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Multi-annual prediction of drought and heat stress to support
decision making in the wheat sector
Balakrishnan Solaraju-Murali 1✉, Nube Gonzalez-Reviriego1, Louis-Philippe Caron 1,2, Andrej Ceglar 3, Andrea Toreti 3,
Matteo Zampieri 3, Pierre-Antoine Bretonnière1, Margarita Samsó Cabré1 and Francisco J. Doblas-Reyes 1,4

Drought and heat stress affect global wheat production and food security. Since these climate hazards are expected to increase in
frequency and intensity due to anthropogenic climate change, there is a growing need for effective planning and adaptive actions
at all timescales relevant to the stakeholders and users in this sector. This work aims at assessing the forecast quality in predicting
the evolution of drought and heat stress by using user-relevant agro-climatic indices such as Standardized Precipitation
Evapotranspiration Index (SPEI) and Heat Magnitude Day Index (HMDI) on a multi-annual timescale, as this time horizon coincides
with the long-term strategic planning of stakeholders in the wheat sector. We present the probabilistic skill and reliability of
initialized decadal forecast to predict these indices for the months preceding the wheat harvest on a global spatial scale. The results
reveal the usefulness of the study in a climate services context while showing that decadal climate forecasts are skillful and reliable
over several wheat harvesting regions.
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INTRODUCTION
Near-term decadal climate predictions represent an important
source of information with the potential to support decision-
making and strengthen the resilience of a wide range of socio-
economic sectors that are heavily influenced by climate variability,
change, and extremes1. For example, agriculture and climate-
sensitive energy sectors, such as hydroelectricity, wind, and solar
energies, can greatly benefit from this type of information2,3.
However, up to now, only a few studies4–7 have explored the
usability of these readily available near-term decadal climate
forecasts for specific sectoral needs.
The entire agricultural sector (food-producing systems, markets,

etc.) is influenced by climate variability, unfavorable weather, and
climate extremes (e.g., droughts and heatwaves8,9). In this context,
climate risk management10 for capacity adaptation, planning, risk-
mitigation, and early response to climate extremes can benefit
from decadal climate predictions. The advantage of using these
predictions compared to climate projections relies on the
temporal coherence of the main large scale climate patterns with
observations11 and the possibility to assess their quality by
evaluating the performance of retrospective decadal predictions
against observations over the recent historical period1. The latter
aspect facilitates a retrospective risk assessment of recent past
droughts and heatwaves relevant for the agricultural sector,
improving the communication of the risks associated with those
extreme events for informed decision-making.
Climate information at decadal timescale holds the potential for

being of great value for a broad range of users in the agricultural
sector, especially in its producing component, who are affected by
climate variability and who would benefit from additional sources
of information. Wheat is the most harvested cereal crop in the
world (harvested area in 2019; www.fao.org/faostat), contributing
to the local food security of many countries. Unfavorable
conditions and extreme weather such as heat or water stress
affect both grain yield and quality, especially when they occur in

the most sensitive development stages of the plant12,13. For
instance, heat stress occurring during the flowering stage affects
floret fertility causing a reduction of the grain number14, whereas
heat stress that occurs during the grain filling stage reduces grain
quality and size15. Similarly, drought conditions can affect either
grain number, when the stress occurs before or during the
flowering stage, or grain size, when the drought occurs after the
flowering stage due to its impact on grain filling16.
In the framework of the EU H2020-MED-GOLD project, the

durum wheat community has been engaged in the co-design of
innovative sectoral climate services based on specific users’ needs
and opportunities. This process has revealed some key decision
areas that could be improved by having reliable decadal climate
information available well in advance, such as risk estimates for
the global market, investments in agro-management infrastruc-
ture and tools, planning of supply chain contracts or targeted
breeding programmes3. Strategic tools in policies such as the EU
Common Agricultural Policy, designed to address EU climate
ambition, may also benefit from initialized decadal climate
predictions.
Recent advances in the understanding and forecasting of the

climate have resulted in skillful decadal climate predictions1,11,17.
Nevertheless, for the provision of an end-to-end climate service
focused on some of the above-mentioned specific needs of the
wheat sector, efforts are still needed to convert available climate
predictions into usable information by users. This study aims to
address this necessary step for the provision of a climate service
targeted to the wheat sector based on decadal predictions,
including the estimation of specific indices accounting for both
drought and heat stresses, their bias adjustment and their forecast
quality assessment. Thus, the main objective of this paper is to
assess the skill and reliability in predicting the Standardized
Precipitation Evapotranspiration Index (SPEI18) and the Heat
Magnitude Day Index (HMDI9), two indices that have been
associated with wheat yield9, on a multi-annual timescale over
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the entire wheat harvest areas. Following this, we present two
tailored potential climate service products that can be effectively
used in the wheat sector.

RESULTS
Forecast quality assessment of drought index
A fundamental step in the provision of a climate service based on
predictions is the assessment of the skill and reliability associated
with the climate information used for the service. This step allows
both providers and users to better understand the potential
value held by such climate information. Here, we present the
probabilistic skill (Fig. 1) and reliability (Fig. 2) in predicting the
multi-annual drought events using a soil-moisture proxy agro-
climatic indicator (SPEI6) over the wheat harvesting regions. The
forecast skill is investigated using the fair ranked probability skill
score (FRPSS) and the fair continuous ranked probability skill score
(FCRPSS), while the reliability is assessed using reliability diagrams
(see “Methods” section). FRPSS and FCRPSS provide a measure of
the skill of decadal forecasts in predicting the probabilities of the
categorical events (tercile in our case) and the full probability
distribution of the estimated index, respectively. Here, we
compare the skill and reliability of an unadjusted and calibrated
index obtained with the decadal forecast.
SPEI6 is the standardized value of climate water balance

accumulated over the six months prior to the wheat harvesting
month at each grid point (Supplementary Fig. 1). The climate
water balance is defined as the difference between monthly total
precipitation and potential evapotranspiration (PET); the latter is
estimated here with the Thornthwaite approach19. The optimal
approach for PET estimation still remains an open question and
depends on several factors, such as the spatio-temporal scale
involved, the aim of the study and the availability of meteor-
ological data. A number of studies20,21 have pointed out that

different choices could lead to varied estimates of drought
frequency and severity over several regions globally. Here, the
thornthwaite approach has been chosen for its simplicity.
However, recognizing its limitations, we have also tested two
alternative approaches, namely the Hargreaves22 and the mod-
ified Hargreaves23 methods. The comparison of these three
approaches shows that our results are rather insensitive to the
choice of the methodology used to estimate PET (Supplementary
Fig. 3). The influence of other advanced data-intensive techniques
of PET estimation such as FAO-56 Penman-Monteith will be
explored in future studies.
The results obtained with the unadjusted SPEI6 predictions

show a positive value of FRPSS over most of the wheat-growing
regions, except for a few areas over Africa and both North and
South America (Fig. 1a); whereas FCRPSS (Fig. 1d) presents low
skill scores over most of the regions except for the Iberian
Peninsula, South Africa, Western United States, Australia and the
Middle East. For the unadjusted forecasts, FRPSS tends to give
better results than FCRPSS as it involves implicit bias-adjustment
in its definition since the errors in the climatological variance are
partly corrected while setting the thresholds for the terciles
individually for the observation and the forecasts. On the other
hand, the widespread poor estimates of FCRPSS are the result of
uncorrected errors present in the climatological variance since no
thresholds are defined for computing this skill measure.
For the near-term probabilistic decadal predictions to be useful,

systematic errors of the forecasting system have to be adjusted. To
do this, we apply the variance inflation technique introduced in
the “Methods” section. This approach ensures an increased
reliability of the probability predictions by adjusting the inter-
annual variance of the forecast system to that of the observational
reference in cross-validation mode. Figure 1e shows that the
FCRPSS increases after calibration, particularly over the areas
where negative values were found in the unadjusted estimate of
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Fig. 1 Predictive skill of the drought index. Fair Ranked Probability Skill Score (FRPSS) for tercile events (top) and Fair Continuous Ranked
Probability Skill Score (FCRPSS) for the full probability distribution (bottom) of unadjusted (a, d) and calibrated (b, e) SPEI6 forecast averaged
over forecast years 1–5, with respect to the reference climatology during the wheat harvest months for the period 1961–2018. c, f presents the
difference between calibrated and unadjusted forecast.
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the indices. The difference between the FRPSS and FCRPSS for the
initialized decadal forecast before and after the calibration of the
SPEI6 forecasts is presented in Fig. 1c and f, respectively. In
general, there is an increase in FRPSS values over several regions,
except for certain areas such as Eastern Europe and the Middle
East (Fig. 1c). However, the absolute value of the FRPSS (Fig. 1b)
over those regions with lower scores remains similar to the
unadjusted forecast.
To understand the reason behind the skill of SPEI6 over the

wheat harvesting regions, we compared the forecast skill of the
climate variables used to compute the index (six-month accumu-
lated potential evapotranspiration and precipitation; hereafter
PET6 and P6, respectively) and investigate the influence of these
climate variables on SPEI6. From this assessment, it emerges that
most of the predictive skill in forecasting SPEI6 is linked to
the following two factors: (1) the high predictive skill exhibited by
the decadal forecast system in predicting the individual climate
variables (see Supplementary Fig. 15a and b) and (2) the forecast
system’s ability to correctly capture the influence of PET6 and P6
on the index (compare Supplementary Fig. 16b, e and 16a, d).
These results are in line with the conclusion presented in Solaraju-
Murali et al.7. A detailed explanation on the contribution of the
climate variables to the overall skill of estimated indices can be
found in the Supplementary material.
The reliability diagrams (Fig. 2a and b) present the reliability of

the predicted probabilities of tercile categories over the wheat
harvesting regions globally. Reliability diagrams are particularly
useful to identify whether a forecasting system under- or over-
forecasts any particular category. For a forecast to be reliable, the
averaged forecast probabilities should match the observed
relative frequencies; thus, the colored lines in the graph should
fall close to the diagonal. For SPEI6, the brown (green) line,
corresponding to below-normal (above-normal) category, demon-
strates the reliability in predicting the dryness (wetness) event by

the forecast system. The unadjusted predictions (Fig. 2a) provide a
reliable forecast for the below-normal and above-normal cate-
gories. The calibration improved the reliability of the forecast for
both below and above-normal categories (Fig. 2b).
To further study the reliability on a regional level, the global

domain is divided into six different regions: North America, South
America, Europe, Africa, Asia and Australia (see Supplementary Fig.
6). For clarity purposes, we choose to focus on Asia, as China and
India are the global leaders in wheat production (e.g., Fig. 1 in
Toreti et al.24). The results for the other regions can be found in
Supplementary Figs. 7 and 8. The reliability estimates for all three
categories run along the diagonal (Fig. 2c). In this case, the
reliability curves of the calibrated forecast show features that are
similar to those of the unadjusted forecasts (Fig. 2d). This stands in
contrast to the other regions for which the calibration improves
the reliability, particularly for below- and above-normal categories
(Supplementary Fig. 8). The forecast is generally unreliable for the
normal category except for Asia and Africa (Supplementary Fig. 7),
meaning that there is no clear relationship between the forecast
probabilities and the frequency of the observed normal SPEI6
values over most regions. The calibration does not seem to
improve the reliability for this category (Supplementary Fig. 8).
This result is not entirely surprising since it has been shown that
predicting the normal category tends to be more difficult as such
events are known to have weak driving signals25.

Forecast quality assessment of heat stress index
While the impact of drought is substantial in several countries
producing wheat, Zampieri et al.9 have also shown that the heat
stress presents a comparable or stronger negative influence on
the wheat yield globally. To explore the skill in predicting heat
stress events at the multi-annual timescale, we evaluate the
HMDI3 index during the stages of wheat growth that are most

(a) Unadjusted (b) Calibrated

(c) Unadjusted (d) Calibrated
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Fig. 2 Reliability of the drought index. Reliability diagrams (lines) for probabilistic categorical forecasts (tercile events) of unadjusted SPEI6
estimate (a, c) and for the calibrated index (b, d) over Global spatial domain (top) and Asia (bottom). The frequency of occurrence of each bin
for each category is shown to the right of the panels.
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sensitive to heat stress (i.e., 3 months before harvesting, roughly
corresponding to the period including flowering and grain filling).
Maps of FRPSS and FCRPSS for HMDI3 are shown in Fig. 3. The

best scores are achieved over Europe, the Western United States
and South Africa with unadjusted forecasts (Fig. 3a and d). On the
other hand, negative scores are found over the Eastern United
States, South America and Angola. The calibrated forecast displays
similar FRPSS patterns as the uncorrected forecast (compare
Fig. 3a and b), but shows an increase over the Eastern United
States, Ecuador, Peru, Columbia, the United Kingdom, part of
Africa and Northern Australia, and with a slight decrease over the
other regions (Fig. 3c). On the other hand, FCRPSS increased
globally after applying the calibration (Fig. 3f). The improvement is
considerably higher over the areas where the unadjusted forecast
has high negative score values (compare Fig. 3d and f). The skill at
predicting HMDI3 is associated with the decadal forecast systems
ability to predict the maximum temperature during 3 months
prior to wheat harvesting (Supplementary Fig. 15c).
The reliability diagram for HMDI3 over both global and Asian

wheat-growing regions is presented in Fig. 4. Prior to the calibration
(Fig. 4a and c), the below- and above-normal categories for both
the domains are found to be reliable, whereas the normal category
is under-confident when the forecast provides high probability
estimates. The calibration seems to improve the reliability for all the
categories (Fig. 4b and d). The results of the calibrated HMDI3
forecasts are similar for the rest of the regions considered in this
study (Supplementary Fig. 10).

Impact of initialization
We further evaluated the decadal predictions against an ensemble
of uninitialized historical simulations having the same number of
ensemble members in order to explore the added value of
initialization. The historical simulations are primarily intended to
estimate the forced response of the climate system. For assessing
the improvement in the predictive skill of decadal forecasts, the
skill metrics are estimated by using the historical simulations as the

baseline forecast instead of the climatology. As for SPEI6, the
decadal forecast presents positive skill (thus an improvement with
respect to non-initialized forecasts) over most of the wheat-
producing region, particularly over Australia, Central Europe, South
Africa and Eastern United States (Fig. 5a, c and Supplementary Fig.
11). As for HMDI3, the improvement is limited to fewer regions,
namely Western and Central Europe, Central United States, South
America, South Africa, and southern Australia (Fig. 5b, d and
Supplementary Fig. 12). The reliability of both indices was found to
have slightly improved over the uninitialized simulation, particu-
larly for Europe and Australia (compare Supplementary Figs. 13 and
14 with Supplementary Figs. 8 and 10).
The origin of the skill was also investigated by looking at the

climate variables used to build the indices. The results (Supple-
mentary Fig. 15d–f) point to an increase in skill in the initialized
climate simulations over the regions for which we found an
improvement of the decadal prediction skill in Fig. 5. In addition,
the influence of PET6 and P6 on the estimated SPEI6 is evaluated
by comparing historical simulations (Supplementary Fig. 16c and
16f) with observations and decadal predictions. Results demon-
strate that over certain regions (for example, Central Europe,
Eastern United states, Peru, Australia and the United Kingdom), the
historical simulations reproduce that relationship worse than
decadal predictions (Supplementary Fig. 16b and 16e) when
compared with the observations (Supplementary Fig. 16a and 16d).

Application of decadal prediction for the wheat sector
An illustration of a potential climate service product for the wheat
sector based on categorical events (terciles, in our case) is
presented in Fig. 6. It shows the calibrated forecast of multi-annual
averaged SPEI6 (Fig. 6a) and HMDI3 (Fig. 6b) for the hindcast
period 2014–2018 initialized in November 2013 along with the
corresponding observational values (Fig. 6c, d). In addition, we
display the time series of the multi-annual predictions produced
for each period and the correspondence between predictions and
reanalysis over three durum wheat harvesting areas in Italy: Jesi
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Fig. 3 Predictive skill of the heat stress index. Same as Fig. 1 but for the Heat Magnitude Day index (HMDI3).
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(Fig. 6e, f), Ravenna (Supplementary Fig. 17a, b) and Foggia
(Supplementary Fig. 17c, d). The three locations are selected by
choosing the grid point in which each of the region falls. These
areas were identified by the stakeholders in the EU H2020-MED-
GOLD project to be among the leading regions used for the
production of durum wheat in Italy and have also become, along
with rest of the Mediterranean regions, prone to increasing
temperatures and more frequent and intense extreme events such
as droughts and heatwaves3. Figures 6a–d presents the predicted
likelihood map (in %) of the most likely tercile (labeled as below-
normal, normal and above-normal) of observed drought and
heatwave occurrences using the indices corresponding to the
wheat harvesting season (Supplementary Fig. 1) and for the
regions where calibrated forecasts return positive FRPSS. Darker
shades of brown (blue), yellow and green (red) correspond to a
higher probability of occurrence of the event falling into the
lower, middle, and upper tercile category of SPEI6 (HMDI3),
respectively. The decadal predictions for both indices show an
increase in drought (below-normal category) and heatwave
(above-normal category) events over most of the wheat-growing
regions prior to the harvest months for the period 2014–2018.
Comparing Fig. 6a, c with Fig. 6b, d, we found a good agreement
between forecasted and observed SPEI6 and HMDI3.
Multi-annual calibrated forecasts using decadal prediction (in

gray) for SPEI6 and HMDI3 along with the observed values (in
black) for the years 1961–2013 are presented in Fig. 6e and 6f over
Jesi, Italy. It communicates probabilistic decadal forecasts in an
intuitive way by issuing probabilities using the available ensemble
member forecasts. Regarding SPEI6, we found the forecast to be
able to predict the transition between the wet and dry conditions
and to capture the slow variability of the observed drought
conditions over Jesi (Fig. 6e). On the other hand, HMDI3 tends to
show an increase in the heat stress events from the early 1990’s
(the positive trend in Fig. 6f, with more events at the above-
normal category), as found in the observation.

The horizontal brown (blue) and green (red) lines represent the
lower and upper tercile limits, which are the 33 and 66 percentiles
of the climatological distribution, of SPEI6 (HMDI3). After defining
the limits, an estimation of the forecast probabilities of each tercile
category, presented in the last row for the forecast years
2014–2018, is carried out by counting the number of ensemble
members falling into each category and dividing the count of
each category with the total number of ensemble members
generated. For instance, for the forecast years 2014–2018 in
Fig. 6e, we can see that 28, 12, and 0 out of 40 members fell in the
below-normal, normal and above-normal category respectively
and hence, a 70, 30, and 0 percent probability event is assigned to
the corresponding category for the considered forecast year. The
time series and the skill scores for Ravenna and Foggia are
presented in Supplementary Fig. 17. In both cases, the decadal
forecast performs better than a climatological forecast for both
SPEI6 and HMDI3, as evidenced by the positive skill scores.

DISCUSSION
Decadal climate predictions have been made available for users as
a potential source of near-term climate information with the aim
of supporting strategic decisions in key socio-economic sectors
such as agriculture11,26. The skill assessment performed here
reveals that calibrated forecasts are more reliable in predicting
SPEI6 and HMDI3 indices than unadjusted forecasts, which
confirms that the calibration step is a necessary condition for
using decadal climate information in action-oriented climate
services. This is in line with previous studies that stressed the need
for calibration to provide trustworthy and robust predictions27,28.
Calibrated decadal predictions are generally more skillful than

forecasts built on the observed past climatology in predicting the
probabilities of the tercile categories and the full probability
distribution of the multi-year averages of drought and heat stress
indices over several wheat-growing regions. In addition, the
initialization of the decadal forecasting system contributes to
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Fig. 4 Reliability of the heat stress index. Same as Fig. 2 but for the Heat Magnitude Day Index index (HMDI3).
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enhanced skill and reliability of the predicted drought and heat
stress over the wheat producing regions. These encouraging
results demonstrate the usefulness of decadal predictions and the
possibility of using such predictions in climate services supporting
risk reduction and adaptation strategies in the wheat sector. This
implies that there exist opportunities to support wheat stake-
holders in their decision-making processes, policies development,
implementation and evaluation on a multi-annual timescale. The
proposed methodology can be easily adapted to other crops, as
for example maize and rice, or to other sectors where water
management plays a fundamental role.
While the results presented here are promising, it is important

to note that this assessment is based on a single decadal forecast
system. Several studies have pointed out the need for large
ensembles to achieve more reliable and skillful forecasts1,29. To
address this, a multi-model study with all the available state-of-
the-art decadal forecasting systems will be explored in future
analyses. In addition, we plan to investigate the impact of the
slow, internally generated natural climate oscillations such as the
Atlantic Multi-decadal variability (AMV) and the Pacific Decadal
Oscillation (PDO) on the predicted indices used in this assessment,
to determine whether the predictability of drought and heat stress
can be linked to large-scale oceanic teleconnection patterns
acting on multi-annual timescales.
Further efforts should also be devoted to the co-design of

climate services, involving key users and relevant actors of the
wheat sector, based on the obtained results. The co-design
process should be oriented toward several important aspects such
as: (i) the refinement of the products for fulfilling the particular
user needs; (ii) effective visualization of the products to better

convey the information; (iii) dissemination material that discloses
the main points regarding decadal predictions and climate service
products in an easy and clear way. Efforts in properly tackling all
these aspects will help the uptake of decadal information by
stakeholders.
Notwithstanding future research still remaining, this assessment

should be considered an essential first step in the development of
climate services for agriculture, revealing that decadal climate
forecasts are skillful and reliable over several wheat harvesting
regions. Decadal climate predictions can already become a key
element of agro-climate services in these regions to support
informed decisions for a variety of end-users such as crop
breeders, farmers, national and regional policymakers. Farmers
can benefit from climate information on decadal timescale when it
comes to decisions on investment in irrigation infrastructure,
drainage systems, crop rotation and diversification strategies.
Decadal climate predictions can help crop breeders to identify
priorities in their breeding programs, such as drought tolerance
and tolerance to high temperatures while looking for optimal
responses (in terms of quantity and quality) to elevated atmo-
spheric CO2 concentration30. Reliable decadal climate predictions
have been also envisaged to anticipate the spread of new pests,
pathogens and weeds and ultimately, in order to identify future
suitable cultivation areas (see Fig. 3-3 in Manstretta et al.31). Given
also the relevance of the decadal timescale for policy making and
legislation, the results presented are of capital importance to
provide a term of reference for the accuracy that can be achieved
with state-of-the-art climate models.
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METHODS
Data
This study uses decadal hindcasts from the Community Earth System
Model Decadal Prediction Large Ensemble (CESM-DPLE). This forecast
system is developed by the National Center for Atmospheric Research
(NCAR) in an effort to support research into near-term climate information.
A summary of the experimental design can be found in Yeager et al.32. For
this study, near-term initialized decadal experiments are considered. These
are a set of 10-year long initialized hindcasts that were simulated by
explicitly prescribing the contemporaneous state of the climate system at
the start of the simulation (November 1 of each year from 1960 to 2014)
and are forced under the Coupled Model Intercomparison Project phase 5
historical forcings prior to 2015 and RCP8.5 forcings thereafter. The
experiment includes a total of 40 ensemble members at the 1-degree
nominal resolution, and here we restrict our analysis to the first five
forecast years over the global spatial domain where (and when) the winter
wheat is harvested. In order to assess the impact of initialization, we have
systematically compared the decadal hindcasts with the non-initialized
historical simulations (CESM Large Ensemble33). Such simulations are run
by forcing the observed atmospheric composition changes (reflecting both
anthropogenic and natural sources) as prescribed in decadal hindcasts, but

without including the details of the contemporaneous state of the climate
system.
In this study, we assess the quality of the decadal hindcasts based on

two-meter temperature and precipitation. For this, the reference datasets
used are Japanese 55-year Reanalysis34 (JRA-55) for two-meter tempera-
ture and GPCC Version 201835 for precipitation. The choice of JRA-55 was
motivated by the long continuous coverage of this product (1958—
present) and by its high temporal coherency36, in particular regards to
daily maximum temperatures. To have a broad estimation of the
uncertainties associated with the observational data source, Supplemen-
tary Figs. 4–5 show the verification metrics FRPSS and FCRPSS of the
estimated drought and heat stress indices calculated with ERA5
reanalysis37,38 for two-meter temperature and GPCC Version 2018 for
precipitation dataset. The results obtained present a high consistency with
the ones obtained in the main manuscript.

Drought and heat stress indices
In this assessment, we use two user-specific indices: SPEI, to assess the
drought conditions, and HMDI, to study the occurrence of heat stress
during the wheat growing season at the corresponding producing areas.
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Fig. 6 Climate service product for the wheat sector. Multi-year probabilistic calibrated forecast (a, b) and observed (c, d) most likely tercile
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SPEI is the standardized accumulated climate water balance defined as the
difference between monthly precipitation and potential evapotranspiration
(PET) over a given period of time. The computation of the SPEI can be
divided into two steps for both the forecast and observations. First, we derive
the monthly climatic water balance accumulated over the six months prior to
the harvesting month for each individual forecast years, as the heat and
associated evaporation during this period were identified to have frequently
caused drought events with pronounced negative impacts over the global
wheat-producing regions9. The accumulated values for the forecast years 1–5
are then averaged for each start date and ensemble member of the hindcast
dataset. In the second step, we standardize the multi-annual averaged six-
month accumulated climate balance values (referred to as SPEI6) by fitting a
suitable probability distribution. For this, we use the three-parameter shifted
log-logistic probability distribution function to fit the values. The parameters
used to build the distribution were computed by taking into account the
values of all the ensemble members and start dates. Positive (negative)
values of SPEI6 correspond to periods of wet (dry) conditions. The PET
calculation is carried out with the Thornthwaite equation as described in
Vicente-Serrano et al.18 because of its simplicity and the relatively minimal
amount of data required.
We derive the HMDI as suggested by Zampieri et al.9, which is

commonly used to study the impact of heatwave and heat-related
conditions on wheat production at a global scale. Heatwave is defined here
as a period, not interrupted by more than 3 days, with maximum daily
temperatures exceeding their 90th percentiles for the period 1961–2018.
HMDI is defined as the sum of the daily magnitudes (Md) of the
consecutive days when the heatwaves have occurred during the critical
phenological stage of wheat growth that is sensitive to heat stress (three
months prior to harvesting).

MdðTdÞ ¼
Td�T25p
T75p�T25p

; if Td > T90p for three consecutive days

0; otherwise

(
(1)

Here, Td is the maximum daily temperature on day ’d’ of the heatwave.
T25p, T75p, and T90p are the 25th, 75th and 90th percentile of daily
maximum temperature, respectively, computed for all days of the year
centered on a 2-week window for the reference period 1961–2018. As the
production of wheat is found to be adversely influenced by the prolonged
high temperatures occurring in the three months prior to harvest9, we
computed the HMDI over this target period (referred to as HMDI3) for
individual years.
Since we aim to assess the forecast systems skill at the multi-annual

timescale, the forecasted HMDI3 and its corresponding observed values
are averaged over 5 years. For example, for the forecast initialized on
November 1960, the multi-annual average of HMDI3 (forecast years 1–5)
for a specific region, where the harvest is performed in July is the average
of the 1961–1965 July HMDI3 values, and for the forecast initialized on
November 1961, the average is obtained with the 1962–1966 July HMDI3
values, and so on. Values greater than zero represent a heatwave, where
low (high) values present low-intensity (high-intensity) heatwave events.
Subsequently, the forecasts are calibrated in cross-validation mode

using the variance inflation technique presented in Doblas-Reyes et al.39.
The inflation approach adjusts the forecasted indices to have a similar
interannual variance to that of the reference dataset at every grid point
and by preserving the ensemble-mean correlation between the forecast
and reference dataset. In this case, the Gaussian assumption is a limitation
of the approach because the estimated indices can be non-Gaussian. For
instance, HMDI has a skewed distribution, primarily due to the finite left-
end bound and a right skewness with a heavy/exponential tail. For this
reason, a square root transformation of the HMDI was applied prior to
calibration. A detailed description of the steps involved in the computation
of the indices is present in the supplementary material.
Both the SPEI6 and HMDI3 indices are evaluated over the wheat-

producing areas for both the forecasts and observation. The crop calendar
for this assessment has been retrieved from MIRCA200040. It provides the
harvest months of wheat globally. For each grid box, it is important to note
that the evaluation matches the period of the harvest (see Supplementary
Fig. 1) and therefore, the evaluation will correspond to different times of
the year for different regions.

Skill scores and reliability diagram
We perform the skill assessment using the ranked probability score (RPS)
and the Continuous Ranked probability score (CRPS). RPS is the squared
distance between the cumulative probabilities of the categorical forecast
(tercile events in our case) and its corresponding observational reference,

whereas CRPS measures the integrated squared difference between the
forecast and observed cumulative distribution function. Often, it is of
interest to evaluate forecasts with respect to a baseline. This baseline is
usually a simpler and/or cheaper alternative (e.g., climatology). Such an
assessment provides users with information on the added value of the
decadal prediction system against this alternative approach. For this
reason, the probabilistic skill measures are reformulated as skill scores
(RPSS, CRPSS) by comparing the score obtained from the decadal forecasts
to the corresponding score obtained from a reference forecast, in our case
a climatological forecast.
However, probabilistic measures such as the RPSS and CRPSS require a

large ensemble size to produce robust results. For example, Müller et al.41

and Weigel et al.42 have shown that the skill as measured by probabilistic
metrics such as the RPSS and CRPSS is strongly influenced by the ensemble
size, with lower estimates being associated with smaller ensemble size. To
address this, we use the fair version of these skill scores43. Fair scores
(FRPSS and FCRPSS) provide an estimate of what the skill would be if the
forecast system had an infinite number of ensemble members. The skill
score is 1 for a perfect forecast and 0 for the forecasts that do not perform
any better than the reference forecast. Negative values indicate that the
forecast system performs worse than the reference.
Aside from the probabilistic skill measures, another crucial aspect, from a

user perspective, is the reliability of the forecast system. The reliability
diagram is the tool most commonly used to assess the reliability of decadal
climate predictions. The reliability diagram aims at evaluating whether the
forecast probabilities match the observed relative frequencies of occur-
rences. For example, events forecasted to occur 70% of the time should
occur, on average, 70% of the time such forecast is issued. Evaluating the
reliability is a critical step, as it allows users to assess whether they can trust
the probabilities of the prediction system.
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