consequence of persistent and long-
term chronic liver injuries followed by progression to severe
fibrosis and cirrhosis.3 In this article, we took unique approaches to
survey the transcriptomic landscape of HCC. By analyzing whole
transcriptome RNA-Seq data originating from clinically graded
HCC specimens and cirrhotic tissues in an unbiased manner, we
uncovered a disease continuum manifested by gene expression
signatures that correspond to disease progression and declining
tumor immune contexture. Our analysis identified three distinct
gene sets with expression levels directionally associated with HCC
disease stages. These findings provide important insight into the
molecular basis of HCC disease progression.
Recent studies have identified a largely immunosuppressive

environment in the liver, which may contribute significantly to
HCC progression.35 Of three gene clusters that we observed to be
associated with disease staging (T1N0M0–T3N0M0), we found that
expression of Cluster 1, overrepresented by genes that are
upregulated in adaptive immunity according to GSEA, continu-
ously declines as HCC advances. The fact that the Teff gene
signature was more correlated with Cluster 1 further corroborated
the GSEA analysis. Together, these results suggest a gradual
erosion of tumor immunity that correlates with HCC advancement
and may negatively affect the anti-tumor immune responses.
However, it is understandable that by applying “bulk” RNA-seq
approach, where various cell types are interrogated altogether, we
may have negatively affected the resolution in precisely describ-
ing the cell source of Cluster 1 signature. Though we showed that
Cluster 1 is more correlated with Teff gene signature (Fig. 1e),
which is generally correlated with tumor infiltrated lymphocytes
(TIL),47 it is difficult to pinpoint the immune and non-immune
components in tumors contributing to Cluster 1 signature. With
further observation of the current study, it might be pertinent to
execute a follow-up experiment that entails obtaining fresh tumor
tissues from different HCC stages, dissociating and isolating
immune cells from non-immune cells with flow cytometry,
followed by RNA-seq to enhance resolution of characterizing

different cell types within the tumor to assess how they are
associated with Cluster 1 gene signature.
WNT pathway activation in tumors has been shown to

contribute to the maintenance of the immunosuppressive
environment.34 As a developmental pathway, WNT downstream
transcriptional targets are usually conserved and can reflect the
extent of signal intensity.45 Strikingly, the Cluster 3 gene set
contains not only conserved transcriptional targets such as AXIN2,
NKD1, RNF43, and ZNRF3, but also the upstream component DVL2
(Fig. 1c, d), strongly implicating a gradual activation of WNT
pathway through HCC advancement that may also contribute to
the continuous deterioration of tumor immune contexture. In
addition to immunosuppression, WNT activity within the tumor
environment can also support the maintenance of stem-cell-like
features and invasiveness in cancer cells.46 Especially, EMT has
been shown to be partly mediated through the activation of the
WNT pathway.46 Interestingly, our analysis indicated a positive
correlation between an increase in the expression of genes
representing WNT pathway activation and tumor stage, therefore
possibly also implicative of processes involved in EMT activation.
Localization of CD8+ CTLs may be another key determinant in

mounting immune response against tumors. We visualized CD8+
CTLs in our HCC samples using IHC staining against CD8A. Two
distinct populations of tumors with either intra-tumoral (27% of
all) or peri-tumoral (23% of all) CD8+ CTL localization could be
established. The intensity of CD8A expression levels was similar in
both populations. In peri-tumoral specimens, we identified a
group of 85 genes that showed differential expression at the
transcription level and which we collectively named CTL-Ex. We
found that expression of CTL-Ex significantly overlaps with hepatic
fibrosis/hepatic stellate cell activation gene set and is enriched
with collagens, ECM components, and pro-fibrotic signaling genes.
This is the first data which to our knowledge identifies a
correlation between the molecular signature of the fibrotic state
and the extent of CD8+ CTLs penetrance into the tumor in HCC.
Importantly, within the CTL-Ex gene signature we identified a
specific module containing 23 genes (i.e., Module 1) that
maintains a high degree of correlation in multiple solid tumors,
in addition to HCC. The 23 genes were predominantly collagens
and ECM proteins, further signifying the possibility that these
gene products may serve as a physical barrier to prevent CD8+
CTL infiltration. Utilizing Module 1, we easily identified the EMT
subtypes from the ACRG gastric cancer study and the
CMS4 subtype in the CRC study by the CRC Subtyping
Consortium.41 Furthermore, we showed that Module 1 expression
is associated with localization of CD8+ CTL not only in an
exploratory cohort, but also in a validation cohort (Fig. 4a, b).
These observations prompted us to ask whether disrupting the
collagen/ECM structure could lead to the decrease in trapped CD8
+ CTL. In this context, the TGF-β signaling, as a key regulator of
fibrosis, represents an emerging therapeutic target.47 Here, we
investigated the preclinical activities of neutralizing antibody
1D11 in directly targeting TGF-β and its pro-fibrotic functions in
hepatic stellate cells (HStecs), the main source of activated
myofibroblasts during liver injury. In vitro, we measured a dose-
dependent decrease in collagen secretion by HStecs when
cultured in the presence of 1D11. When used at the indicated
dosages and length tested here, 1D11 was not cytotoxic toward
hepatic cells or immune cells (including CD4+ and CD8+ T
lymphocytes), implicating its utility in regressing fibrosis-induced
collagen deposits in the microenvironment while leaving CTL
intact. Notably, in vivo administration of 1D11 induced potent
anti-tumor responses in a STAM™ model of HCC. When compared
to vehicle control group, we observed a reduction in tumor
burden in the liver of 1D11-treated animals, accompanied by
considerable regression of fibrosis, evident by diminished collagen
deposition. In addition, the percent of trapped CD8+ CTL showed
a trend towards decreases in the 1D11-treated group with a
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concurrent increase in infiltrated CD8+ CTL. A recent study in
urothelial carcinoma found that therapeutic co-administration of
TGFβ-blocking and anti-PD-L1 antibodies reduced TGFβ signaling
in stromal cells, facilitated T-cell penetration into the centre of
tumors, and provoked vigorous anti-tumor immunity and tumor
regression.42 It is tempting to speculate that a similar approach
might prove fruitful in the treatment of HCC.
Overall, our data contribute to a better understanding of the

immune components during HCC progression and are especially
important in designing novel immune-based therapeutic strate-
gies to improve treatment for HCC patients. Future efforts will
focus on translating the immunomodulatory role of α-TGF-β to
achieve a prolonged HCC tumor cell eradication and determining
reliable biomarkers to identify patients who will benefit most from
such treatment.

MATERIALS AND METHODS
Procured HCC samples
Patient samples including HCC (n= 98) and matched cirrhotic tissue pairs
(n= 78), and a cohort of metastatic HCC specimens (n= 99) were procured
through Folio Biosciences (Powel, OH). Samples were collected with
appropriate informed consent from various institutions under protocols
approved by Quorum IRB, an appropriately constituted research ethics
board as required by regulation, including but not limited to, the ICH
Guidelines for Good Clinical Practice, U.S. Food and Drug Administration
(21 CFR Parts 50 and 56). All samples were provided as formalin-fixed,
paraffin-embedded (FFPE) blocks along with tumor grade, disease stage,
and viral status information (Table 1, Supplementary Table S1 and S3). All
tissues were assessed utilizing Hematoxylin and Eosin (H&E) staining. RNA
was extracted from all tissues and used for Access RNA-Seq.

In vivo STAM™ mouse model
The STAM™ (NASH-HCC) murine model was generated by SMC Labora-
tories, Inc., Japan, following a previously established method (http://www.
smclab.co.jp/service/nash-hcc.html). At 17 weeks, after the mice had
developed HCC, animals were randomly assigned to groups (n= 15 mice)
and treated with either a vehicle control or TGF-β neutralizing antibody;
1D11 (I.V. injection at 10mg/kg on the 1st day of treatment, and for
remaining doses I.P. injections at 10mg/kg twice a week), for a total of
6 weeks. Tumors were harvested as individual nodules per liver at the end
of the study and were matched with a paired adjacent non-tumor
specimen.

Sirius Red staining and assessment of fibrosis area
Liver snippets were fixed in formalin and embedded in paraffin. Sections
were cut from the paraffin block at 4 µm, then deparaffinized and
rehydrated in serial dilutions of ethanol. The sections were then immersed
in 0.03% PicroSirius Red solution (cat# 1A-280, Waldeck) for 1 h, then
dehydrated and cleared with a graded series of ethanol and xylene. The
stained sections were mounted with Entellan New (Merck Millipore,
Billerica, MA) and observed with a light microscope (Leica Microsystems,
Buffalo Grove, IL). After a quick examination of slide quality, 5 fields in the
pericentral region (i.e., the area around central veins) were selected and
photographed at 200× magnification. The images were imported into
ImageJ (National Institute of Health) and processed to de-noise and extract
positive areas above a threshold level. The Sirius Red positive area (fibrosis
area) was calculated by dividing the positive area (pixels) by the total area
(after subtracting the inner space of the cavity) (pixels), and expressed as %
positive area.

CD8/trichrome dual staining
A CD8/Trichrome double-stain was performed on 4 µm FFPE sections. The
IHC procedure was performed first using the anti-mouse CD8 hamster
monoclonal antibody CD8a:8218 (Genentech, South San Francisco, CA, cat
# PRO365247). Processed IHC slides were fixed in Bouin’s fixative at 60 °C
for 1 h and were subjected to a routine trichrome stain consisting of
Weigert’s hematoxylin, Biebrich scarlet-acid fuchsin, phosphomolybdic-
phosphotungstic acid, and aniline blue as described previously.48 Slides
were dehydrated in increasing ethanol concentration, immersed in xylene,

and then coverslipped using a synthetic mounting medium. Whole slide
images were acquired with a Nanozoomer XR automated slide scanning
platform (Hamamatsu, Hamamatsu City, Shizuoka Pref., Japan) at 200× final
magnification. Scanned slides were analyzed in the Matlab software
package (version R2017a by Mathworks, Natick, MA) as 24-bit RGB images.
Images were processed to determine the percent fibrosis area (trichrome)
and the percentage of tumor-infiltrating CD8+ T cells.
Masson’s trichrome detection was used to define fibrotic clusters as dark

blue and large contiguous regions by thresholding on blue channel
intensity minus the average of red and green channel intensities followed
by morphological processing and size filtering. The degree of fibrosis was
calculated as a percentage of trichrome positive area (i.e., fibrosis area, sq.
µm) relative to tissue area (sq. µm) per nodule.
CD8+ T cells were identified based on intensity thresholding.

Differences in spatial localization of CD8+ T cells were determined using
the distance from fibrotic deposits per nodule which was used to delineate
two major categories of cytotoxic T cells including: trapped (T cells residing
within and at the distance of <5 µm from fibrotic clusters), and infiltrated
(T cells found >5 µm away from fibrotic clusters). The percentage of
trapped and infiltrated T cells was reported per nodule and represents the
raw number of T cells in each category (trapped or infiltrated) normalized
to its nodule fibrosis area.

Lysate preparation from FFPE sections
Tissues were scraped from 5 µm thick FFPE sections and digested with
Proteinase K mixture at 55 °C for 3–16 h.

RNA isolation
RNA was extracted from Proteinase K lysates with Roche High Pure FFPE
RNA Micro Kit (Roche Diagnostics Corporation, Indianapolis, IN).

Access RNA-Seq (expression analysis)
Genomic wide transcriptome analysis was run on RNA extracted from FFPE
HCC tissue samples. mRNA libraries were prepared using TruSeq RNA
Access (Illumina, San Diego, CA). Paired-end 2 × 100 base reads were
generated on a HiSeq system (Illumina, San Diego, CA). Reads were aligned
to human reference genome using genomic short-read nucleotide
alignment program and reads that overlapped gene exonic regions were
counted.

Immunohistochemistry (IHC)
Immunohistochemistry (IHC) was performed on 4 µm thick FFPE tissue
sections mounted on glass slides. All IHC steps were carried out on the
Ventana Discovery XT automated platform (Ventana Medical Systems,
Tucson, AZ). Sections were treated with Cell Conditioner 1, standard time,
and then incubated in primary antibody against CD8 clone SP16 (Abcam,
cat # ab101500) at 1:100 for 1 h at ambient temperature. Specifically bound
primary antibody was detected by the OmniMap anti-rabbit HRP detection
kit, followed by ChromoMap DAB (Ventana Medical Systems, Tucson, AZ).
The sections were counterstained with Hematoxylin II (Ventana Medical
Systems, Tucson, AZ), dehydrated, and coverslipped.

Cell lines
Human Hepatic Stellate cells (HStec) were obtained from ScienCell
Research Laboratories (Carlsbad, CA, cat# 5300). Cells were maintained
according to ScienCell in Stellate Cell Media (cat# 5301) supplemented
with 2% FBS, stellate cell growth supplement (SteCGS, cat# 5352), and
penicillin/streptomycin solution (P/S, cat# 0503) all from ScienCell Research
Laboratories. Cells were not used for more than 6 passages after thawing.

Cell viability assay
Human HStec cells were plated in triplicates at a density of 10,000 cells/
well in 96-well plates in Stellate Cell Media as mentioned above and
allowed to adhere overnight. The following day, cells were rinsed once
with PBS. DMEM media with low glucose supplemented with 0.5% FBS and
P/S was added back to the cells with 3-fold serial dilutions of TGF-β
neutralizing antibody, clone 1D11.16.8 (GeneTex, cat # GTX14052, CA),
starting at 100 µM. Cell viability was assessed 3 days later, using the
CellTiter Glo® Luminescence Cell Viability Assay (Promega, cat # G7573,
WI). Measurements were read using the Perkin Elmer Envision plate reader.
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Cell viability measurements were corrected relative to the DMSO control at
day 0.

Protein assays
Human HStec cells were plated at a density of 1 × 105 cells/well in 12-well
plates in Stellate Cell Media and allowed to adhere overnight. The
following day, cells were rinsed twice with PBS and switched to DMEM
media with low glucose with 0.5% FBS and P/S. TGF-β neutralizing
antibody was added to cells at 0–20 µg/mL concentrations. After 72 h,
supernatant was collected from each well, spun down at 2000 rpm to
remove cell debris, and frozen down at −20 °C. Collagen I levels were
measured using a type I C-terminal collagen propeptide ELISA kit (Quidel,
San Diego, CA, cat # 8003). Supernatants were diluted at 1:30 and ELISA
assay were carried out in duplicates. Measurements were read using the
Molecular Devices SpectraMax Microplate Reader and protein concentra-
tion was measured according to the controls and standards.

T cell activation and FACS analysis
For T cell activation, total PBMC samples from healthy donors (ALLCELLS,
Alameda, CA) were enriched for CD3+ T cell populations using CD3
MicroBeads (Miltenyi Biotec, Auburn, CA, cat # 130-050-101) according to
manufacturer’s instructions. Cells were then maintained in OpTmizer CTS T
Cell expansion SFM plus T cell expansion supplement (Gibco, Grand Island,
NY, cat # A1048501) complete with 5% CTS Immune Cell SR (Gibco, cat #
A2596101), 2 mM Glutamine (Gibco, cat # 35050-061) and P/S solution.
T cells were activated using Dynabeads Human T-Activator CD3/CD28
beads (Gibco, cat # 11131D). Surface FACS using anti-CD69 (Biolegend,
London, UK, cat # 310904) staining was used to detect and confirm the
activated state of T cells. TGFβ neutralizing antibody was added to cells
within 24 h, and after 72 h incubation, cells were washed and stained with
anti-CD4 (BD Biosciences, cat # 560768) and anti-CD8a (eBioscience, Grand
Island, NY, cat # 56-0086-82) antibodies and subsequently analyzed with
flow cytometry.

Staining cells for flow cytometry
Activated T cells were washed with PBS then resuspended in Brilliant stain
buffer (BD Biosciences, San Jose, CA, cat # 563794) containing FcR blocking
buffer (Miltenyi Biotec, Auburn, CA, cat # 120-000-442) and antibodies as
recommended by the manufacturer. After 30 min incubation at 4 °C, cells
were washed with FACS buffer (PBS plus 0.5% FBS) and resuspended in a
1:1 ratio of FACS buffer and IC Fixation buffer (eBioscience, Grand Island,
NY, cat # 00-8222-49). FACS measurements and analysis were carried out
using BD LSRFortessa Cell Analyzer and FlowJo_V10 software.

Statistical analysis of in vitro/in vivo data
Biological experiments and HCC mouse data were analyzed with t-tests (2-
tailed distribution, unpaired) using GraphPad Prism and Excel software. A
p-value of <0.05 was considered statistically significant.

RNA-Seq counts preprocessing
Post data pre-processing and normalization, a total of 176 samples were
analyzed (Table 1 and Supplementary Table S1). Genes with less than 10
reads aligned across the entire dataset were filtered out, leaving a total of
15,524 genes for downstream analysis. Pseudo raw gene counts (raw
counts+ 1) were log transformed and each sample was library size
normalized to have a global median of 0. Hereafter this dataset is referred
to as HCC1.

Clustering analysis
The distance between any two samples was defined using their Euclidean
distance. The distance between any two genes was defined using their
Pearson correlation. Clustering was done (for both samples and genes)
using Ward’s agglomerative method.50

Differentially expressed genes (DEGs)
To identify genes that were differentially expressed between the peri- and
intra-tumoral samples, a t-test was performed for each gene. To identify
genes that were associated with stage (T1, T2, T3), analysis of variance

(ANOVA) hypothesis testing was performed for each gene using the
genefilter R package.51 All p-values obtained from the procedures
mentioned above were adjusted for multiplicity using the
Benjamini–Hochberg (BH) method52 to obtain FDR. For the peri- vs.
intra-tumoral comparison, genes with FDR < 12.5% and |log2 (fold-
change)| > 1 were called significantly different. For the stage association
ANOVA analysis genes with FDR < 25% and log2 (between mean variance)
>−3 were selected as significant.

Gene set enrichment analysis
Gene set enrichment analyses were performed on the Hallmark gene sets
[http://software.broadinstitute.org/gsea/msigdb/] using Fisher’s exact test.
Obtained p-values were adjusted for multiplicity using the BH method.
Gene sets with adjusted p-value < 10% were called significant.

Refinement of gene sets
The 89 DGEs with respect to T-cell localization (intra- vs. peri-tumoral) were
narrowed down to 23 indication agnostic highly correlated genes as
follows: Let Xcor denote the Pearson correlation matrix of a given dataset X.
Compute a reference correlation matrix, Rcor=minimum{GCcor, BUCcor,
CCcor,, KRCCCcor, ECcor, SCcor, RAcor, PAcor, HCCcor} where the minimum is
taken across each cell within the corresponding correlation matrix.
Clustering Rcor reveals a block of genes (Module 1) that are highly
correlated across the indications.
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