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Exceptional multi-year prediction skill of the Kuroshio
Extension in the CESM high-resolution decadal prediction
system
Who M. Kim 1✉, Stephen G. Yeager 1, Gokhan Danabasoglu1 and Ping Chang 2

The Kuroshio Extension (KE) has far-reaching influences on climate as well as on local marine ecosystems. Thus, skillful multi-year to
decadal prediction of the KE state and understanding sources of skill are valuable. Retrospective forecasts using the high-resolution
Community Earth System Model (CESM) show exceptional skill in predicting KE variability up to lead year 4, substantially higher
than the skill found in a similarly configured low-resolution CESM. The higher skill is attained because the high-resolution system
can more realistically simulate the westward Rossby wave propagation of initialized ocean anomalies in the central North Pacific
and their expression within the sharp KE front, and does not suffer from spurious variability near Japan present in the low-
resolution CESM that interferes with the incoming wave propagation. These results argue for the use of high-resolution models for
future studies that aim to predict changes in western boundary current systems and associated biological fields.
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INTRODUCTION
The Kuroshio Extension (KE) is the offshoot of the Kuroshio – the
western boundary current of the North Pacific (NP) subtropical gyre –
that flows eastward as an inertial jet after separating from the east
coast of Japan around 35°N. KE transports warm tropical and
subtropical waters at a rate of about 100 Sv1 (1 Sv≡ 106 m3 s−1) and
provides heat and moisture to the mid-latitude atmosphere through
intense air–sea interactions2–4. KE exhibits multi-scale variability in
both time and space, from intraseasonal-to-seasonal, small-scale
variability associated with mesoscale eddies and meanders5–7 to
decadal, large-scale variability associated with its meridional shifts or
changes in strength6,8. This multi-scale variability can have substantial
impacts on climate from local to remote regions, e.g., the west coast
of the United States2–4,9–13 and on local marine ecosystems14–16.
Therefore, skillfully predicting KE variability is a scientifically and
societally important challenge.
Both observational and modeling studies show distinct decadal

variability in KE. The sea surface height (SSH) field derived from
satellite altimeter reveals bimodal – stable and unstable – regimes
of the KE6. These regimes reflect fluctuations between strength-
ened and weakened KE states associated with northward and
southward meridional shifts of KE, respectively6. This decadal KE
variability is evident in the satellite-derived SSH data available for
the last three decades6,7,17. The decadal KE variability has been
reasonably reproduced in forced ocean simulations constrained at
the surface by atmospheric reanalysis products18,19.
It is well established by numerous previous studies that the

decadal KE variability arises from the westward propagation of
first baroclinic mode Rossby waves, generated in the central NP
through Ekman pumping by wind stress curl (WSC) forcing8,18–21.
Predictions based on idealized models suggest that KE can be
predicted several years in advance due to well-known properties
of Rossby wave propagation17,20. Initialized ocean-only retro-
spective forecasts under climatological surface forcing also
suggest potential multi-year predictability of KE for the same

reason22. However, it has not been examined whether the decadal
KE variability can be predicted on multi-year timescales in more
comprehensive, fully coupled prediction systems until very
recently. Specifically, a study based on a newly developed decadal
prediction system (GFDL-SPEAR23) shows skillful multi-year
prediction of KE24, in agreement with previous studies based on
simpler models. This study again connects the source of the skill to
Rossby wave propagation. However, this system uses a low-
resolution ocean model (~1° horizontal resolution), which cannot
resolve the mesoscale eddies and fronts associated with KE that
may be essential for KE dynamics6,21,25,26 and thus KE prediction.
Studies based on a dynamical framework, so called “thin-jet”

theory21,25, suggest that the narrow meridional structure of KE is
essential to the dynamics of the decadal KE variability as Rossby
waves are trapped and guided by the sharp KE front. The narrow
KE front can only be realistically simulated in ocean models that
resolve eddies and frontal scales27. However, utilization of such
high-resolution ocean models may not necessarily guarantee
better prediction skill of KE as they also invigorate intrinsic ocean
variability associated with mesoscale eddies. Indeed, eddy-
resolving ocean simulations show intrinsic interannual to decadal
KE variability under climatological forcing18,28. This intrinsic
variability appears to complicate prediction of KE variability on
interannual and shorter timescales29. However, recent studies
suggest that decadal-scale eddy activity around the KE axis is
paced, together with large-scale KE variability, by remote wind
forcing18,30,31. Thus, skillful decadal prediction of KE might be
achievable in high-resolution models even without accurate
initialization of ocean eddies.
In this study, we investigate the predictability of KE and the

source of its predictability from an ensemble (10 member) forecast
set using the Community Earth System Model version 1 (CESM1)
High-Resolution Decadal Prediction (HRDP) system32 (see Methods
for details) that can resolve mesoscale eddies at latitudes around
the KE axis33. The predictability from HRDP is compared to that
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from a companion low-resolution ensemble (40 members)
forecast set using the CESM1 Decadal Prediction Large Ensemble
(DPLE) system34 (Methods). As will be demonstrated below, HRDP
shows exceptional multi-year prediction skill of KE, substantially
better than that of DPLE.

RESULTS
Predictability of KE
Both HRDP and DPLE are initialized with ocean states from a pair
of forced ocean–sea-ice simulations (FOSIs) that use the same
ocean and sea-ice models as in the coupled prediction simulations
(referred to as FOSI-L and FOSI-H for low- and high-resolution,
respectively), constrained only at the surface by atmospheric
reanalysis products (“Methods” section). To assess the fidelity of
FOSIs, we first examine if the observed decadal KE variability is
reasonably reproduced. The observed variability is often inferred
from satellite-derived SSH, averaged over a KE region near Japan6.
However, because the KE latitudinal position is biased in the
models, most notably in the low-resolution models, it is difficult to
define a common KE domain that is suitable for both observations
and model simulations. To overcome this difficulty, we first define
the observed Kuroshio Extension index (KEI) from altimeter SSH
data by averaging over a domain identified based on the sum of
the first two empirical orthogonal functions (32.5°–36°N,
142°–154°E; Fig. 1a), both of which show pronounced decadal
variability in their principal components. This KEI domain also
largely encompasses the region where the total interannual
variance is largest (Supplementary Fig. 1). The observed KEI shows
a distinct decadal oscillation with peaks (troughs) during the early
2000s and the early to mid 2010s (mid to late 1990s and 2000s;
Fig. 1b), consistent with previous studies7,17.
Simulated KEIs are defined from FOSIs by averaging over the

respective regions where the correlations with the observed KEI
are the highest (Fig. 1c, d). Both FOSIs show the highest
correlations along the climatological KE, that is, where the
climatological SSH gradient is the largest. However, because of
the broader meridional KE extent in FOSI-L than in FOSI-H (only
the latter shows a comparable meridional KE extent to that
observed), the high correlations also span a broader region in
FOSI-L. We note that, although the positions of the KEI domains
differ between FOSI-H (33°–36°N, 140°–156°E) and FOSI-L
(35.5°–38.5°N, 142°–158°E), the latitudinal and zonal extents of
the domains are identical. As expected, KEIs from both FOSIs are
highly correlated (r ~ 0.8) with the observed KEI (Fig. 1b). Although
the phase of the KEI variability in FOSI-L reasonably matches the
observed KEI, its amplitude (σ= 3.8 cm) is much weaker than the
observed amplitude (σ= 10.3 cm), which is more comparable to
that of FOSI-H (σ= 9.8 cm).
The KEI is computed from each ensemble member of HRDP and

DPLE by averaging over the same domain as FOSI-H and FOSI-L,
respectively. Anomaly correlation coefficients (ACC) of the
ensemble average KEI from DPLE and HRDP (Supplementary Fig.
2) are computed against the KEI from respective FOSIs for the
period of 1987–2017 and against observed KEI for the period of
1993–2017 as a function of lead year (LY) in Fig. 2. HRDP reveals
high ACCs against both FOSI-H and observations with significant
(95% confidence level) scores up to LY 4, and substantially higher
scores than the persistence forecast through LY 5. Even at LY5,
ACC from HRDP remains quite high (0.4–0.5) against both FOSI-H
and observations. This exceptional skill is also readily deducible
from the time series of KEIs (Supplementary Fig. 2a–d). In contrast,
DPLE shows relatively poor skill, always lower than the skill of
HRDP, in predicting both FOSI-L and observed KEIs. ACC against
FOSI-L is significant through LY 2, but rapidly drops from LY 2 to 4
(Fig. 2a). Significant skill of DPLE against the observations is only
found for the first year. We account for differences in ensemble

size between HRDP and DPLE by considering the distribution of
ACC from randomly subsampled 10-member DPLE (blue shading
in Fig. 2; “Methods” section). ACC from HRDP is always above the
upper limit of the subsampled DPLE range, except at LY 1 against
the observations, suggesting that the higher skill of HRDP is
unlikely to arise by chance. While the skill of HRDP is higher than
that recently reported using GFDL-SPEAR24, the skill of DPLE (with
resolution comparable to that of GFDL-SPEAR) is noticeably lower.
The HRDP skill is also higher than that obtained using a linear
reduced gravity model17 where forcing is only wind-driven Ekman
pumping (implying less contamination of the predictable signal by
other forcings and processes).

Source of skill
Previous studies emphasize the westward Rossby wave propaga-
tion induced by WSC forcing in the central NP as the primary
source of predictability of KE17,18,20,22,24. In FOSI-H, lead-lag
correlation maps of annual-mean SSH onto its KEI (Fig. 3a)
suggest a westward propagation of SSH anomalies from the
central NP (lag −3 and −2) to near Japan (lag 0 and 1) over
roughly a 3-year time span. The initial SSH anomalies show a
broad meridional extent roughly between 30° and 40°N in the
central NP (lag −3 and −2), which then converge into the KE front
once they reach west of 160°E (lag −1 through 1). This spatial
pattern and the timescale of propagation are in good agreement
with those from observations (Supplementary Fig. 3). In contrast,
although there is an indication of the westward propagation of
SSH anomalies, it is less obvious in FOSI-L (Fig. 4a) with a pre-
existing anomaly near Japan at lag −2 and a sustained or even
eastward propagating anomaly in the eastern NP at later lags.
Also, there is no meridional concentration of the SSH anomalies
toward the west, as might be expected from the coarse resolution
of the ocean model.
The nature of the westward propagation in FOSI-H and

observations is more evident in lead-lag correlations in the time-
longitude plane of monthly-mean SSH averaged over the
respective KEI latitudes onto each monthly-mean KEI (Fig. 5a, b).
The SSH anomalies from both FOSI-H and observations take about
3 years to travel from around 160°W to the western boundary. In
contrast, the westward propagation of SSH anomalies in FOSI-L
appears to take only ~1 year, which is too fast to be considered as
long Rossby wave propagation (Fig. 5c). Figure 5 also shows WSC
correlations for FOSIs averaged over the same latitudes as SSH. In
FOSI-H, negative WSC anomalies are found over the positive SSH
anomalies in the central NP (negative lags), which is consistent
with Ekman pumping that can generate westward propagating
Rossby waves. Also, the WSC anomalies appear to march
westward in tandem with positive SSH anomalies as far west as
160°E. This suggests a possible coupled feedback between the
ocean and the atmosphere during the westward propagation of
SSH anomalies that can maintain or even enhance the SSH signal
on its way to the western boundary. In contrast, WSC anomalies in
FOSI-L are not well aligned with and precede by about a year the
SSH anomalies. Together with the too fast propagating signal, this
suggests that Rossby wave propagation may not be the dominant
mechanism that gives rise to KE variability in FOSI-L.
We explore whether Rossby wave propagation is the relevant

predictability mechanism in the retrospective forecasts by perform-
ing lead-lag correlations as done for FOSIs, but across lead years
(Figs. 3b, 4b). The purpose of this analysis is to find the source of the
predicted KE variability. Therefore, we use KEIs from FOSIs as the
independent variable, instead of KEIs from the retrospective
forecasts. Because the ACC analysis suggests that both retrospective
forecasts have some skill in predicting KEI from FOSIs at LY 3 (Fig. 2),
although the skill is not statistically significant in DPLE, we compute
the simultaneous correlation at LY 3, then the lead-lag correlations
are computed across lead years. Specifically, SSH from the
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retrospective forecasts leads KEI from FOSI by 1 and 2 years at LY 2
and LY 1, respectively, and lags by 1 year at LY 4. We note that
choosing either LY 2 or LY 4 for the lag-0 correlations gives very
similar results. Indeed, the correlation maps from HRDP suggest that
the westward propagating SSH signal from the initialized SSH
anomaly in the central NP (LY 1 in Fig. 3b), which should be
consistent with an anomalous state in FOSI-H between lag −3 and
−2, leads to significant skill in predicting KEI at LY 3–4. The
spatiotemporal evolution of the SSH anomalies is strikingly similar
between FOSI-H and HRDP, including the convergence of anomalies
into the KE axis (LY 3–4). The correlation maps from DPLE, however,
do not clearly show a propagating SSH signal (Fig. 4b) and do not
match well those of FOSI-L (Fig. 4a). Although there is an indication
that some skill of the KEI prediction at LY 3 in DPLE is associated
with an earlier SSH anomaly in the central NP (LY 1–2), it is not clear
if the signal is propagating westward. In particular, an SSH anomaly
exists just south of KE at LY 1, thus some of the KEI prediction skill at
LY 3 may simply arise from this local source.
The source of predictability is further explored by focusing on

individual events of the KE variability from the retrospective
forecasts. KEI from the observations and FOSIs all show a well-
defined positive peak in the early 2000s (Fig. 1). We trace the
monthly SSH anomalies averaged over KEI latitudes from the
retrospective forecasts initialized on 1 November 1998 as a
function of lead time (Fig. 6b, d) and compare to the same SSH

anomalies from respective FOSIs (Fig. 6a, c). In FOSI-H, a positive
SSH anomaly is initially located in the central NP, then propagates
westward and appears to be related to the positive KEI peak in
2002–2003 (Fig. 6a). This progression of the SSH anomaly is in
good agreement with observations (Supplementary Fig. 4a). The
HRDP retrospective forecast ensemble initialized from the state of
FOSI-H on 1 November 1998 exhibits a close match to FOSI-H
(Fig. 6b). Although the amplitude of the anomaly is weaker (likely
due to ensemble averaging), HRDP reveals a westward propagat-
ing SSH signal through lead time that likely contributes to the
predicted KEI peak at LY 4–5 (corresponding to 2002–2003). Thus,
this HRDP result supports the mechanism of westward Rossby
wave propagation leading to the high KEI skill score.
While a similar initial SSH anomaly exists in the central NP in both

FOSI-L and DPLE, it does not propagate westward and lead to the KEI
peak in 2003–2004 present in both observations and high-resolution
simulations (Fig. 6c, d). Instead, the KEI peak in 2001 appears to be
independent of the anomaly in the central NP, which largely remains
at the same longitude. We have also traced the negative KEI peak in
the late 2000s and found indications of westward propagating
signals in the coarse-resolution simulations (Supplementary Fig. 5c,
d), similar to the observations (Supplementary Fig. 4b) and the high-
resolution simulations (Supplementary Fig. 5a, b). However, this
signal is much weaker. It is also interesting to note that FOSI-L shows
positive anomalies near the western boundary in 2007 to 2009,

Fig. 1 Definitions of the KEI. a Sum of the first two EOFs (using the annual time series), which together explain 36% of the total variability, of
SSH from satellite altimetry. b Time series of the KEIs from the satellite altimetry (black), FOSI-H (red), and FOSI-L (blue) averaged over the
boxed regions in a, c, and d, respectively. c Correlation maps of SSH from FOSI-H against the observed KEI. d Same as in c, but for FOSI-L. The
dark gray contours in a, c, and d are the climatological SSH in each dataset with contour intervals of 15 cm. Note that the global average is
removed from satellite altimetry SSH to be consistent with the definition of SSH in the models.
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which do not exist either in the observations or FOSI-H, that appear
to overpower the signal propagating from the east. These positive
anomalies are not predicted in DPLE, thus the westward propagating
signal may contribute to a skillful prediction of the observed negative
peak at the right timing.
Several previous studies have proposed air-sea coupled feedbacks

as a mechanism involved in generating the quasi-oscillatory, decadal
variability of KE13,17,35,36. A possible coupling is also suggested in our
analysis from FOSI-H (Fig. 5b). Given the high horizontal resolution of
HRDP, which can invigorate air-sea coupling compared to the low-
resolution DPLE32, it is possible that the higher predictive skill in
HRDP may be associated with predicted feedbacks from the
atmosphere. Figure 7a shows lead-lag regression maps from FOSI-
H of winter (January to March) sea surface temperature (SST;
shading) and SLP (contours) onto KEI. The SLP regressions show a
meridional dipole anomaly resembling the North Pacific Oscillation19

(NPO) – the second most dominant mode of atmospheric variability
in the NP sector37 – at lag −3. The positive SLP anomaly in the mid-
latitudes corresponds to negative WSC anomalies in the central to
eastern NP that can generate Rossby waves (Fig. 5b). The positive
SLP anomaly extends to the west through lag −1 along with the
SSH anomaly, consistent with the WSC anomaly (Fig. 5b). At the
same time, the center of the SLP anomaly also moves northeastward
to the west coast of Canada (lag −3 to lag −1) and then to the Gulf
of Alaska (lag 0 to lag 2). By this time, a negative SLP anomaly
emerges in the central NP, suggesting a phase reversal of the NPO.
This counter-clockwise procession is consistent with previous
studies13,35 that propose this procession as evidence of a coupled
feedback between KE and the atmosphere that maintains the quasi-
decadal variability in the NP. The phase reversal of the NPO is also
associated with a tropical SST anomaly that resembles central Pacific
El Niño-Southern Oscillation (CP-ENSO) that is of opposite sign to the
initial tropical Pacific SST anomalies (cf. lags −3 and +1). Therefore,
it is possible that the decadal variability of KE is phased by
atmospheric teleconnections triggered by the CP-ENSO anomalies,
as suggested by other studies36,38.
Whether the atmospheric forcing reflects a coupled feedback

within mid-latitudes or from the tropical pacific, HRDP is not able
to predict the atmospheric conditions associated with the KE
variability (Fig. 7b). Within a few months of initialization, the central
tropical Pacific SST anomaly associated with the KE variability in
FOSI-H is greatly enhanced from the initialized state (LY 1), which
should be close to the FOSI-H anomalies at lag −2. In addition, an

SST anomaly in the eastern tropical Pacific, which is absent in FOSI-
H, also develops. Likely because of these SST anomalies, the
predicted SLP anomalies strongly project onto the Aleutian Low
mode (AL) rather than the NPO, which is the most dominant mode
of atmospheric variability in the NP sector and the typical ENSO
teleconnection pattern. Because (negative) WSC anomalies asso-
ciated with this AL-like SLP anomaly are centered north of 40°N
(Supplementary Fig. 6a), they do not appear to be able to reinforce
the initialized SSH signal. After the first winter, predicted SLP
anomalies are very weak (implying a lack of consistency across
ensemble members), while the mid-latitude SST anomalies in FOSI-
H are reasonably predicted in HRDP. Based on these results, it is
reasonable to conclude that the highly predictable KEI in HRDP
primarily results from the initialization of the anomalous ocean
state in the central NP and that air-sea coupling does not appear to
play a role, although it might provide additional skill if predicted.

Predictability of subsurface temperature
In this subsection, we examine the potential predictability of
subsurface temperature associated with the decadal KE variability.
In both FOSIs, KEI is strongly correlated with subsurface
temperature variability around the KE axis in the respective zonal
KEI domains (Fig. 8a, d). Although correlations >0.8 are seen
throughout the upper ocean in both FOSIs, the regressions of
temperature show that the center of action is located at ~400m in
FOSI-H (Fig. 9b), but near the surface in FOSI-L (Fig. 9c), roughly
coinciding with the regions where the respective temperature
variance maximizes in both FOSIs (gray contours). The subsurface-
centered variability in FOSI-H is consistent with observations that
also show a center of action at about 400m and negligible
anomalies near the surface (Fig. 9a). The high subsurface variability
in FOSI-H and observations further supports the notion that the KE
variations are associated with the Rossby wave propagation
mechanism and associated fluctuations in the thermocline depth39,
and the increased fidelity of the simulated subsurface temperature
variability associated with KE variations in FOSI-H compared to
FOSI-L. We also note that FOSI-H shows a negative anomaly north
of the KE axis, which is also hinted at in observations.
ACCs of the temperature profile against KEI from the respective

FOSIs show high skill scores in the subsurface exceeding 0.8 (0.7)
around the KE axis at LY 1 in HRDP (DPLE) (Fig. 8b, e). The spatial
patterns of ACCs also closely resemble those of FOSIs (Fig. 8a, d).

Fig. 2 Prediction skill for KEI. a ACC against respective FOSI KEI as a function of LY for HRDP (solid red) and DPLE (solid blue) ensemble
means for the period of 1987–2017. b Same as in a, but against the KEI from satellite observations for the period of 1993–2017. Crosses
indicate that ACC is significant at the 95% confidence level determined using a bootstrapping method (Methods). The light blue shade
represents the spread (2.5–97.5 percentile) of ACC scores obtained from subsampled 10-member ensembles of DPLE (Methods). Also shown
are damped persistence forecasts of FOSI KEI in a (dashed red and blue from FOSI-H and FOSI-L, respectively) and KEI from the satellite
altimeter in b (dashed black).
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However, we note that high ACCs in the subsurface in DPLE is
associated with minimal variability as indicated by the regression
map from FOSI-L (Fig. 9c). Although the spatial patterns are
generally maintained, ACCs wane with lead time, but remain
statistically significant below 200m in HRDP even at LY 4 (Fig. 8c),
consistent with the significant skill in predicting KEI at this lead
time (Fig. 2). The subsurface temperature of DPLE is no longer
significantly correlated with FOSI-L KEI at LY 4 (Fig. 8f), also
consistent with the KEI skill of DPLE (Fig. 2), although significant
correlations are found below 700m where variability is minimal.

Why is the Rossby wave propagation signal weak in the low-
resolution models?
It is rather unexpected to see a very weak signature of westward
wave propagation in the low-resolution simulations, given the
large-scale nature of long Rossby waves. A clue for the weak wave
propagation signal can be found in the vertical structure of the
anomalous ocean temperature associated with KEI explored in the

previous subsection. In FOSI-L, the center of action is located near
the surface around 42°N (Fig. 9c), which is not supported by
observations (Fig. 9a). Lead-lag regressions of temperature at
100-m depth onto KEI from FOSI-L show that a temperature
anomaly develops locally at this latitude off the east coast of
Japan and extends to the east as KEI reaches its peak (from lag −3
to 0 in Supplementary Fig. 7). In contrast, the anomaly associated
with KEI at this latitude is negligible for all depths in observations
and FOSI-H (Fig. 9a, b).
To further investigate the dynamics of the KE variability in FOSI-

L, we utilize forced ocean–sea-ice simulations that are similar to
FOSI-L, but forced with interannually-varying momentum (FOSI-L-
M) or buoyancy forcing (FOSI-L-B) alone (“Methods” section). Lead-
lag SSH correlations for FOSI-L-M reveals a clear westward
propagation of SSH anomalies, taking about 3 years to reach the
western boundary, comparable to FOSI-H and observations
(Fig. 10a; compare to Fig. 5). Interestingly, FOSI-L-B shows an
eastward propagation of SSH anomalies emanating from the
western boundary, consistent with the eastward extension of the

Fig. 3 Correlation maps of SSH against KEI in FOSI-H and HRDP. a Lead-lag correlations of SSH against KEI from FOSI-H. b Same as in a, but
ensemble average SSH from HRDP and lead-lag correlations across LYs with lag 0 corresponding to LY3. Note that the predictor in b is KEI from
FOSI-H. The SSH fields lead (lag) KEI at negative (positive) lags for FOSI-H and at LY1-2 (LY4) for HRDP. The black contours indicate statistically
significant correlations at the 95% confidence level. The boxed region (blue) indicates the KEI domain used in both FOSI-H and HRDP.
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subsurface temperature in FOSI-L (Supplementary Fig. 7). There-
fore, these experiments suggest that wind forcing in the central
NP can generate westward propagating signals in FOSI-L, but
buoyancy forcing generates a signal propagating in the opposite
direction along KE, interfering with the westward propagating
signal and resulting in a mixed signal that appears to propagate
westward faster than baroclinic Rossby waves (Fig. 5c).
The incoming signals to the western boundary also appear to be

weaker in FOSI-L than in FOSI-H. The amplitude of the initialized SSH
anomalies in the central NP is very similar between two FOSIs, which
is in turn close to that of observed SSH (Supplementary Fig. 8a).
However, the initialized signal in FOSI-L is quickly damped as it
propagates westward (Supplementary Fig. 8c). On the other hand,
the amplitude of the propagating signal is relatively well preserved in
FOSI-H (Supplementary Fig. 8b). This suggests that the incoming
Rossby waves to the western boundary region (west of 160°E) have a
weaker amplitude in FOSI-L than FOSI-H, likely because of the
absence of the convergence into a sharp front and more diffusive
nature of the low-resolution model40. Therefore, it seems reasonable

to hypothesize that both westward and eastward propagating
signals exist in DPLE when initialized with ocean states from FOSI-L,
and because the amplitude of the westward propagating signal is
weak, it is overpowered by the eastward propagating signal, resulting
in predictability more governed by the latter. Since this signal is
propagating eastward away from the KEI domain, predictability
arising from this source is likely more short-lived than predictability
achieved via westward Rossby wave propagation from the central NP
(that takes 3–4 years to reach the western boundary).

DISCUSSION
We have shown in this study exceptional skill in predicting KE
variability up to 4 years ahead in a decadal prediction system at an
eddy-resolving resolution (HRDP), significantly higher than the skill
found in a low-resolution system using the same model frame-
work (DPLE). The source of the exceptional skill in HRDP is an
initialized ocean mechanism; specifically, SSH anomalies in the
central NP induced by Ekman pumping that propagate westward

Fig. 4 Correlation maps of SSH against KEI in FOSI-L and DPLE. a Lead-lag correlations of SSH against KEI from FOSI-L. b Same as in a, but
ensemble average SSH from DPLE and lead-lag correlations across LYs with lag 0 at LY3. Note that the predictor in b is KEI from FOSI-L. The
SSH fields lead (lag) KEI at negative (positive) lags for FOSI-L and at LY1-2 (LY4) for DPLE. The black contours indicate statistically significant
correlations at the 95% confidence level. The boxed region (blue) indicates the KEI domain used in both FOSI-L and DPLE.
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as baroclinic Rossby waves, taking about 3 years to arrive at the
western boundary. Local persistence of the signal17 and atmo-
spheric feedback from mesoscale air-sea interaction26 could
potentially be contributing some additional skill, in addition to
the skill from Rossby wave propagation, resulting in the skillful
prediction of the KE variability up to 4 years. The westward
propagating signal appears to be trapped and guided by the
sharp KE front in the high-resolution simulations21,25, causing a
meridional convergence of initially broad SSH anomalies in the
central NP as they approach the western boundary. The
representation of this process appears to be the key to the
exceptional skill in HRDP, because such convergence of the signal
could accumulate energy within a narrow meridional extent. We
do not find evidence of skill at predicting large-scale air-sea
coupled feedbacks that could further augment the skill for KE
variability in decadal prediction systems17,35,36. However, we
cannot rule out the possibility that coupled air-sea interaction
associated with ocean mesoscale eddies26 could be playing some
role in HRDP. While HRDP does represent this process, it does not
appear to feedback significantly onto large-scale SLP anomalies
(Fig. 7), and in-depth study of its role in KE variability and
predictability requires further investigation.
Although the westward Rossby wave propagation appears to

exist in the low-resolution models, the amplitude of the signal
reaching the western boundary region (west of 160°E) is weaker
than in the high-resolution models because the convergence of
waves into a sharp KE front is not represented in this resolution.
Furthermore, the low-resolution system suffers from unrealistically
strong upper ocean variability around 42°N near Japan in the state
reconstruction used for initialization. This spurious upper ocean

variability propagates eastward and appears to interfere with the
incoming Rossby wave signals from the central NP. Thus, the
potential skill associated with Rossby wave propagation from the
central NP at later lead times (LY 3–4) appears degraded in DPLE.
The eastward propagating signal in the upper ocean along the
subarctic frontal zone (SAFZ; ~41°N) and its too large amplitude in
a low-resolution model have been discussed in previous
studies41,42. An ocean model intercomparison study also shows
an overestimated SST variance along SAFZ in most models43. Thus,
the spurious upper ocean variability along SAFZ appears to be a
common symptom of low-resolution models. At this resolution
(~1°), KE is much too broad and extends too far to the north (gray
contours in Fig. 8d), and thus there is no clear distinction between
KE and the SAFZ. Therefore, it is possible that while these two
systems have more independent dynamics in reality and high-
resolution models44, they are highly interdependent in low-
resolution models, generating spurious variability. This implies
that the key dynamics governing the KE variability are potentially
underestimated in low-resolution models, while variability asso-
ciated with SAFZ is overemphasized. Considering a possible role of
the KE variability for decadal variability in the NP (e.g., Pacific
decadal Oscillation)3,36, the implications of this underestimated KE
dynamics in low-resolution coupled simulations need to be
investigated in future studies.
Although GFDL-SPEAR uses a low-resolution ocean model

similar to DPLE, it appears to outperform DPLE in predicting the
KE variability24. A possible explanation for the higher skill in GFDL-
SPEAR is the SST restoration towards observations in its
initialization run23, which is absent in FOSIs. The SST restoring
could eliminate the spurious variability along SAFZ, thus when

Fig. 5 Hovmöller diagrams of SSH and WSC correlations on KEI. a Correlations of the meridionally averaged, monthly SSH over the KE
latitudes against monthly KEI from satellite observations plotted as a function of longitude and lag. b Same as in a, but from FOSI-H. Also
shown in contours are the same correlations of WSC with solid (dashed) lines for positive (negative) correlations with contour intervals of 0.2
(zero contours are omitted). c Same as in b, but from FOSI-L. All time series are smoothed with a 12-month running mean before the
computation of the correlations. SSH and WSC lead (lag) KEI for negative (positive) lags.
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initialized, Rossby waves may propagate to the western boundary
without much interference from the SAFZ variability. We would
also like to point out that a part of the lower skill in DPLE
compared to GFDL-SPEAR can be attributed to less frequent start
dates (every second yearly start date in DPLE vs every yearly start
date in GFDL-SPEAR) and a shorter time period in our analysis
used for consistency with HRDP. If every start date and a longer
period are considered, ACC skill against FOSI-L is enhanced for
longer lead times (LY 3-5) and all ACCs LY 1 through 5 become
significant (Supplementary Fig. 9), being comparable or marginally

lower than the ACC skill obtained from GFDL-SPEAR. We note,
however, that DPLE has an advantage in terms of ensemble size
over SPEAR (40 for DPLE vs. 20 for SPEAR).
Given the large computational resources required to run coupled

high-resolution decadal prediction systems, it would be useful to
know how many ensemble members are needed to achieve skill
scores comparable to those obtained with 10 members. To answer
this question, we resample the KEI from HRDP using a bootstrap
method to generate a distribution of ACCs as a function of
ensemble size (Methods). The answer to this question depends on

Fig. 6 SSH anomalies as a function of time and longitude. a Monthly SSH anomalies, meridionally averaged over the KEI latitudes, from
FOSI-H during 1999–2003. b Same as in a, but from HRDP (ensemble average) from LY1 through LY5 (corresponding to 1999–2003) of the 1
November 1998 start. c Same as in a, but from FOSI-L. d Same as in b, but from DPLE. The time series are smoothed with a 12-month running
mean. The dashed lines indicate the eastern edge of each KEI domain.
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Fig. 7 Regressions of winter SST and SLP onto KEI. a Lead-lag regressions of January to March (JFM) SST (shading) and SLP (black contours)
onto KEI from FOSI-H. b Same as in a, but ensemble average JFM SST and SLP from HRDP and lead-lag regressions across LYs with lag 0 at LY3.
Note that the independent variable in b is KEI from FOSI-H. The SST and SLP lead (lag) KEI at negative (positive) lags for FOSI-H and at LY1-2
(LY4) for HRDP. The gray contours indicate statistically significant SST regressions at the 95% confidence level. Contour intervals for SLP are
0.4 hPa and zero contours are omitted.
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lead time. For short lead time (e.g., LY 2 shown in Supplementary
Fig. 10), the mean ACC is reasonably high even with a single
ensemble member (~0.65), compared to ~0.75 with 10 ensemble
members, although the uncertainty range is large (0.45–0.82). Both
the ACC mean and uncertainty range quickly level off with the
increase in ensemble size. For long lead time (e.g., LY 4 shown in
Supplementary Fig. 10), however, the mean ACC for small
ensemble size (1–2) is substantially lower (~0.4) than that (~0.6)
for large ensemble size (9–10) and the uncertainty range for small
ensemble size is very large. For example, the ACC score with three

ensemble members at LY 4 can lie anywhere between 0.25–0.7.
Therefore, a standard decadal prediction ensemble size (~10)
appears to be important for long-lead time predictions (3- or
longer-year in advance), while for short-lead time predictions (up to
2 years in advance), a smaller ensemble size (~3) may be enough.
Observations suggest that surface biomass, as represented by

chlorophyll, in the upstream KE region varies in tandem with the
decadal KE variability14,15. Lin et al.16 show from a high-resolution
regional model coupled with a biogeochemistry (BGC) model that
nutrient anomalies propagate westward along with thermocline

Fig. 8 Correlations of the temperate profile in the KEI region. a, d Correlation of the vertical potential temperature profile from FOSI-H (a) and
FOSI-L (d), zonally averaged over the respective KEI longitudes, against respective KEI. b, c Same as in a, but from the ensemble average potential
temperature profile of HRDP at LY1 (b) and LY4 (c). e, f Same as in b, c, but from DPLE. Note that the predictors in b, c and e, f are KEIs from
respective FOSIs and all correlations are simultaneous. The black contours in b, c and e, f indicate statistically significant correlations at the 95%
confidence level. The green (gray) contours in a and d are the climatological potential temperature (zonal velocity) profile from respective FOSIs.
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(thus SSH) anomalies to the upstream KE region, which appears to
modulate upper ocean chlorophyll there through vertical mixing.
Based on the realistic representation of the westward propagating
signal and its high predictability in HRDP, it seems reasonable to
expect skillful prediction of nutrients and thus upper ocean
chlorophyll in the upstream KE in high-resolution systems. Unfortu-
nately, the BGC component was not activated in HRDP due to
resource limitations, but the results of this study clearly support use
of a BGC component in future high-resolution prediction studies. If
the predictability of KE BGC fields is shown to be viable, an
application of multi-year to decadal predictions using high-resolution
models could be very helpful for managing marine resources and
fisheries for communities that rely heavily on fisheries for food.

METHODS
Prediction systems
The decadal prediction systems used in this study are identical to
Yeager et al.32 Readers are referred to Yeager et al.32 for further
details and a general comparison of the two systems. We only
summarize a few key aspects of the systems below.
The CESM High Resolution Decadal Prediction (HRDP) system32

uses the CESM1 model configured at high horizontal resolution
(~0.1° for the ocean and sea-ice; 0.25° for the atmosphere and
land)45. The ocean and sea-ice components are initialized from a
forced ocean–sea-ice (FOSI) simulation at the same resolution
constrained only at the surface by reanalysis-derived (Japanese
55-year Reanalysis; JRA55) atmospheric states following the
protocol of the Ocean Model Intercomparison Project version 2
(OMIP2)46. The atmosphere initial conditions are from regridded
JRA55 analysis fields and the land initial conditions are taken from
a high-resolution atmosphere-land simulation forced with
observed sea surface temperatures47. All components use full-
field initialization. HRDP is comprised of 10-member ensembles
initialized every other year on November 1 between 1982 and
2016 and integrated for 62 months. The ensemble spread is
generated by applying round-off level perturbations to the
atmosphere temperature initial conditions.
The CESM Decadal Prediction Large Ensemble (DPLE) system34

uses a slightly different version of CESM148. The horizonal

resolutions of all components of DPLE are nominal 1°. The
atmosphere component uses a finite volume dynamic core
instead of the spectral element used in HRDP. The ocean and
sea-ice components are initialized similarly as HRDP, but from a
coarse-resolution FOSI performed following the protocol of the
Ocean Model Intercomparison Project version 1 (OMIP1)49 where
the base atmospheric state variables are largely taken from the
NCEP reanalysis. The initial conditions for the atmosphere and
land components come from a single member of the CESM1 Large
Ensemble48. In contrast to HRDP, DPLE is initialized (full field) every
year on November 1 between 1954 and 2017 and integrated for
122 months. The strategy for the generation of ensemble spread
(40 members) is identical to HRDP. We note that although DPLE
includes more start dates (64) and longer lead times (122 months)
than HRDP, DPLE has been sampled to match HRDP in terms of
start dates (18) and lead times (62 months).
Both high- and coarse-resolution FOSIs used for the initialization

of the respective prediction systems are used in the analyses of
the study and referred to as FOSI-H and FOSI-L, respectively. In
addition, we utilize forced ocean–sea-ice simulations same as
FOSI-L, but forced with interannually-varying momentum (FOSI-L-
M) or buoyancy forcing (FOSI-L-B) along with seasonally-varying
climatological forcing for the opposite forcing50. This climatolo-
gical forcing is applied by repeating Normal Year Forcing (NYF)51,
which is designed to retain synoptic atmospheric variability.

Statistical methods
Statistical analyses are based on ensemble mean forecast
anomalies from HRDP and DPLE. The forecast anomalies are
relative to the model climatology for 1987–2017 for odd lead
years (i.e., lead years 1, 3, and 5) and for 1986–2016 for even start
years (i.e., lead years 2 and 4) because of the discontinuity in time
for HRDP as a result of even-year initialization. Anomalies of FOSIs
and observations are defined in the same way.
The significance of ACC scores (Fig. 2) is tested using a

bootstrapping method34. We first randomly resample the Kuroshio
Extension index (KEI) from the forecast ensembles with replace-
ment across both the time and member dimensions, and compute
ACC against KEI from both respective FOSIs or observations. To
account for temporal autocorrelation, the resampling in time

Fig. 9 Regressions of the temperate profile in the KEI region. a–c Regression of the vertical potential temperature profile from observations
(a), FOSI-H (b), and FOSI-L (c), zonally averaged over the respective KEI longitudes, against respective KEI. The dark gray contours are the
variance of the potential temperature from the respective datasets with the contour intervals of 0.5 °C2.
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selects 2 consecutive time values (equivalent to 4 years because
HRDP is available for every other start year). This process is
repeated 5000 times to generate a distribution of ACC skill scores.
The ensemble mean ACC score is deemed significant if it is found
above the 97.5 percentile from the resampled distribution.
To account for the different ensemble size between HRDP (10)

and DPLE (40), we randomly resample (5000 times with
replacement) 10-member ensembles from DPLE and compute
ACC against KEI from both FOSI-L and observations. The resultant
distribution (2.5 to 97.5 percentile) of ACC scores is displayed in
Fig. 2. A similar resampling method is used to generate the
distribution of ACCs against FOSI-H in HRDP to assess skill stability
as a function of ensemble size from 1 to 10 (Supplementary Fig.
10). Unlike the resampling method for the above case that a
resampled time series entirely comes from a single ensemble
member, any time points of a resampled time series in this case
can come from different ensemble members. This is possible
because each time point in an ensemble member is independent
of each other as the predictions runs are integrated through the
“lead time” dimension starting from initial conditions.
The statistical significance of correlations and regressions in

Figs. 3–4 and 7–9 is assessed at the 95% confidence level through
a two-sided Student’s t test with the effective degree of freedom
accounting for lag 1 autocorrelation52.

Observational datasets
Observational datasets used in the analyses are: monthly sea
surface height dataset from SSALTO/DUCAS altimetric mean

dynamic topography distributed by the Copernicus Marine and
Environment Monitoring Service (CMEMS); monthly NOAA Opti-
mum Interpolation Sea Surface Temperature version 2 (OISSTv2)53;
monthly gridded ocean temperature profiles from the Met office
EN4.2.154; monthly sea level pressure data from the NCEP55 and
JRA5556 reanalysis products.

DATA AVAILABILITY
The full DPLE dataset is available from NCAR’s Climate Data Gateway at https://
www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.CESM1-CAM5-DP.html. The post-
process HRDP and FOSI simulations data used in this paper are archived at the NCAR
Geoscience Data Exchange (GDEX) at https://doi.org/10.5065/pf1q-4c39.

CODE AVAILABILITY
The CESM1.1 code used to generate DPLE is available at https://www.cesm.ucar.edu/
models/cesm1.1/index.html. The CESM1.3 code used to generate HRDP is available at
https://github.com/ihesp/cesm/tree/ihesp-hires-master.
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