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Immune cell profiling in cancer: molecular approaches to cell-
specific identification
Yasmin A. Lyons1, Sherry Y. Wu1, Willem W. Overwijk2, Keith A. Baggerly3 and Anil K. Sood1,4,5

The immune system has many important regulatory roles in cancer development and progression. Given the emergence of
effective immune therapies against many cancers, reliable predictors of response are needed. One method of determining
response is by evaluating immune cell populations from treated and untreated tumor samples. The amount of material obtained
from tumor biopsies can be limited; therefore, gene-based or protein-based analyses may be attractive because they require
minimal tissue. Cell-specific signatures are being analyzed with use of the latest technologies, including NanoString’s nCounter
technology, intracellular staining flow cytometry, cytometry by time-of-flight, RNA-Seq, and barcoding antibody-based protein
arrays. These signatures provide information about the contributions of specific types of immune cells to bulk tumor samples. To
date, both tumor tissue and immune cells have been analyzed for molecular expression profiles that can assess genes and proteins
that are specific to immune cells, yielding results of varying specificity. Here, we discuss the importance of profiling tumor tissue
and immune cells to identify immune-cell-associated genes and proteins and specific gene profiles of immune cells. We also discuss
the use of these signatures in cancer treatment and the challenges faced in molecular expression profiling of immune cell
populations.
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INTRODUCTION
For many years, the TNM staging guidelines from the American
Joint Committee on Cancer/Union Internationale Contre le Cancer
have been the traditional resource for predicting prognosis in
patients with various types of cancer. In recent years, however, the
immune contexture of primary tumors has provided information
that can be equally effective, and even superior, in predicting
progression-free and overall survival. The initial studies in immune
contexture were performed in colorectal cancer and then
extended to ovarian, breast, prostate, kidney, head and neck,
and lung cancers, and to melanoma.1, 2

The clinical relevance of the immune system in cancer has been
shown by the growing field of immune therapy. PD-1 immune
checkpoint inhibitor antibodies have been proven superior to
second-line chemotherapy in achieving longer overall survival in
lung cancer patients with progressive disease after initial
platinum-based chemotherapy.3 Immune therapy is also thriving
in the field of melanoma, in particular with the use of PD-1 and
CTLA-4 antibodies.4, 5 Despite the dramatic response to immune
therapies experienced by a subset of patients, discovering
biomarkers to determine which patients will benefit from these
drugs remains a challenge. The discovery of gene signatures has
led to a preliminary model that can be used to predict response to
immune therapy by evaluating gene expression in immune
system cells of tumor tissue.6 The significance of immune profiling
lies in the fact that patients in various molecular subgroups may
respond optimally to different treatments.

In this article, we describe the importance of evaluating
immune cell specificity with use of gene-based and protein-
based analyses of tumor and immune cells and discuss the impact
of such evaluations on the field of oncology. We also discuss
contemporary methods of immune profiling and gene expression
profiles that have been identified for major immune cell
populations. Finally, we discuss many challenges in using
molecular approaches to characterize anti-cancer immune
responses, as well as solutions for overcoming these challenges.

GENE EXPRESSION PROFILING OF KEY IMMUNE CELLS
Table 1 shows enriched genes, or gene expression “signatures,”
identified for each individual immune cell type. These genes were
identified as having the greatest differential expression (>2-fold
difference) when immune cell types were compared.

METHODS FOR GENE EXPRESSION PROFILING OF IMMUNE
CELLS
Initially, microarrays were used in immunology to determine the
presence or absence of genes in various defined populations.7

Because of the large amount of data generated from a single
assay, microarrays provided a means of predicting clinical
outcome in cancer patients by examining gene differences
between those whose disease recurs and those who remain
disease-free after cancer treatment.8 Further analyses led to the
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Table 1. Enriched genes in immune cells

Immune cells Enriched genes References

All T cells Human: CD3G, CD3D, TRA, CD6, CD5, NPDC1, CD28, CAMK4, GFI1, GATA3, SH2D1A, TRB, TNFRSF25, NK4, TACTILE, BCL11B, CD3E,
INPP4B, MAL, NPDC1, ITM2A, ITK, LCK, NFATC3, RORA, MGC19764, TCF7, ZAP70, LEF1, SPOCK2, PRKCQ, SATB1, RASGRP1, LRIG1,
DPP4, CD3Z, PDE4D, FYN, WWP1, LAT, DUSP16, KIAA0748, CDR2, STAT4, FLT3LG, IL6ST

78–79

CD8+T cells Human: FCGBP, C1ORF21, PHEMX, KLRG1, ZNF145, ADRB2, DUSP2, IL2RB, CCL5, GZMC, TBX21, CCL4L, GZMH, PRF1, GNLY, CST7,
GPR56, KLRC1, S100B, D12S2489E, CD8B1, CD8A

79, 81, 82

T regulatory cells Human: AKAP2, ANXA2, C8FW, CALM2, CDH13, ENTPD1, EPSTI1, F5, GBP2, GBP5, HS3ST3B1, HSPCA, ICA1, LAIR2, LGALS3, LOC51191,
MKP-7, NINJ2, P53DINP1, PMAIP1, PTPLA, GPR2, HLA-DMA, HLA-DPA1, HLA-DPB1, HLA-DQB1, HLA-DRA, HLA-DRB4, HLA-DRB5,
HPGD, PTT1, SAT, SHMT2, TMOD3, TNFRSF6, VIL2, LRRC32, CHAC1, EGR1, PYCR1, IL13, C3AR1, ZBED2, IL10, GAB3, NR4A1, IL1R2,
ULBP1, IL17F, EIF4EBP1, RGS16, BCAT1, VEGFA, GIMAP1, GPR44, GPT2, PSPH, NLN, MS4A3, UCK2, TNIP3, TNFRSF9, IL7R, NR4A3,
CSGALNA, CT1, SLC43A1, ZBTB32, SCFD2, HK2, C17ORF96, C1ORF186, LYZ, SFXN4, CYP1B1, SLC7A5, C17ORF58, SLC4A5, CD52,
KLRB1, S100A4, POLA1, SLC7A1, ATPBD4, UBXN8, CASP8, FAIM3, IL12RB2, MPP7, ZNF831, BNIP3L, LRP8, UTRN, SOCS3, LY9, EVI2B,
SFXN3, TNFRSF4, ING4, BLM, TNFSF11, SLFN5, CCR8, CD244, MYO1F, HOMER1, ATF3, AGPAT4, CTH, JAKMIP1, TFRC, RPL26L1,
MICAL1, GPRASP1, TMX4, FYB, ZNF792, WDR4, HUWE1, CD83, TRIB2, LARP1B, SLC38A5, AUH, CTPS, CYTH1, APOL3, CHD6, IL1R1,
LPCAT4, CITED2, DUSP4, SSBP2, LAYN, ZFAND2B, PIK3R1, GCNT4, PPP3CA, TIMP1, SIRPG, CCR3, PTP4A3, SERINC5, MAGOHB, GIMAP4,
KLHL24, CCNG2, WDR70, MYBL1, CNPY4, TIMM8A, CCDC28A, MNAT1, MS4A2, GZMB, E2F5, HIBCH, C9ORF91, NHP2, CDC25B, VDR,
CSF1, GPATCH4, NFKBID, TMCO7, EHBP1, FAM173B, FARS2, FLVCR2, NPM3, PNPO, P2RY8, TMEM63A, MXI1, MRTO4, SESN2, C1ORF38,
STK38, SLC6A6, ALG14, LXN, TNFRSF18, ACSS1, UBA7, MTSS1, PSMA6, FAM8A1, RAB31, TNRC6B, SESN1, CEP68, LAPTM5, PLAGL2,
LRRC33, EIF2B3, URB2, DDX21, ITGA4, RGS2, RORC, IFNAR2, CSDA, SORL1, LRRC37B, IL10RA, PRKACB, CBWD1, SMAD3, C1ORF96,
FCER1A, HSP90AB1, EMG1

83–87

B cells Human: PSEN2, FZD5, PLEKHF2, SIDT2, MTPN, TUBB6, FLJ21127, SMC6L1, KIAA1026, NUP88, GNA12, RNTRE, GSTZ1, RFX5, XYLT1,
GL012, EPB41L2, LOC51760, SCRN1, PTD008, CYB561D2, SCAP2, MMP11, ERDJ5, TTC7A, PMAIP1, GARNL4, TMEPAI, SH3BP5, EDD,
UCP4, EVI5L, PIK3C2B, SMAD3, LHFPL2, LOC57228, GM2A, HRK, ZNF207, LOC92497, F5, DMXL1, CLIC4, PRCP, DKFZP434C0328,
STRBP, PHF16, JUP, TEAD2, PPP3CA, CNR2, ATP5B, ABCA1, BMF, ZCCHC7, KIAA0274, SLC22A3, SPI1, AMFR, ANXA4, EBF, ITPR1,
HIST1H2BK, COPS3, COL14A1, SAV1, APOBEC3B, CCNG2, STAG3, LOC348938, POLD4, TBC1D1, MK2S4, APG4A, DAPP1, TNFRSF18,
HERPUD1, POU2F2, ADK, CKIP-1, ACTA2, PARP14, MTSS1, DTX1, DDR1, RRAS2, RNF141, SYPL, SSPN, CORO1C, NFKBIE, CHD7, SP140,
WDR34, BTNL9, ATP6V0A1, UROS, HLA-DOA, C22ORF13, IFI27, JMJD2B, WEE1, ODC1, KIAA0746, WDR11, SYNGR2, FOXP1, BLR1,
MYO1E, MYBL2, GYLTL1B, SETBP1, KLF1, INPPL1, LOC54103, ZNF154, MHC2TA, CD24, ARHGEF3, BIRC3, TRIM56, HLA-DPB1, UVRAG,
CD38, PEA15, FLJ10697, TLR10, ARHGAP10, HLA-DRA, SHMT2, LGALS9, FLJ10853, CEBPB, PRICKLE1, LCP21, CR1, KLHL14, TLR7,
C20ORF72, HLA-DQB2, CORO1A, PRKCEHECW2, FLJ25604, TRIM26, FBXO41, GCNT1, LRMP, UBE2J1, IGKV3D, PCCA, GLDC, CYSLTR1,
BTLA, NET5, HLA-DPA1, BLNK, CD79B, TM4SF8, TFEB, CD11ORF24,ADRBK2, CDKN2A, RIPK2, STX7, NCF4, SRGAP2, SLC2A5, CTSZ,
AIM2, TCF4, TPD52, MAP3K8, MOBKL2B, HLA-DOB, IFIT3, MGC24039, BRD4, RALGPS2, SEMA4B, BSG,IGKC, HLA-DRB6, FUBP1,
UNC84B, IFNGR2, HSPA5, HLA-DRB5, MARCKS, KYNU, PACAP, RHOBTB2, FLJ12363, TMED8, FGD2, FBXO10, IL4R, CD1C, MGC50844,
MRPL49, CTSH, LYN, WASPIP, C3ORF6, EGR1, IGKV15, SPAP1, CHERP, IGHG3, ADAM28, HLA-DMA, HLA-DMB, PALM2-AKAP2, CD86,
LAF4, LOC283663, FREB,DKFZP586A0522, UREB1, IGLL1, HLA-DQA2, KIAA1219, PLCG2, MARCH-1, BCNP1, PNOC, CD20, PSCD1,
BCL11A, VPS28, SWAP70, SYK, BCL7A, NAP1L, TEM6, BTK,RAB30, FCGR2B, STAT6, BRDG1, LOC201895, ITGB1, CD74, CORO2B, VPREB3,
HSPC182, MGC15619, RHOH, IGHA, CYBASC3, KIAA0125, RAM2, CD83, FCRH1, FLII,SNX10, IGHG1, EPHX1, FLJ10979, GTPAP, IGLL3,
E2F5, TNFRSF17, BLK, FLJ00332, SNX2, CD200, HLA-DQB1, TRIO, CYBB, PIK3AP1, IRF4, CD22, BACE2, IGJ, PAX5,RGS13, TCL1A, MEF2C,
C13ORF18, POU2AF1, HHEX, IRF8, BANK1, OSBPL10, SLC2A1, NCF1, IGL@, IGLC2, SPAP1, IGHG3, HLA-DMA, HLA-DMB, CD79A, HSPA6,
IGHD,KIAA0476, SLC7A7, NKG7, CD19, SAMD9, LY86, SPIB, NAPSB, RNASE6, IGHM, LY64, CD72, IRTA2, CD1D, HLA-DQA1, SAS, CTSH,
LYN, WASPIP, C3ORF6, EGR1, FREB,DKFZP586A0522

88, 79, 89

Resting NK cells Human: IL18RAP, PRF1, GZMH, TKTL1 90–92

Macrophages aMurine: Pecr, Tmem195, Ptplad2, 1810011H11Rik, Fert2, Tlr4, Pon3, Mr1, Arsg, Fcgr1, Camk1, Pld3, Tpp1, Ctsd, Pla2g15, Lamp2,
Pla2g4a, MerTK, Tlr7, Cd14, Tbxas1, Fcgr3, Fgd4, Sqrdl, Csf3r, Plod1, Tom1, Myo7a, A930030A15Rik, Sepp1, Glul, Cd164, Tcn2, Dok3,
Ctsl, Tspan14

93–95

M1 macrophages aMurine: Cd38, Cfb, Slfn4, H2-Q6, Fpr1, Slfn1, Gpr18, Ccrl2, Fpr2, Cxcl10, Mpa2IOasl1, Tlr2, Ms4a4c, LOC100503664, Irak3, Hp, Itgal,
Herc6, Cd300lf, Isf20, Pstpip2, Cp, Isg15, Herc6, Probe, 1452408_at, Ifi44, E030037K03, Rik, Saa3, Ifit1, Marco, F11r, Rsad2, Ddx60,
Pilr1, Cpd, Gngt2, Mx1, Pyhin1, Epb4.1l3, Slfn8, Arhgap24, Nfkbiz, Gbp6, Stat1, Zpb1, D14Erd668e, Ddx58, Tuba4a, H2-T10, Ebi3,
Fam176b, Xaf1, Stat2, Sepx1, Ifit2

96

M2 macrophages aMurine: Ptgs1, Egr2, Olfm1, Flrt2, P2ry1, Vwf, Amz1, Tmem158, Tiam1, Rhoj, Mmp9, Mrc1, Bcar3, Il6st, Tanc2, Mmp12, Tcfec, Clec71,
Matk, Myc, Clec10a, Atp6v0a1, Lmna, Chst7, Atp6v0d2, Emp2, Socs6, Atp6v0a1, Plk2, Ptpla

96

Classical
monocytes

Human: S100A12, ALOX5AP, PAD14, NRG1, MCEMP1, THBS1, CRISPLD2, F13A1, MOSC1, CYP27A1, CD163, QPCT, ADAM19, ASGR2,
RNASE4, ALDH1A1, EDG3, PROK2, CLEC4D, S100A9, OSM, CSPG2, GALS2, ANG, VNN2, EBI2, UTS2, RPPH1, MGST1, IL8, CCR2, SELL,
DYSF, MT1F, CD14, RANSE6, CSF3R, STAB1, CYP1B1, ADHFE1, PLA2G7, MMP25, ZNF395, SLC2A3, EGR1, CMTM2, CD9

97, 98

Intermediate
monocytes

Human: GFRA2, NKG7, PLVAP, PLAC8, MARCKSL1, E2F2, G8P4, CLEC10A, SCD, COTL1, SLC29A1, DDIT4, TGM2, LILRA3, ATF5, GPA33,
C1QC, EVA1, MERTK, MGLL, DDEFL1, MARCO, NR1H3, FBP1, ACP2, GBP1, GPBAR1, SASH1, OLFM1, TIMP1, HLA-DOA, CAMK1,
POUFUT1, EPB4IL3, H19, ZNF703, SNX5, CLEC10, AK-ALPHA-1, DPB1, DHRS9, MTHFD2, RGL1, PRDM1, FADS1, SLC2A8, CSK, ISOC2,
CD300C, FGD2

97, 98

Nonclassical
monocytes

Human: C1QA, HES4, CDKN1C, C1QB, RHOC, CLEC4F, ADA, TAGLN, TCF7L2, CD798, CTSL, SFTPD, ABI3, SETBP1, FGFRL1, CD798,
SPRED1, SNFT, EVL, MTSS1, SH2D1B, CYFIP2, NELF, STS-1, SIGLEC10, CKS1B, PTP4A3, LYPD2, SIDT2, INSIG1, LTB, PAPSS2, ABCC3,
CASP5, VOM1, HSPB1, GNGT2, HMOX1, RRAS, RNF122, CDH23, FMNL2, RGS12, SGGB3A1, FER1L3, CALML4, IFITM3, CKB, CEACAM3,
IFITM1

97, 98

Mature DC’s Human: ACCL5, CXCL10, CCR7, IL15, IF127, IF144L, IFIH1, IFIT1, MX1, ISG15, ISG20, IRF7, GBP4, DUSP5, NFKB1A, ATF3, TNFSF10, IL6,
IL8, IL7R, CCL4, TNFA1P6, IFIT3, OASL, GBP1, HES4, CYP27B1, RIPK2, TNFRSF9, SOD2, CD38, CD44, CD80, CD83, CD86, INDO MT2A,
TRAF1, GADD45B, MT1M, MTIP2, BIRC3, USP18, TUBB2A, CCL8, EBI3, IFITM1, MT1B, MT1E, MT1G, MT1H, GADD45A, CD200, LAMP3,
RGS1, SAT1

99, 100

Monocyte-derived
DC’s

Human: CD1A, CD1B, CD1C, CD23A, MRC1, CD36, HLA-DQA, HLA-DP light chain, HLA-DG protein 41, RIL, RAP1GAP, CCND2, DUSP5,
PPIC, STAC, PRKACB, TRIB2, SHB

99–101

Mature neutrophils Human: ALPL, IL8RB, FCGR3B, SEMA3C, HM74, SOD2, FCGR3A, IL-8, STHM, IL8RA, FCGR2A, CSF3R, NCF2, AOAH 102, 103

Immature
neutrophils

Human: AZU1, ELA2, BPI, LCN2, MPO, CTSG, MMP8, DEFA4, DEFA3, CAMP, X-CGD 103–105

a Genes unique to mice due to lack of human specific studies
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development of gene expression signatures based on prognosis
and response to treatment, including immune therapy.8, 9 Due to
limitations, including the starting quality and amount of RNA, end
point—dependent performance, minimal expression of genes due
to background hybridization, and difficulty in comparing expres-
sion levels across experiments, microarrays are not widely used for
gene expression profiling today.10–14

RNA sequencing (RNA-Seq) overcame many limitations seen
with microarrays, since having prior knowledge of the sequences
and being able to distinguish between highly related sequences
were no longer required for performing the assay.15 Single-cell
RNA-Seq overcame the challenges presented by the heterogene-
ity in gene expression in cells within the same population by
enabling the investigation of single cells in order to determine
their phenotype and the significance of their differences.16, 17

Because most non-tumor cells in the tumor microenvironment are
immune cells, single-cell profiling of immune cells provides insight
into the potential use of immune and other molecularly targeted
therapies.18 Given the consistency of cytotoxic T cells in the
microenvironment, single-cell analysis of T-cell phenotypes is a
logical starting point for monitoring the response to immune
therapy and for guiding future treatments.19, 20 Single-cell analysis
of tumor-infiltrating T cells can illustrate varying phenotypes of
T cells, including naive, regulatory, cytotoxic, exhaustion, and co-
stimulatory subtypes, which can lead to predicting the type of
immune therapy that the tumor is most likely to respond to.18

NanoString’s nCounter analysis system offers advantages over
current gene expression profiling methods including digital
output of data and direct mRNA measurement without enzymatic
reaction.21 mRNA expression levels from formalin-fixed paraffin-
embedded (FFPE) tissue samples, which are often degraded, can
be evaluated by using the nCounter system because this system
does not use an amplification step.22 This is advantageous for
clinical trials with available FFPE samples. Genes declared absent
by microarray can be detected with use of the nCounter platform,
which is able to detect low-abundance mRNA with greater
sensitivity.21 NanoString’s nCounter technologies provide immune
and immune oncology-related panels of sequence-specific probes
for genes of interest. Applications include identification of genes
related to response to treatment, association with TIL infiltration,
and tumor-specific gene alterations.23

The nCounter technology has been used to evaluate gene
signatures in many clinical trial settings. In melanoma, a 53-gene
immune signature identified by the nCounter system was able to
predict non-progression, prolonged recurrence-free survival, and
disease-specific survival.24 In breast cancer, the PAM50 gene
signature was validated with use of NanoString’s nCounter
platform, and was enhanced to include a risk-of-recurrence score,
in addition to risk category and intrinsic subtype.25, 26 The
nCounter system also offers the ability to analyze DNA, RNA, and
protein targets at the same time using one sample. This not only
allows for immune cell profiling by gene expression, but also
provides protein information, providing further insight into
cellular function.27

METHODS FOR PROTEOMIC PROFILING OF IMMUNE CELLS
Flow cytometry is a traditional and useful method of immune cell
profiling for distinguishing various populations of immune cells
from a large, heterogeneous sample. Although flow cytometry is
still widely used for immune profiling, newer techniques described
below have advantages and can be used in conjunction with or
for replacement of flow cytometry.
Cytometry by time-of-flight (CyTOF) uses heavy metal isotopes

to label antibodies, and then labeled cells are analyzed by high-
throughput spectrometry on a single-cell level. This approach of
cell profiling provides more parameters to quantify than does
traditional flow cytometry, which is limited by overlap between

the emission spectra of individual fluorophores.28, 29 Another
advantage to CyTOF for single-cell analysis of immune cell
infiltration includes a required starting cell number of
1000–1,000,000, which can easily be obtained from patient biopsy
specimens.29 CyTOF analysis has the benefit of generating
valuable visualization plots to help further characterize immune
populations. Analysis with SPADE (spanning-tree progression
analysis of density-normalized events) yields representation of
differences in signaling response seen in tight population
boundaries across many immune cell types.30 SPADE organizes
single cells into clusters of hierarchies where developmental
lineages, rare cell populations, and functional markers can be
easily identified.31

Traditional flow cytometry is fundamental in immune profiling
to distinguish distinct cell populations from a heterogeneous mix.
However, it is unable to track the phosphorylation of intermediate
signaling molecules that play a role in immune response.
Phosphoflow (also known as intracellular staining flow cytometry)
overcomes the limitation of traditional flow cytometry by allowing
for detection of intracellular phosphoproteins. This technique also
provides single-cell analysis, thus emphasizing differences
between cell populations that might appear to react similarly
when probed with traditional protein-based methods such as
western blotting.32 When combined with cell-surface staining for
immune profiling, phosphoflow can provide detailed analysis of
specific immune cells and their signaling pathways.33

Despite the benefits of traditional and phosphoflow cytometry,
these modalities are unable to evaluate a single cell at multiple
points in time, as the cell differentiates and evolves from a
progenitor cell; this capability is an important factor in immuno-
logic analysis. Microengraving is a technique that involves
suspension of cells onto an array of microwells, inversion onto a
glass slide with capture reagent, an incubation period, and then
interrogation of the microarray with a fluorescence scanner.34–36

Microengraving is ideal for immune profiling of proteins since it
allows for high-throughput identification and quantification of cell
lineage and secreted products of lymphocytes, such as cytokines
and antigen-specific immunoglobulins.34, 35 Because microengrav-
ing allows for detection of information over time, functional
responses to stimulated cells, such as T cells, can be measured by
serial microengraving.36 It is an advantageous method for
studying human immune cells because it requires only
50,000–100,000 cells for analysis, and cells are retained and
remain viable after analysis.34 Microengraving is important for
characterizing secreted proteins from single cells but is unable to
successfully measure cytosolic proteins.
The barcoded microchips assay has an advantage over

microengraving because it allows for absolute quantification of
both cytosolic and surface proteins of single cells.35 The microchip
system contains microchambers that hold a defined volume or
number of cells and houses the barcode, or antibody array for
capture, lysis, and detection of various proteins.37 Single-cell
barcoding chips require approximately 10,000 cells.38 In immunol-
ogy, barcoding microchips have been proven useful in analyzing
cytokine production from macrophages and T cells.38 The
technique has been applied to monitoring immune therapy in
the field of metastatic melanoma, where T-cell-receptor-
engineered T cells, of patients participating in an adoptive cell
transfer clinical trial, were profiled for 12 secreted proteins.38, 39

This protein profiling helps further the notion that immune
response is best determined by evaluating the functional
performance of the T cells rather than the number of cells
present.39

CLINICAL USE OF IMMUNE PROFILES
Cancer treatment with immune therapy, based on the molecular
identification of immune cell presence and tumor antigens, has
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been proven beneficial in many cancers for certain subsets of
patients.40 When immune therapy was still in its preliminary
stages, the interest was in antigens that are shared among various
types of tumors.41 It was later discovered that many of these
antigens are expressed by other tissues in the host, leading to
immunologic tolerance for high-avidity interactions.40 This limits
the effectiveness of potential immune therapy due to lower-
avidity immune responses.40 One method of overcoming this is to
target neoantigens derived from point mutations in normal
genes.40 With advances in genome sequencing, mutant antigens
are being discovered that can be important for eliciting an
immune response. Mutations are unique to individual tumors and
can generate a more potent antitumor response by the immune
system.40

Tumor stage, based on TNM guidelines, is a long-standing,
reliable way to classify cancer. Although this system gives an
estimate of the tumor burden, lymph node involvement, and
evidence of metastasis, it is known that clinical outcome still varies
between patients with the same stage of disease.42 The immune
contexture of the primary tumor is an essential factor in predicting
prognosis.1 As stated above, it has been demonstrated that
knowledge of the location and density of immune cells may be
more prognostic than the TNM guidelines.1 This highlights the
misconceived notion that disease progression depends solely on
tumor cells and emphasizes the importance of incorporating
immune response into the classification of disease.42 The
Immunoscore is a score from 0 to 4 generated from the density
of lymphocyte populations CD3/CD45RO, CD3/CD8, or CD8/
CD45RO in the tumor core and margins.42 The Immunoscore has
been used to predict outcome in colorectal cancer by demon-
strating that immune cell infiltration, as determined immunohis-
tochemically, and its associated score directly correlate with
disease-free and overall survival.43

The Immunoscore was recently validated in a worldwide, multi-
institutional study with a primary end point of time-to-
recurrence.44 Time-to-recurrence was significantly longer for
patients with a high Immunoscore, independent of stage, sex,
age, or tumor-sidedness.44 The immunoscore has been used
successfully to predict prognosis in melanoma, breast, kidney, and
lung cancers. These results, however, have yet to be validated in
prospective studies in order for the immunoscore to be used as a
predictive marker.45

CHALLENGES AND SOLUTIONS IN ANALYSIS OF THE
IMMUNOLOGIC GENOME
Gene expression signatures
Lack of immune-specific signatures. Gene expression signatures
are used as tools to predict which patients will benefit from
certain treatments and to guide decision-making in the clinic.46

Gene expression signatures are considered “prognostic” when
they can differentiate between patients with a good or bad
prognosis in the context of traditional therapy or no treatment at
all.47 Gene signatures are considered “predictive” when they are
able to predict treatment benefit between experimental and/or
nontraditional treatment groups vs. control, typically in the setting
of a randomized controlled clinical trial.47 In breast cancer, the
predictive and prognostic assays Oncotype DX, EndoPredict,
PAM50, and Breast Cancer Index are now recommended as
adjuncts for clinical decision-making for patients with specific
subtypes of breast cancer.46 These signatures, however, are not
specifically immune-related and share little overlap in their
selected genes.47, 48 Because tumor cells and infiltrating immune
cells both have prognostic value, evaluating tumors and the
surrounding stroma with use of the methods described above, in
order to generate immune-related signatures, can provide
prognostic and perhaps predictive information associated with

patient outcome. Although there are no immune-related gene
signatures used in clinical practice currently, several studies have
shown the validity and reproducibility of using immune-related
signatures to predict outcome and response to therapy in patient
cancer samples.

Solution: in silico, pan-cancer studies. One reason immune-related
gene signatures have not been widely used in clinical settings is
the lack of consistency of genes, both within the same tumor type
and among different tumors.49 Efforts to address this problem are
under way, with the development of conserved immune gene
signatures representing multiple tumor types.49 Another problem
with immune-related gene signatures is the difficulty in decipher-
ing whether the genes represent specific immune cell popula-
tions, antigen-presenting machinery, cytokines, or other immune-
related molecules. In silico studies have validated pan-cancer
immune-related gene signatures that represent many immune cell
types with known prognostic significance including T cells, B cells,
NK cells, macrophages, as well as various cytokine populations.49, 50

Immune-related gene signatures have proven to be prognostic of
clinical outcome across multiple cancer types and are associated
with response to immune therapy in specific cancers.49, 50 Recent
findings on immune-related gene signatures have shown that
gene signatures are able to distinguish between broad lineages of
cell type, such as lymphoid and myeloid but are less adept at
distinguishing between more differentiated cells such as CD8+

and CD4+ T cells.49

Ranked gene lists
Oversimplification of interpretation. Currently, given the multi-
tude of methods with which to analyze genomic data, the
problem no longer lies in obtaining gene expression profiles but
rather in interpreting the data. Analysis of gene expression data
typically involves a comparison of two groups and the creation of
a ranked gene list based on expression. One method of
interpretation involves looking at each end of the ranked list to
evaluate genes showing the largest difference in expression.7, 51

Problems with this method include small relevant biological
differences between genes leading to no statistical significance, a
long list of genes that are statistically significant but lack biologic
relevance, missed effects on pathways by analyzing single genes,
and variation in gene lists for the same biologic system based on
two different groups’ data.51 This again underscores the challenge
faced when trying to create a clinically useful immune-related
gene signature from a high-throughput panel of genes.

Quantity of data. The NCBI Gene Expression Omnibus database
contains more than 30,000 series and 1 million samples of array-
based expression data, many of which involve the immune
system.52 Because of the large amount of expression data relating
to the immune system and the inability to compare information
between the various datasets, the Immunological Genome Project
(IGP) was created to provide a comprehensive compendium of the
expression of protein-coding genes for all immune cell popula-
tions in the mouse immune system.53 This project was developed
to provide information on primary immune cells isolated ex vivo
from the mouse immune system and then integrate that
information into networks, while taking into account variation
via genetic polymorphisms, knock-out of genes, knockdown via
RNA interference, and drug treatment.53 Researchers can use
these data to determine gene expression profiles that serve as
biomarkers for predicting response to treatment and for measur-
ing residual disease after immune therapy.

Solution 1: added-value/specialty databases. Primary databases
contain gene expression and other genomic data such as
genotype, DNA methylation, and protein expression data. These

Immune cell profiling in cancer
YA Lyons et al.

4

npj Precision Oncology (2017)  26 Published in partnership with The Hormel Institute, University of Minnesota



databases are complex, and bioinformatics expertise is often
required to process the data.54 Added-value databases take
information from primary databases and answer a question
related to comparing two groups. The “added-value” involves
additional data processing, mapping to standardized vocabularies,
and additional annotation and analysis.54 An example of an
added-value database includes the Gene Expression Atlas, which
provides gene expression data across various cell types, organ-
isms, developmental stages, and disease states.55 This atlas also
includes information on gene expression in treatment and other
experimental conditions.55

Specialty databases, such as immunology databases, have been
designed to yield more information about a particular topic and its
related biology. In immunology, because of the highly conserved
nature of immunologic proteins, even a slight variation in
sequence can produce a significant biologic effect.56 This calls
for a more comprehensive analysis of the genetic variations in this
population, found in a specialty database for immunology.56

Solution 2: co-expression databases. Co-expression data between
two genes can be useful in studying gene function, protein
interaction, and signaling pathways and can provide information
on predicting survival and determining biomarkers.57 ImmuCo is a
cell-specific, co-expression database that provides information
between any two genes in immune cells.57 Traditional methods of
identifying gene co-expression and correlation include Pearson
and Spearman correlations; however, under certain conditions,
these methods do not represent the same relationship. In
ImmuCo, gene co-expression is represented by signal values and
detection calls, with signal values indicating gene expression level
and detection calls representing gene coexistence.57 ImmuCo
provides data on cell-specific gene co-expression by plotting the
genes on either axis of a scatter plot in a given cell type.57

Immuno-Navigator is both a gene and co-expression batch-
corrected database for 24 mouse immune system cells.58 Batch
effects are technical sources of variation in data that behave
differently across various experimental conditions and are not
related to the biology of a study; they are particularly pronounced
in co-expression databases.58, 59 Removal of batch effects improves
consistency between cell type-specific expression correlations.58

Overcoming the challenges of using small tumor samples
Using paraffin-embedded tissue. A hallmark of personalized
medicine with immune therapy is the use of outcome-related
clinical data to drive hypotheses. Therefore, archived clinical
samples such as FFPE are of great value when fresh frozen tissue
does not exist. Methods to improve the use of these long-term
samples are still needed. Using fresh frozen tumor samples to
isolate RNA and perform microarray analyses has been a long-
standing basis for genome-wide profiling.60 Efforts to increase the
use of FFPE samples for genomic studies are important, since fresh
frozen tissue is not as accessible or as easily stored.
Advancements in technology have enabled more widespread

use of FFPE samples, yielding alternative tissue available for
genomic studies aside from fresh frozen tumor. FFPE samples
have been used to evaluate the feasibility and accuracy involved
in identifying a breast cancer prognostic gene signature
previously identified with use of fresh frozen tumor.48 The breast
cancer gene signatures listed above are now approved for use
with FFPE tissue.48 FFPE tissue closely correlated with the fresh
frozen samples in its ability to predict good vs. poor prognosis,
with r values of 0.88 and 0.81, respectively.60 To establish whether
RNA isolated from FFPE samples was of sufficient quality to be
used to discover gene signatures, the gene expression data were
validated against the fresh frozen samples. Errors seen in gene
signature data were likely secondary to poor-quality FFPE samples,
and when these samples were removed, the error rate was

<10%.60 This suggests that data obtained from FFPE tissue can
predict the same gene expression signatures as fresh frozen tissue,
with minimal error. In addition to RNA isolation from FFPE tissue,
efforts are now being made to isolate protein from the same
tissue, which has proven to be difficult in the past due to cross-
linking that occurs after formalin fixation.

Using high-throughput analyses. Tissue microarrays (TMAs) allow
the assessment of biomarkers for hundreds of patients at a time
while minimizing labor and time. However, because of the
reduced amount of tissue sampled, TMAs must reflect the overall
architecture of the tumor, including the immune contexture. Using
TMAs, a map of the tumor landscape can be created to represent
the density and distribution of immune cells in various regions of
the tissue, including the center of the tumor vs. the margin.61

Although this type of map can be created on an individual-patient
basis, the massive throughput capacity of TMAs allows for
generalization of the immune architecture in a specific tumor
type. This can facilitate Immunoscoring in these patients to
strategize individualized treatment. When evaluating the hetero-
geneity of TMA samples compared with traditional large-section
slides, TMAs had similar concordance with large sections, ranging
from 70 to 95%, depending on the protein of interest.62

Heterogeneity within cell populations
Variations in gene and protein expression within an individual
population of cells can have consequences when creating cell-specific
markers. The molecular differences within immune cells can be seen
at the DNA, RNA, and protein levels. Although cell-to-cell variability
can have a detrimental effect on phenotype, the immune system uses
this variability to its advantage. Variability in DNA is used by the
immune system to respond to a diverse set of antigens.63 For
example, the V(D)J site-specific DNA recombination process generates
a multitude of T-cell and B-cell receptors that are essential for host
immune defense.63 At the RNA level, variability between cells can be
classified as “intrinsic,” due to stochastic processes, given the finite
amount of nucleic acid and regulators present in cells, or “extrinsic,”
due to factors upstream of mRNA synthesis that can have an impact
on cellular function.63 At the protein level, immune cell populations
exhibit cell-to-cell variation in key factors of cellular function such as
signaling molecules and transcriptional regulators.63 This variation
contributes to the plasticity of immune response, for example, by
affecting antigen response during T-cell activation.64 Overall, hetero-
geneity within immune cell populations on DNA, RNA, and protein
levels is an advantage of the immune system, and the computational
and experimental techniques listed below are crucial in under-
standing these differences.

Solution 1: ontologic-structured databases. Analyzing gene
expression within an ontological framework allows for new ways
to understand cell heterogeneity and appreciate cell identity.65

The ontologically based molecular signature (OBAMS) method
uses IGP data to generate new biomarkers for immune cells by
incorporating the information into an ontology.65 Constructing
ontologies allows a hierarchical approach to identifying cell
markers. Data from IGP generates genes specific to B cells vs.
other lymphocytes, and gene expression varies greatly depending
on the type of B cell.65 Using OBAMS, cellular biomarkers are
differentiated at every level of cell identity, creating a pyramid
from very broad to very specific classifications. Aside from cell
identity, biologic function can be ascertained via term enrichment
from several ontologies, generating new ideas of biologic function
in cell types that are independent of experimental evidence from
the literature.65

Solution 2: single-cell profiling. Several single-cell profiling tech-
niques for both RNA and protein studies were described above.
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These methods help improve the detection of rare cell popula-
tions, explore the maturation process of certain immune cells, and
emphasize the individuality of cells from the same lineage. For
example, T cells derived from the same progenitor, but bearing
different T-cell receptor sequences, express different secretory
factors and differentiate into different types of mature T cells.66

Single-cell profiling using RNA or protein-based methods can
further characterize these differences and provide functional
information regarding these populations. Characterization of
epigenetic changes, including methylation and chromatin mod-
ification, can also provide insight into variations in phenotype
between cells.63

THE OVERALL APPROACH
The overarching goal of immune cell molecular studies from
clinical tumor samples is to understand the interactions between
the host immune system and the tumor. This allows for the
generation of hypotheses that focus on prognosis, pharmacody-
namics, measurement of residual disease, and prediction of
patients who will respond best to immune therapy.
When comparing gene expression differences before and after

immunotherapy, the most important issue begins with the type of
tissue to collect for RNA extraction, since this is the key step for
molecular profiling of the tumor. For proteomic studies, having a
high concentration of protein before processing is most important
for minimizing sample loss.67 Depending on the organ system
being studied, tissue samples can vary widely. Blood cultures are
less heterogeneous but may not be the best choice for studying
cancers outside of the hematologic malignancies. However, in
certain situations, blood can serve as a surrogate for various
disease sites when other tissue is not available. Some disadvan-
tages of other tissues include the fatty nature and lack of cell
content in breast tissue, the fibrous nature of muscle, and the high
cell density of the liver.68 Tissue from the ovary is heterogeneous;
therefore, certain sections might not represent the larger tumor. In
addition, full-thickness tissue, such as skin, requires mechanical
destruction and can lead to disruption of the sample.68

Immediate freezing of surgically removed tumor tissue is
superior to FFPE for preserving RNA; however, the availability of
fresh frozen tissue is typically limited whereas paraffin embedding
allows for years of storage. Tissue quantity also plays a role in
quality of RNA extracted, with smaller amounts of tissue having
higher-quality RNA; for example, 1–5mg of tissue showed higher-
quality RNA in gastric, liver, and muscle tissue than did larger
quantities (5–15mg) of the same tissue samples.68 In addition to
improving RNA quality, samples that were less than 1 cm
improved real-time polymerase chain reaction amplification 5-
fold.69 Historically, protein is extracted from fresh frozen tissue or
blood but not from FFPE tissue due to cross-linking that occurs
upon formalin fixation.70 Recently, methods for extracting protein
from both FFPE tissue samples and samples frozen in optimal
cutting temperature (OCT) compound have been described, and
protocols are available.70, 71

Although blood and cells are superior to tissue for processing
and collecting high-quantity and high-quality RNA, the practicality
of using FFPE tissue and fresh surgical specimens emphasizes the
need for sufficient processing of a variety of tissue. RNA isolation
and purification kits and methods of processing have evolved to
yield greater quantities of RNA. These modifications include the
addition of a ribonuclease inhibitor for ribonuclease-rich tissue
such as the pancreas, continuous extensive mincing of skin
biopsies under liquid nitrogen, and fixation with 30% sucrose for
liver tissue with microwave fixation/processing.72–74 Due to
advancements in RNA isolation and purification, a variety of
cancer tissues that were previously difficult to process can now be
processed for RNA extraction with use of specific isolation kits. The
specimen should be approximately 1 cm or smaller and weigh less

than 5mg in order to yield the highest quantity and quality RNA.
Because of newer technologies such as NanoString, which provide
DNA, RNA, and protein information from the same sample,
techniques that enable simultaneous extraction of all three
molecules are necessary. Protocols using human cells in culture
have shown comparable extraction of all three molecules
compared with control methods. One protocol involves pelleting
of the cells, the addition of saturated phenol for separation of all
three molecules, and the addition of chloroform for phase
separation. At the time of phase separation, further techniques
are used to isolate RNA from the upper phase, DNA from the
middle and lower phases, and protein from the lower phase.75

CONCLUSIONS
It is well known that tumor cells express antigens that can be
recognized by the immune system to provoke an antitumor
response. Despite this immune response, many patients still have
progressive disease that fails to respond to immune therapy.40 This
underscores the importance of using the cancer immune phenotype
to tailor therapy. Molecular profiling of the immunologic genome
provides methods for classifying and representing the immune cells
at the gene and protein level, while also defining groups and
networks of molecules with similar functions from similar or different
lineages.53 In studies of expression profiling of immune cells as an
immune signature, significant differences in overall survival have
been shown in a variety of cancers.76 Future directions in the field of
cancer immunotherapy, especially in terms of precision and
personalized medicine, include “next-generation functional tests,”
which use baseline genomics and the interactions of all cellular
components (DNA, RNA, protein) to determine live-cell sensitivity to
drug treatment that can be administered rapidly.77
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