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As of 2023, the use of prescribed fire to manage ecosystems accounts for more than 50% of area
burned annually across the United States. Prescribed fire is carried out when meteorological
conditions, including temperature, humidity, and wind speed are appropriate for its safe and effective
application. However, changes in these meteorological variables associated with future climate
change may impact future opportunities to conduct prescribed fire. In this study, we combine climate
projections with information on prescribed burning windows for ecoregions across the contiguous
United States (CONUS) to compute the number of days when meteorological conditions allow for the
safe and effective application of prescribed fire under present-day (2006–2015) and future climate
(2051–2060) conditions. The resulting projections, which cover 57% of all vegetated area across the
CONUS, indicate fewer days with conditions suitable for prescribed burning across ecoregions of the
eastern United States due to rising maximum daily temperatures, but opportunities increase in the
northern and northwestern United States, driven primarily by rising minimum temperatures and
declining wind speeds.

More than a century-long history of fire suppression in the United States
has led to the accumulation of combustible vegetation, or fuel, particularly
in western forests that historically experienced frequent fire1,2. This fuel
accumulation, combined with climate change and an increase in
anthropogenic ignitions, has led to a substantial increase in catastrophic
wildfire activity that is expected to worsen over the next century3–5. Pre-
scribed fire is an important tool for mitigating wildfire risk by reducing
biomass and changing forest structure6–8. It also promotes long-term
stability in ecosystem carbon storage and ecological function9–11, restoring
and maintaining diversity in fire-adapted ecological communities6,12,13.
Prescribed fire can be applied across large areas at lower cost thanmanual
or mechanical fuel reduction methods, as well as in areas where topo-
graphy or restricted access limit mechanical fuel reduction14,15. In some
ecosystems, prescribed fire can also serve to mitigate the effects of carbon
dioxide emissions from wildfires by aiding in forest carbon
sequestration7,9,16. Furthermore, long-standing indigenous fire manage-
ment has shown that prescribed fire can mitigate climate-induced influ-
ences on wildfire17.

The majority of prescribed burning in the United States occurs in
southeastern ecosystems and tallgrass prairie, both characterized by short
fire return intervals18 (~80% of burn area nationwide). In these regions
public acceptance of prescribed burning is high, and prescribed fire is fre-
quently applied at the wildland urban interface19–21. Although the western
U.S. has a long history of advocacy for increased prescribed fire use by
organizations such as the United States Forest Service, Bureau of Land
Management, State Departments of Forestry, tribal coalitions, and the
Nature Conservancy4,22,23, the annual extent of prescribed fire has not
increased to meet objectives, remaining relatively stable since 19984. Pre-
scribed fire application in the West is complicated by steep topography,
heavy fuel loads, narrowburnwindowsdue to air quality regulations and the
absence offire crews (often elsewhereworking onwildfires)22. Fast changing
environmental conditions also lead to significant challenges24. For example,
recent prescribed fire escapes due to drier and windier than normal con-
ditions have led to devastating wildfires25.

Climate change is already having an impact on both wildfire and
prescribed fire through increasing temperatures and variability in
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precipitation, which contribute to drier fuels and seasonally increasing fuel
loads in some areas, making wildfires more severe and limiting prescribed
fire opportunities4,26–28. This impact is especially evident across the western
U.S. In Northern California, land managers cite narrow burn windows
related to meteorological and fuel conditions as the biggest impediment to
meeting prescribed burning objectives29,30. Research in California has
demonstrated declines in available burning conditions driven by changes in
relative humidity31. In the Southwest, persistent fuelmoisture deficits lead to
drought-stressed tree mortality32,33, adding low-moisture fuel and driving
extreme wildland fire behavior.

To date, themajority offire researchhas focusedonwildfire trends and
effects34,35. However, prescribed fires, which are intentionally ignited under
carefully chosen conditions (i.e. prescriptions) to achieve specific objectives,
require a different research approach34. Safe and effective application of
prescribed fire is only possible within prescription windows, or ranges of
meteorological and fuel conditions that enable low intensity fire and adhere
to air quality regulations36,37. Understanding how shifting weather patterns
change the availability of suitable prescription windows is paramount to
effectively identifying and leveraging available prescribed fire
opportunities4,38,39. Previous work has highlighted potential regional climate
impacts on available prescribed fire windows from increasing drought
conditions and temperature, as well as reduced fuel moisture and relative
humidity31,40,41. These previous studies applied uniform prescription ranges
to areas including California31, the southeastern US40, and the western US41,
thus not accounting for impacts of local variability in prescription ranges.
Hereweexamine the importanceof local-scale variability inprescriptionsby
using a combination of locally to regionally varying prescription window
information, landscape, and climate data to assess projected changes in
future prescribed fire opportunities due tometeorological conditions across
the CONUS (including the lower 48 states, excluding Alaska).

Results
Present-day prescribed fire opportunities in models and data
We evaluated present-day and future opportunities for prescribed burning
using a combination of prescriptions for 83 locations across the CONUS,
gridded observational climate data from the Gridded Surface Meteor-
ological (gridMET) Dataset42, statistically downscaled climate data from 18
climate and earth system models participating in the Coupled Model
Intercomparison Project version 5 (CMIP5)43, and fuels data from the
Landscape Fire and ResourceManagement Planning Tools (LANDFIRE)44.
We used these data to compute burn days for each Environmental Pro-
tectionAgency (EPA) Level II ecoregion45 by evaluating daily gridMETdata
andCMIP5 simulations for RCP8.5 against prescriptions that fall within the
EPA Level II ecoregion. Figure 1 compares average burn days for
2006–2015. Differences between the RCP scenarios are minimal for the
2006–2015 period, and differences between gridMET and CMIP5 are
consistent across RCPs, thus only a comparison against RCP8.5 is shown.
Both gridMET and CMIP5 produce the highest number of present-day
burn days in theWarmDeserts, Ozark/Ouachita-Appalachian Forests, and
Southeastern U.S. Plains (EPA ecoregions 10.2, 8.4, and 8.3 respectively).
More than 100 burn days per year are also observed in areas of the Mixed
Wood Plains (8.1) and Mediterranean California (11.1) in both datasets.
The downscaled CMIP5 models for both RCP scenarios overestimate
gridMET burn days overmuch of the CONUS, with small areas where burn
days are underestimated in northern and western portions of the South-
eastern USA Plains (8.3) and Ozark/Ouachita-Appalachian Forests (8.4),
western MixedWood Plains (8.1), western Cold Deserts (10.1) and central
Mediterranean California (11.1). Overestimates are largest in the northern
MixedWoodPlains (8.1), AtlanticHighlands (5.3),Mississippi Alluvial and
Southern USA Coastal Plains (8.5), West-Central Semi-Arid Prairies (9.3),
and the western portion of theWestern Cordillera (6.2), where they exceed
95 burn days per year. These large differences are most likely due to a
combinationofunderestimates ofwind speed andoverestimates ofRHmin in
areas of the CONUSwhich are larger than climate change induced changes
in2051–2060 (SupplementaryFigures3 and4).Wind speeddifferencesmay

be exacerbated by the different treatment of wind speeds among the two
datasets. While MACA downscaling of the CMIP5 model output employs
an analog approach that attempts to proxy atmospheric dynamics by
assuming that similar patterns in weather have reasonably consistent sets of
physical forcings46, gridMETwinds are interpolated to 4 km grid resolution
from coarser-scale reanalysis data42. Since constraints associated with fuel
condition and smoke transport are not included in our analysis, both
gridMET and CMIP5 results likely present an overestimate of available
burn days.

Future trends in prescribed fire opportunities
We have evaluated differences in burn days between present-day
(2006–2015) and future conditions (2051–2060) for both RCP scenarios,
as well as the difference in burn days in 2051–2060 between RCP4.5 and
RCP8.5 using a small sample t-test in combination with controlling the
FDR. Results are summarized in Fig. 2. Figure 2a shows differences between
2006–2015 and 2051–2060 for the RCP4.5 scenario. We see a decrease in
burn days across much of the southeastern and eastern US, as well as
portions of theWarmDeserts (10.2), westernMixedWood Plains (8.1) and
westernmost areas of the Western Cordillera (6.2). Smaller areas of
increasing burn days can be seen primarily across the westernUS, including
in the Mediterranean California ecoregion (11.1), the Cold Deserts (10.1)
WesternCordillera (6.2) andWest-Central SemiaridPrairies (9.3). Stippling
indicates statistically significant differences, which are found in the south-
eastern US, Mediterranean California (11.1), Cold Deserts (10.1) and por-
tions of theWesternCordillera (6.2). For theRCP8.5 scenario, differences in
burn days between the present and mid-century increase in magnitude
relative to RCP4.5, but their spatial distributions are consistent. Figure 2b
shows larger areas of statistical significance, related to the larger magnitude
of differences. The largest increase in magnitude is seen across the south-
easternUS,wheredecreases in burndaysnearly double (Fig. 2c).Wealso see
an increase in the increase in burn days in Mediterranean California (11.1;

Fig. 1 | Number of days available for prescribed burning under present-day
climate conditions. Burn day calculation based on (a) gridMET observational data
and (b) the average of 18 MACA-downscaled CMIP5 models for the
RCP8.5 scenario. c shows the difference between the RCP8.5 and gridMET burn
days. Black lines represent ecoregion boundaries. Gray areas are regions where no
prescription information is available.
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statistically significant), and in theWest-Central Semiarid Prairies (9.3; not
statistically significant).

Impacts of individual climate drivers on future changes in avail-
able burn days
Burn days were computed by evaluating climate data against four different
constraints: minimum temperature (Tmin), maximum temperature (Tmax),
minimum relative humidity (RHmin), and daily average wind speed (WS).
Next, we considered how much each of these individual constraints on its
own limits the availability of burn days and drives changes in burn days
between the present day and themid-century.We calculated burn days due
to each individual climate variable alone (Fig. 3), as well as for all but one
climate variable at a time (Supplementary Figure 5). The following discus-
sion focuses on the results presented in Fig. 3.

Wind is the strongest overall constraint on burn days (Fig. 3j) and is
projected to decrease over much of the CONUS in RCP4.5. Greater
reductions are found over the western CONUS in RCP8.5, with patches of
both increases and decreases of the same magnitude across the eastern
United States (Supplementary Fig. 4). As a result of decreasing WS, burn
days are projected to increase by 5 to 10 days in most locations across the
CONUS inRCP4.5, except in areaswithin the SoutheasternU.S. Plains (8.3)
and Ozark/Ouachita-Appalachian Forests (8.4), where increases can reach
up to 20days (Fig. 3k). InRCP8.5 burndays increases are stronger relative to
RCP4.5 in the West-Central Semiarid Prairies (9.3). Wind speeds increase
and burn days decrease as a result by approximately 5 days within the
Southeastern U.S. Plains (8.3) and Ozark/Ouachita-Appalachian Forests
(8.4) (Fig. 3l). Significant uncertainties are associated with wind projections
in climate models47,48.

Fig. 2 | Multi-model mean difference in the number of burn days. a shows the
difference between 2006–2015 and 2051–2060 for RCP4.5, (b) between 2005–2015
and 2051–2060 for RCP8.5, and (c) between RCP4.5 and RCP8.5 for 2051–2060.
Stippling shows areas where differences are statistically significant after controlling
for the FDR.

Fig. 3 | Burn opportunities due to individual cli-
mate variables. 2006–2015 values for RCP8.5 (left)
are compared against changes from 2006–2015 to
2051–2060 for RCP4.5 (center) and RCP8.5 (right).
Climate variables include minimum temperature
(a–c), maximum temperature (d–f), minimum
relative humidity (g–i) and wind speed (j–l).
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Both Tmin and Tmax provide a strong constraint on present-day burn
days in the Western Cordillera (6.2), Mediterranean California (11.1),
MississippiAlluvial and SoutheasternUSACoastal Plains (8.5; Fig. 3a, c). In
addition,Tmin is also a strong constraint in theMixedWoodShield (5.2) and
Upper Gila Mountain (13.1) ecoregions. In the other ecoregions, burn days
as a result of temperature alone remain above 200 days per year (Fig. 3a, d).
All climatemodels project temperature increases of up to 3 °C for bothTmax

and Tmin across the CONUS between the present day and mid-century
(Supplementary Figures 1, 2). These increases lead to an increase in burn
dayswhen low temperatures thatwerepreviously below theTmin limit rise to
become in prescription (Fig. 3b, c), and fewer burn days when temperatures
rise above the Tmax constraint (Fig. 3e, f). Thus, maximum temperatures
rising above the local Tmax constraints lead to fewer burn days everywhere,
and minimum temperatures rising above the Tmin constraint everywhere
result in an increase in burn days. For RCP4.5 theTmax constraint decreases
burn days by between 10 and 30 days, with the strongest decreases in the
eastern US. For RCP8.5 decreases exceed 30 days nearly everywhere, except
for the southern portion of Mediterranean California (11.1). Increases in
burn days related to Tmin increases are largest in the western and northern
US for both RCP scenarios. They are approximately 20 to 25 days for
RCP4.5 and increase above 30 days for RCP8.5.

Minimum relative humidity is the overall weakest constraint on burn
days. Minimum relative humidity limits burn days primarily in the South-
Central Semiarid Prairies (9.4), and to a lesser extent in parts of theWestern
Cordillera (6.2) and southernMediterraneanCalifornia (11.1).RHmin is not
a significant constraint in the remaining ecoregions, where it allows for

between 250 and 365 burn days (Figs. 3e and 4e). Under climate change,
dailyminimumrelative humidity in themulti-modelmean decreases across
much of the United States by up to 3%, with a small increase below 1% for
limited areas along theCalifornia coast and in the southeastern corner of the
West-Central Semiarid Prairies (Supplementary Figure 3). This widespread
decrease is associated with decreases in available burn days predominantly
in the West-Central Semiarid Prairies (9.3), Rocky Mountain region of the
Western Cordillera (6.2), the South-Central Semiarid Prairies (9.4), and
Mixed Wood Shield (5.2; Fig. 3h, i). These decreases are below 10 days for
RCP4.5 but increase to up to 20 days in areas of theWest-Central Semiarid
Prairies (9.3) in RCP8.5.

Seasonal variability in available burn days
The results presented above focused on annual multi-model averages.
However, seasonality plays an important role in how different climate dri-
vers move days in and out of prescription. Figures 4 and 5 highlight how
present and future seasonal climate variations impact burn days for indi-
vidual locations representative of six ecoregions for RCP4.5 and RCP8.5,
respectively. The locations were selected to capture the range of ecosystems
and results (overall increases vs. decreases in burn days). The annual cycle of
climate variables, including Tmin, Tmax, RHmin, and WS, for individual cli-
mate models is shown in columns 1 through 4. Column 5 shows the
monthly multi-model mean change in burn days between the present day
and future. All climate models project an increase in both minimum and
maximum temperature throughout the year, which leads to an increase in
burn days during the winter and shoulder seasons and a decrease in burn

Fig. 4 | Annual variability of climate constraints for RCP4.5 CMIP5 simulations.
Data from 18 models is shown, with each line representing one model. Columns
represent Tmin, Tmax, RHmin, and WS (purple: 2006–2015, orange: 2051–2060), as
well as model-average change in burn days between present day and future climate

per month. Rows represent six sites in different ecoregions where different climate
variables drive change in burn days. Prescription bounds are indicated by gray
shading and black lines. Values within the gray shading are in prescription. Values
that fall outside the gray shading are not in prescription.
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days during the summer. Changes in relative humidity and wind speed
exhibitmuchmore inter-model variability than temperature. Clear climate-
related trends are not observed for relative humidity, which is a weak
constraint on burn days in general, as it falls within the prescription bounds
almost entirely, except for the Chaparral site in Mediterranean California
(11.1), where it is below the prescription bound from July toOctober.Wind
provides the strongest constraint for the Garrison site in the West-Central
Semiarid Prairies (9.3), where it is only within prescription for a few days
throughout the year. For the White Mountain National Forest in the
AtlanticHighlands (5.3), Santa FeNational Forest in theWesternCordillera
(6.2), and Silver Lake National Forest in the Cold Deserts (10.1), wind is a
constraint on burn days during thewinter and shoulder seasons. It is a weak
constraint during the winter and spring for the Chaparral site and Brown
Springs.Wind speeddecreases from2006–2015 to 2051–2060 at threeof the
six sites (WhiteMountain, Silver Lake, and Chaparral), while increasing for
Brown Springs. The wind speed decreases contribute to increasing burn
days during the winter and shoulder seasons, while wind speed increases
have the potential to contribute to decreasing burn days during the summer
only at the White Mountain site. At Silver Lake, and for the Chaparral site,
wind speeds are well below the prescription threshold during the summer
for both present and future decades.

Discussion
As temperature and variability in precipitation increase with climate
change, contributing to drying fuels and fuel build-up, we are already

observing more severe wildfires and limitations on prescribed fire
opportunities26–28. Rising maximum temperatures and declining
moisture will continue to limit burning, especially in the Southeastern
U.S. However, in many areas of the Western U.S., projected rising
minimum temperatures and decreasing wind speeds present opportu-
nities to expand prescribed fire application. In general decreasing burn
days are projected during the summer, while burn days increase during
the shoulder seasons.

Several caveats are important to note when considering the results
presented here. First, while themeteorological factors we have examined do
play an important role in safe application of prescribed fire, they provide
only a first-order limit on burn days. For instance, we have not considered
wind direction and atmospheric stratification, which are important con-
straints that govern smoke transport. However, smoke transport con-
siderations are inherently local in nature, and relate to the location of the
prescribed burn in relation to populations and surrounding topography. It
would not be possible to consider smoke transport beyond the individual
location for which prescriptions were originally developed. Fuel type and
moisture content are equally important constraints, but adequate repre-
sentations cannot be obtained from climate model projections. Fuel
moisture is not an output in CMIP5 models, and fuel types are assumed
static over time throughout the simulations we have analyzed, while we
expect vegetation to change as a result of evolving climate conditions49. We
acknowledge that as a result the specific numbers of burn days we present
here are likely positively biased.

Fig. 5 | Annual variability of climate constraints for RCP8.5 CMIP5 simulations.
Data from 18 models are shown, with each line representing one model. Columns
represent Tmin, Tmax, RHmin, and WS (purple: 2006–2015, orange: 2051–2060), as
well as model-average change in burn days between present day and future climate

per month. Rows represent six sites in different ecoregions where different climate
variables drive change in burn days. Prescription bounds are indicated by gray
shading and black lines. Values within the gray shading are in prescription. Values
that fall outside the gray shading are not in prescription.
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Finally, the availability of prescription information is not homogenous
across our study area, with some ecoregions which cover a relatively small
percentage of the CONUS featuring several prescriptions (e.g. ecoregion
5.2), while others cover larger areas, but have only one prescription (e.g.
ecoregion 9.3, and 10.2).

Given these limitations, our results nonetheless strongly suggest
that climate change will have an impact on prescribed burn opportu-
nities that is dependent on the amount of future greenhouse gas
emissions and resulting climate change, highly spatially variable, and
driven by different aspects of climate change in different regions.
Understanding and anticipating regional changes presents opportu-
nities to adapt prescribed fire operations, policies that control its use,
and long-term planning for ecological changes that will result from
climate-fire interactions. It will be critical for researchers andmanagers
to prepare for adaptation by exploring the edges of current burn pre-
scriptions and increasing the rigor of ecological monitoring for desired
and unanticipated outcomes34. As prescribed fire practice adapts to
future conditions, it will become important to explore presently unu-
tilized and novel conditions and consider seasonally expanding burn
windows. Additional assessments of risk tradeoffs, such as smoke
management concerns with nighttime ignitions versus margins for
containing prescribed fire and heat stress on crews during daytime, will
also gain importance. Future research and development of modeling
tools that enable prescriptions to evolve to accommodate this kind of
flexibility in policy and planning would be of great value. Finally, the
ecological changes that accompany changing fire regimes in a future
climate must be incorporated into long-term fire management and
planning.

Methods
Data
Prescriptions are ranges of environmental conditions, including atmo-
spheric temperature, relative humidity, and wind speed, that are considered
safe for the application of prescribed fire at the individual sites for which
prescriptions were developed. They are listed in prescribed fire plans issued
by land management agencies planning and conducting prescribed burns.
We collected prescribed fire plans for 83 locations across the CONUS from
landmanagement agencies including U.S. National and State Park Services,
the U.S. Forest Service, U.S. Fish &Wildlife Service, U.S. Air Force, and the
Coalition of Prescribed Fire Councils. We used minimum and maximum
temperature, minimum and maximum wind speed, and minimum relative
humidity in our analysis.We excludedmaximum relative humidity because
the maximum relative humidity values in the climate data we use occur at
night, when prescribed fire operations are currently not, or very rarely,
conducted. Rather the maximum relative humidity values listed in pre-
scriptions refer to the daytime values that might be encountered during
operations. Since nighttime values are significantly higher, maximum rela-
tive humidity would erroneously exclude most days from being suitable for
burning. Some prescribed fire plans list broader required and more narrow
desiredparameter ranges. In these cases,weused thebroader required ranges
in our analysis.Other documents list ranges for lowversus high-intensityfire
behavior. In these cases, we used the low end of the low fire intensity range,
and the high end of the high fire intensity range. Prescriptions typically also
included fuel type and fuel moisture values. Fuel type was used to associate
individual prescriptions to other locations with the same fuel type within
areaswith generally similar ecosystems. Todefine the extent of these regions,
we used the EPA Level II ecoregion boundaries45 (Fig. 6). Fuel type

Fig. 6 | EPA Level II ecoregions and locations of
prescription window data. Ecoregions are repre-
sented by different color fill. Black stars indicate
locations of prescription data.
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information was obtained from Scott and Burgan Fire Behavior Fuel
Models50 available for the CONUS as part of LANDFIRE. While pre-
vious studies have evaluated viable burn days regionally considering
spatially uniform ranges of prescription parameters31,40,41, we have
chosen to explicitly treat the spatial heterogeneity of prescriptions in this
analysis. Figure 7 shows the ranges of the meteorological variables we
consider for each EPA Level I ecoregion. We see large variability across
ecoregions, with several instances of non-overlapping ranges (e.g. Tmin

and Tmax for ecoregions 9, 13, and 15, or WSmax for ecoregions 11, 13,
and 15) as well as large variability within those ecoregions that contain
several prescriptions (Fig. 7).

We used two different climate datasets to evaluate burn days,
including present-day (2006–2015) data from gridMET42 at 4 km hor-
izontal resolution and climate data from 18 CMIP5 models (Supple-
mentary Table 1) for two future climate scenarios. We considered the
mid-range Representative Concentration Pathways 4.5 (RCP4.5)
scenario46,51 which stabilizes radiative forcing from greenhouse gas
emissions, and the RCP8.5 scenario52, characterized by comparatively

high greenhouse gas emissions.We analyzed CMIP5 data for the present
day (2006–2015) and future (2051–2060). The mid-century future
period of 2051–2060 was chosen because CMIP5 models do not project
vegetation change in response to a changing climate. Thus, considering
the end of the century would have larger uncertainties in terms of future
vegetation distribution associated with it. CMIP5 data has been statis-
tically downscaled to a 4 km horizontal resolution using Multivariate
Adaptive Constructed Analogs (MACA)53.

Burn day calculation
To apply the prescription information available to us to as large of an
area as possible while maintaining the spatial heterogeneity of pre-
scription ranges, we first extended the locations to which the pre-
scription information can be applied by associating each prescription
with an EPA Level II ecoregion. 16 of the 21 ecoregions across the
CONUS contain one or more prescriptions (See Fig. 6 and Table 1).
Within each EPA ecoregion boundary, prescriptions were then com-
pared against the Scott and Burgan fuel model data from LANDFIRE. If
the LANDFIRE fuel matched at least one fuel type listed in a pre-
scription for the ecoregion, the prescription was applied to the grid cell.
LANDFIRE Scott and Burgan data covers the CONUS at 30 m resolu-
tion. To match the climate data resolution of 4 km, we coarsened the
LANDFIRE data using the mode of the fuel model. Additionally, some
prescriptions list fuel types as Scott & Burgan fuel models, while others
use Anderson fuel models.We converted Anderson to Scott and Burgan
classifications by choosing fuel models that produce a similar fire spread
rate50 (see Table 2). If two or more prescriptions listing the same fuel
types fell within one ecoregion, we used the prescription closest to the
LANDFIRE grid cell. To identify the closest prescription, we used the
Haversine formula for calculating distance on a sphere. This approach
allowed us to expand data coverage to 57% of vegetated areas within
the CONUS.

For each ecoregion, we looped over all 4 × 4 km grid cells where pre-
scription information was available and evaluated the prescription against
climatedata for that grid cell todeterminewhether conditionsonagivenday
are safe for burning or not. Using daily minimum and maximum tem-
perature andwind speed, andminimumrelativehumidity,we counted aday
as a burn day if temperature, wind speed, and RH values all fell within the
prescription’s ranges. If one or more of the climate variables fell outside of
prescribed ranges, the day was not counted as a burn day. We repeated this
process for years 2006 to 2015, and years 2051 to 2060, for both RCP4.5 and
RCP8.5 projections. Annual burn days for the 10 years were then averaged.
We also evaluated the role of individual meteorological variables as con-
straints by repeating this analysis with only one variable at a time, while
assuming that all other variables are in prescription.Without the individual
constraints, the number of burn days would be equal to 365 everywhere.
Thus, the fewer burn day result, the stronger the constraint that the specific
meteorological variable provides.

Statistical analysis
We evaluated the statistical significance of the differences between the
number of burn days in the present day and the mid-century, as well as
between RCP scenarios, using a small sample t-test for the difference
between twomeans at a 95% significance level.We further accounted for the
multiple hypothesis testing problem by controlling the false discovery rate
(FDR)54,55, and only considered differences statistically significant that the
FDR procedure deemed significant. The FDR procedure sortsN hypothesis
tests with p values in ascending order and determines a threshold value,
p*FDR, such that we reject any p values greater than p*FDR according to
Eq. (1):

p�FDR ¼ max
i¼1;...;N

p ið Þ : p ið Þ ≤ i=N
� �

αFDR

h i
ð1Þ

  

min
max

min
max

RHmin

Fig. 7 | Ranges of prescriptions grouped by EPA Level I ecoregion. a minimum
and maximum temperature, (b) minimum and maximum wind speed, and (c)
minimum relative humidity. Prescription ranges highlight strong variability across
as well as within ecoregions. The box-plot center lines represent the median of all
prescriptions within the Level 1 ecoregion, the box limits represent the upper and
lower quartiles, and the whiskers extend from the box to the farthest data point lying
within 1.5x the interquartile range from the box.
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Data availability
Climate and landscape data are freely available. Downscaled MACA data
can be obtained at https://climate.northwestknowledge.net/MACA/ and
LANDFIRE data is available at https://landfire.gov/fbfm40.php. Prescrip-
tionwindow information ismade available via github at https://github.com/
ajonko/RxFire.

Code availability
Analysis code is available via github at https://github.com/ajonko/RxFire.
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