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Neglecting irrigation contributes to the simulated summertime
warm-and-dry bias in the central United States
Yun Qian 1✉, Zhao Yang1, Zhe Feng 1, Ying Liu 1, William I. Gustafson Jr. 1, Larry K. Berg 1, Maoyi Huang1, Ben Yang 2 and
Hsi-Yen Ma3

A vast number of weather forecast and climate models have a common warm-and-dry bias, accompanied by the underestimation
of evapotranspiration and overestimation of surface net radiation, over the central United States during boreal summer. Various
theories have been proposed to explain these biases, but no studies have linked the biases with the missing representation of
human perturbations, such as irrigation. Here we argue that neglecting the impact of irrigation contributes to the longstanding
warm surface temperature and lack of precipitation biases over this region. By using convection-permitting multi-season
simulations over the contiguous United States coupled with an operational-like irrigation scheme, we show that irrigation increases
surface evapotranspiration and decreases surface temperature by increasing evaporative fraction. By increasing the frequency of
mesoscale convective systems, irrigation reduces the summertime model precipitation deficit and improves the simulated
precipitation diurnal cycle over the Great Plains. The increased precipitation also alleviates the warm bias in our simulation setup,
likely by damping the positive feedback between soil moisture and temperature.
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INTRODUCTION
In spite of continued improvements in the representation of
physical processes and the unrelenting increase in spatial
resolution, climate models still suffer from persistent biases in a
number of key variables including precipitation and temperature.
One particular bias common in a vast number of weather forecast
and climate models is a too warm lower troposphere over the
central United States1–7. The warm bias is severest over the US
Great Plains and most significant during the boreal summer. Based
on the results from 19 Coupled Model Intercomparison Project
(CMIP) models, there is a robust dependence of the lower
tropospheric warm bias along with a precipitation deficit leading
the warm bias over this region1. Studies also show that the warm
bias and precipitation deficit, hereafter referred to as the warm-
and-dry bias, is especially severe over the dry soil regime where
the strength of land–atmosphere interactions is the strongest2.
Given the nature of this bias and the unequivocal importance of
the surface temperature and precipitation for both weather
forecasting and climate applications, there is an urgent need to
fully understand the bias origin.
Previous studies have proposed various theories and hypoth-

eses explaining the warm-and-dry bias in atmospheric models
over the central United States, including the Great Plains and the
Midwest. Some studies posited the inability for coarse resolution
models to simulate mesoscale convective systems (MCS) as a
possible explanation for the precipitation deficit over the Great
Plains1,3. MCSs account for over 50% of warm season precipitation
in the central United States8. Indeed, underestimated convective
clouds could result in excessive downward shortwave radiation
and hence enhanced heating of the surface layer4. Furthermore,
lack of prolonged and intense precipitation from MCSs could lead
to drier soils and hence overestimated Bowen ratios, further
enhancing the excess surface heating. A deficit in evapotranspira-
tion in the CMIP5 models has been documented, spatially

coincident over regions with a warm-and-dry bias5. Further
complicating the land-surface feedback to precipitation, the role
of soil moisture on local precipitation can be positive or negative,
depending on the large-scale atmospheric environment and other
factors9,10.
To untangle the inconclusive understanding of the mid-latitude

warm bias, the CAUSES (Clouds Above the United States and
Errors at the Surface) project was established, aiming to quantify
how the physical processes associated with radiation, clouds, and
land–atmosphere interactions contribute to the warm bias in the
climate and weather forecast models, with a focus over the US
Midwest and Great Plains2,6,11. Largely underestimated evapora-
tive fraction (EF, defined as the ratio of latent heat flux to the sum
of sensible plus latent heat fluxes) has been attributed as the
dominant source of error in models with a large warm bias2. The
net surface shortwave radiation is found to be overestimated in all
models, primarily due to model underestimation of deep
convective clouds11. Further, most models fail to capture the
observed nocturnal precipitation peak over the Great Plains
during the warm seasons, which is primarily related to propagat-
ing MCSs12. MCSs play a significant role in the climate system,
because they produce prolific rainfall, which changes the energy
and moisture distribution. Due to the large parameterization
uncertainties associated with convection processes, climate
models with coarse resolution often suffer from large biases in
simulating the amount, intensity, location, and frequency of
precipitation13,14, particularly when associated with MCSs. Failing
to represent MCSs may also result in different land-surface
response, as MCS precipitation may penetrate deeper into the
soil, whereas non-MCS precipitation usually exists in shallower
layers and evaporates more quickly, leading to drastically different
land–atmosphere feedbacks15.
Irrigation, by artificially adding water over pasture or farm land

when needed, perturbs the surface water and energy budgets,

1Pacific Northwest National Laboratory, Richland, Washington, USA. 2School of Atmospheric Sciences, Nanjing University, Nanjing, China. 3Lawrence Livermore National
Laboratory, Livermore, California, USA. ✉email: yun.qian@pnnl.gov

www.nature.com/npjclimatsci

Published in partnership with CECCR at King Abdulaziz University

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41612-020-00135-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41612-020-00135-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41612-020-00135-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41612-020-00135-w&domain=pdf
http://orcid.org/0000-0003-4821-1934
http://orcid.org/0000-0003-4821-1934
http://orcid.org/0000-0003-4821-1934
http://orcid.org/0000-0003-4821-1934
http://orcid.org/0000-0003-4821-1934
http://orcid.org/0000-0002-7540-9017
http://orcid.org/0000-0002-7540-9017
http://orcid.org/0000-0002-7540-9017
http://orcid.org/0000-0002-7540-9017
http://orcid.org/0000-0002-7540-9017
http://orcid.org/0000-0001-5685-7423
http://orcid.org/0000-0001-5685-7423
http://orcid.org/0000-0001-5685-7423
http://orcid.org/0000-0001-5685-7423
http://orcid.org/0000-0001-5685-7423
http://orcid.org/0000-0001-9927-1393
http://orcid.org/0000-0001-9927-1393
http://orcid.org/0000-0001-9927-1393
http://orcid.org/0000-0001-9927-1393
http://orcid.org/0000-0001-9927-1393
http://orcid.org/0000-0002-3362-9492
http://orcid.org/0000-0002-3362-9492
http://orcid.org/0000-0002-3362-9492
http://orcid.org/0000-0002-3362-9492
http://orcid.org/0000-0002-3362-9492
http://orcid.org/0000-0002-0711-7581
http://orcid.org/0000-0002-0711-7581
http://orcid.org/0000-0002-0711-7581
http://orcid.org/0000-0002-0711-7581
http://orcid.org/0000-0002-0711-7581
https://doi.org/10.1038/s41612-020-00135-w
mailto:yun.qian@pnnl.gov
www.nature.com/npjclimatsci


and could possibly modulate local to regional atmospheric
processes and land–atmosphere interactions16. Irrigation is critical
in meeting water demand and ensuring high crop yields over
regions lacking sufficient rainfall during the growing season. In
2012, irrigated farms accounted for ~50% of the total value of US
crop sales on 28% of the US harvested cropland17. In 2015, total
irrigation withdrawals accounted for 42% of total freshwater
withdrawals in the United States and over 80% of water
consumptive use was for irrigation purposes18.
Irrigation affects the local surface energy and water budgets19

and planetary boundary layer (PBL) evolution. Many studies have
attempted to quantify the impact of irrigation on weather, climate,
and hydrology at the local and continental scales16,20–23. The
processes by which irrigation affects convective cloud formation
and MCSs are complicated and uncertain due to the large
uncertainties associated with convective parameterization and
complex multi-scale interactions between soil moisture, land-
surface heterogeneity, and the atmosphere.
Previous observational or modeling studies16,22,24–27 focusing

on irrigation impact over the Central Plains have either
qualitatively or quantitatively shown that irrigation increases
precipitation over or downwind of the irrigated regions and,
therefore, reduces the dry biases over the Great Plains. However,
to the best of our knowledge, no previous study has linked
irrigation with summer MCSs over the Central United States.
Simulations of MCSs are a longstanding challenge for climate
simulations and models with parameterized convection. Tradi-
tional global or regional climate models (GCMs and RCMs
hereafter) with parameterized convection cannot simulate MCSs,
because convection parameterizations used in coarse models are
not designed to handle organized convection and the associated
multi-scale interactions. Failure of GCMs or RCMs to simulate MCSs
is reflected in an erroneous diurnal cycle of precipitation and a
large warm bias in the near-surface temperature1. Although
convection-permitting climate models can simulate realistic MCSs,
they still exhibit a large summertime dry bias over the Midwest28.
For example, a long-term RCM simulation over Contiguous United
States (CONUS) at a convective-resolving scale found that the
simulated number of MCSs in the central United States during
summer are underestimated by more than 70% and the MCS
precipitation amount is only about 50% of the observed quantity.
In this study, we conduct convection-permitting simulations for

two growing seasons over the CONUS using the Weather Research
and Forecasting (WRF) model coupled with an operational-like
irrigation scheme within the Noah land-surface model. We aim to
test the hypothesis that by considering irrigation at the
convection-permitting scale, enabling the more realistic charac-
terization of both the land surface and the convection processes
would yield better representation of land–atmosphere interac-
tions over the Great Plains and potentially alleviate the warm-and-
dry bias over this region. To evaluate that, we have investigated
the impact of irrigation on MCSs, total precipitation, and their
diurnal cycles and surface temperature fields. The goal is to
quantify how much model biases in precipitation and surface air
temperature could be reduced by considering the irrigation effect.

RESULTS
We perform WRF simulations with 4 km horizontal grid spacing,
which permits turning off the convection parameterization. Model
configuration settings, such as the physics parameterizations and
forcing data, are described in the “Methods” section. Our
experimental design, highlighted by use of convection-
permitting resolution and a large domain covering the entire
CONUS without nudging applied to the simulations, facilitates the
interaction between the land surface and atmospheric processes
within a dynamically evolving system. The operational-like
dynamic irrigation scheme is described in the “Methods” section.

The irrigation area and irrigated water amount is shown in
Supplementary Fig. 1 of the Supplementary Material.

Irrigation impact on MCS
Comparing to observations, the dry bias shown in the control
simulation is reduced by irrigation, mainly through more MCS
precipitation. The seasons from 2011 and 2012 are averaged
together in our analyses unless otherwise noted. The MCSs in
observations and model simulations are tracked using the Flexible
object TRacKeR (FLEXTRKR) algorithm based on observed and
simulated three-dimensional (3D) radar reflectivity and top-of-
atmosphere infrared brightness temperature29,30. Details of the
observations and tracking methodology are provided in the
“Methods” section. The observations show significant MCS
precipitation over the northern Great Plains and the Midwest
during summer, with maximum values larger than 2mm day−1.
The MCS precipitation is underestimated in the control (CTL)
simulation without irrigation, especially over the central Great
Plains (Fig. 1a–c). This underestimated summer MCS precipitation
is consistent with previous convection-permitting climate simula-
tions28,29. Adding irrigation clearly reduces the dry bias in MCS
precipitation (Fig. 1c–e). Large regions within the central Great
Plains show more than a doubling of MCS precipitation compared
to the CTL simulations, particularly over areas where CTL
significantly underestimates observed MCS rainfall (western and
central portion of the magenta box). The probability density
function shows an average increase of ~65% (green solid line in
the inset plot of Fig. 1f), with a long tail of up to 800% relative
increase in some areas. Summer MCSs over the Great Plains
commonly occur under weak synoptic forcing, with weak low-
level convergence acting on the warm humid air associated with
the low-level jet (LLJ)12. Initiation of summer MCSs are likely more
sensitive to local or regional disturbances, particularly within the
boundary layer.
Observations show a very strong diurnal cycle of summer MCS

precipitation over the Central United States (identified by the
magenta box in Fig. 1) spanning 105°W to 85°W (Fig. 2a, d). MCS
precipitation peaks around midnight or early morning over most
of areas in the central United States. Most MCSs initiate during
local late-afternoon hours during summer. Observations also show
a clear eastward propagation of the MCS precipitation over the
Great Plains. Many MCSs initiate just east of the foothills of the
Rocky Mountains (105°W) where the terrain gradient is sharpest,
whereas others initiate over the Great Plains (Fig. 2a, d). Compared
with the observations, the simulated MCS precipitation in the
control experiment is much smaller in both area and magnitude
(Fig. 2b, e). Without irrigation, the model fails to capture the
maximum MCS precipitation over much of the central Great Plains.
Even over the eastern portion of the Great Plains (east of 95°W)
the model underestimates the magnitude of the MCS precipita-
tion diurnal cycle, with delayed initiation time, which could
subsequently affect the soil moisture and land–atmosphere–cloud
interactions.
With irrigation turned on, the total number of simulated MCS

events over the Central U.S. increases from 38 to 63 (66%
increase), closer to the observed 95 MCS events during the two
summer seasons. As a result of more MCS events, MCS
precipitation frequency is substantially increased, resulting in a
reduction of the overall dry bias versus observations (see
Supplementary Figs. 2 and 3). Irrigation simulations (IRI) sig-
nificantly increase MCS precipitation originating from the Rocky
Mountain foothills by more than three times between late
afternoon to early morning hours compared to the CTL (Fig. 2c,
f). Other characteristics associated with MCSs, including MCS
lifetime, precipitation feature size, mean rain rate, and convective
intensity, are also examined but show no clear difference between
the irrigation and control simulations (Fig. 3). Evidently, irrigation
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increases the MCS precipitation amount over and downwind of
the irrigated areas via more frequent MCS events rather than
changing the internal dynamics and structure of MCSs. Compared
with the CTL, the IRI shows a much stronger eastward propagation
of the MCS precipitation, particularly for MCSs initiated near the
Rocky Mountain foothills, which is much more consistent with the
observations and suggests a significant improvement of the MCS
precipitation diurnal cycle (Fig. 2). As nocturnal peak precipitation
is primarily contributed by MCSs in the Great Plains during
summer31–35, our results suggest irrigation, through improving the
MCS precipitation, plays a very important role in capturing the
observed nocturnal peak precipitation in this region.
Figure 4 shows the comparison of observed and simulated

total precipitation averaged over the central Great Plains (34–47°
N, 105–89°W). To represent the observational uncertainty of
precipitation, we include two precipitation datasets (see “Meth-
ods” for details of the reference precipitation datasets). Averaged

total precipitation peaks around 1900–2000 Local time (LT) for
both summer seasons and declines to a minimum at local noon.
Total precipitation is contributed by both isolated convection
and MCSs, which have different peak hours around late afternoon
(i.e., 1800 LT) and midnight, respectively. MCS precipitation
usually dissipates quickly after sunrise due to weakening of the
nocturnal LLJ36.
GCMs and RCMs with coarse resolution struggle to capture the

diurnal timing of peak precipitation related to propagating
convection in the Great Plains14,37,38. The convection-permitting
simulations here produce more reasonable diurnal cycle of
precipitation compared to convection-parameterized simulations,
although the magnitude of peak rainfall from late afternoon to
evening is still underestimated. Irrigation moves the peak of the
nocturnal rain earlier by 2 h, while maintaining the correct time of
the mid-day minimum, which is more consistent with the
observations. The control simulation without irrigation only

Fig. 1 Spatial distribution of MCS precipitation in June–July–August (JJA) averaging over 2011 and 2012. MCS precipitation from (a) NSSL
Q2 multi-sensor precipitation observations, (b) the control (CTL) simulation, (c) difference between control simulated and observed MCS
precipitation, (d) same as c, except for irrigation (IRI) simulation, (e) irrigation-induced changes, and (f) same as e, except shown in
percentages. The magenta box indicates the region used for the Hovmöller diagram in Fig. 2. The red hatches in e, f denote statistically
significant differences at the 90% interval. The inset in f shows the probability density function of the percentage change over the magenta
box and the green solid line in the inset shows the average change (~65%).
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captures one-third of the observed total rainfall, and the dry bias is
largest for nocturnal peak precipitation, which is mainly controlled
by MCSs.
With irrigation turned on, the total precipitation increases by

20–30% during the strongly precipitating nighttime and by
50–80% during the less precipitating daytime, and the overall
dry bias in the central US region is reduced by 30–50%. The

magnitude of peak precipitation is still significantly underesti-
mated, which suggests irrigation effects can only partially account
for the precipitation deficit over the central United States. Other
biases in the model, such as the LLJ and associated moisture
transport, coupled with land–atmosphere interactions, and various
feedback processes, uncertainties associated with 4 km grid
spacing properly representing shallow convection and convective

Fig. 2 Diurnal cycle of MCS precipitation as a function of longitude. Hovmöller diagram averaged in June–July–August of 2011 (top) and
2012 (bottom). a Observed diurnal variation of MCS precipitation from Stage-IV observations in 2011. b Same as a but from the control
simulation. c Irrigation-induced change in MCS precipitation shown in percentages. d–f are similar as a–c but for 2012. Local time is set to US
Central Time Zone (UTC-06:00). Latitudinally averaged terrain height in the Central United States is shown as the orange line. Labels indicate
locations of the Rocky Mountain foothills and Central United States.

Fig. 3 Comparison of MCS characteristics between observations and control and irrigation simulations. MCS characteristics are shown for
(a) MCS lifetime, (b) MCS precipitation feature (PF) diameter, (c) MCS PF averaged rain rate, and (d) MCS max 40 dBZ convective echo-top
heights (a proxy for convective intensity). Observation (OBS) is in black, control (CTL) is in blue, and irrigation (IRI) simulation in red. Numbers
in the parenthesis indicate the number of MCSs in each dataset. MCSs during JJA for both 2011 and 2012 over the central United States and
Midwest region (magenta box in Fig. 1) are selected for comparison.
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triggering (4 km does not fully resolve isolated convection), and
PBL processes may also contribute to the bias.
To better understand the physical processes impacted by

irrigation and how the changes affect convection and clouds, we
examine the changes in the thermodynamic environments
between the two simulations. First, irrigation increases moist
static energy within the low and middle boundary layer (not
shown). Simulations show that irrigation causes decreases in both
PBL depth and lifting condensation level (LCL), with a spatial
pattern similar to that of changes in surface evapotranspiration
and latent heat flux (not shown). However, the irrigation-induced
decrease in the LCL is greater than that for the PBL depth (Fig. 5a),
leading to more frequent occurrences of lifted air parcels crossing
above the LCL, suggesting that the probability of shallow
convective cloud formation would increase due to irrigation.
Shallow cumulus plays a key role in preconditioning the
atmosphere for deep convection through moistening the lower
free troposphere via detrainment of water vapor from the
boundary layer39.
Convective Available Potential Energy (CAPE), a measure of the

amount of energy available for convection, is an indicator of
atmospheric instability in predicting intensity of convection by
quantifying the uplift potential of an air parcel. In general,
increased moisture at low levels increases CAPE, increasing the
likelihood of convective precipitation40–42. In contrast, a cooler
land surface may enhance convective inhibition (CIN), suppressing
the initiation of deep convection25,40,43,44. By decreasing surface
temperature and increasing moisture, irrigation contributes to
competing effects on the development of convection at local
scales over the irrigated areas (Fig. 5). Downwind of the irrigated
region over the Midwest, there is clear evidence of increased LCL
crossing throughout the afternoon along with decreased CIN,
which favors convective initiation and explains the increased late-
afternoon isolated convection frequency over the northern Great
Plains (Figs. 4b and 5). More frequent late-afternoon convective
initiation, along with more favorable thermodynamic conditions
(increased CAPE and a moister boundary layer) results in more
upscale growth of isolated convection to form MCSs during early
evening hours (Fig. 2). The thermodynamic environmental
changes (Fig. 5) are spatially coherent with the increased daily
average precipitation (see Supplementary Fig. 3). CAPE, CIN, and
LCL crossing during the morning and the middle of the day are
also examined, and we find spatially consistent changes similar to
those in late-afternoon hours (Supplementary Figs. 4 and 5).

Irrigation impact on temperature
Most contemporary global climate and weather forecasting
models exhibit a large systematic warm bias during the
summertime over the Great Plains1–3. Figure 6a shows the 2 m
height surface air temperature bias over CONUS during summer

averaged from CMIP5 GCMs. Our CTL simulation shows a very
similar spatial pattern of warming bias when compared with
PRISM (Fig. 6b). Previous studies4,11 suggest the overestimated net
surface shortwave radiation is the main cause of the warm bias
and errors in simulating clouds (underestimation) are the primary
contributor to the overestimated net surface radiation. This warm
bias also coincides with underestimated evapotranspiration and
EF, soil moisture, and precipitation, which are mainly caused by
the models’ inability to simulate MCSs, besides the models’ cloud-
related radiation errors.
Alternatively, irrigation adds water to croplands and pastures

over large portions of the United States, increasing evapotran-
spiration, EF, and low-level moisture, resulting in an increase in
shallow convective cloud formation and MCS frequency. Surface
cooling results from the repartitioning of net radiation into latent
heat flux at the expense of sensible heat flux. Adding irrigation has
drastically reduced the warming bias by ~1–2 K over the majority
of the United States (Fig. 6c). When compared to in situ
observations collected at the Atmospheric Radiation Measurement
(ARM) Southern Great Plains atmospheric observatory in Okla-
homa, the warm bias is reduced by ~1.2 K when irrigation is
considered19. Given the similar spatial pattern between the
common warm bias in climate models and the cooling effect of
irrigation, we illustrate that the neglect of irrigation partly
accounts for the warm bias in climate models over the central
United States. Our results show that irrigation-induced changes in
surface air temperature, surface fluxes, clouds, and precipitation
are spatially consistent over the majority of the central United
States, suggesting a tight physical link between the surface energy
and water cycle and a strong land–atmosphere–cloud coupling
over the central United States during summer. In addition,
irrigation occurs over a large enough area that it sufficiently
perturbs the associated processes to alter the climate.

DISCUSSION
A vast number of weather forecast and climate models exhibit a
warm-and-dry bias over the central United States during the
boreal summer. The lack of precipitation and soil moisture in the
models, accompanied by underestimated evapotranspiration and
overestimated surface net radiation, can enhance the surface air
temperature bias through land–atmosphere–cloud interac-
tions1,2,16. Our modeling results at convection-permitting resolu-
tion show that irrigation, by adding water to the surface, results in
a more conducive thermodynamic environment for convective
initiation highlighted by increased CAPE over the irrigated region,
higher probability of LCL crossing, and reduced CIN over the
downwind regions. Such changes in the thermodynamic environ-
ment, especially over the downwind regions, facilitate the
formation of shallow convective clouds and late-afternoon
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isolated convection16. The increased isolated convection, through
aggregation and upscale growth, explains the increase in the
number of MCS events and MCS precipitation frequency,
ultimately increasing total precipitation.
Approximately 30–70% of the total precipitation is contributed

by MCSs in the warm season over the Central United States36,45.
Observations show that both the intensity and frequency of MCSs
have significantly increased in the past several decades over the
this region36. Considering (1) irrigation water use has increased
significantly in the past several decades and (2) our results in this
study indicate irrigation increases the MCS frequency and related
precipitation, we posit that irrigation may have contributed to the
observed increase in MCS activity and associated extreme weather
events, since MCSs are the largest type of convective storm and
many MCSs also produce extreme weather such as flooding, hail,

strong winds, and sometimes even tornados over the central
United States46.
Surface cooling results from the repartitioning of net radiation

into latent heat flux at the expense of sensible heat flux to the first
order. Moreover, by more realistically simulating MCSs, the warm-
and-dry bias induced through the positive feedback between soil
moisture and air temperature is improved. Given the coherent
spatial structure and opposite sign in surface temperature
between the common model bias and irrigation effect, we argue
that including irrigation can reduce model bias at a process level
in simulations of surface air temperature and precipitation
including its diurnal cycle.
In this study, irrigation is triggered in the model when root zone

soil moisture availability (MA) is below a specific threshold16. We
assume water availability for irrigation from surface or under-
ground is unlimited. In reality, irrigation water use could be

Fig. 5 Irrigation-induced changes in thermodynamic variables in the late afternoon (1500–1800 LT). a Difference between irrigation-
induced change in LCL and changes in PBL height. Positive values indicate a higher probability of LCL crossing and more low-level clouds,
b irrigation-induced change in CAPE, c irrigation-induced change in CIN. Regions with statistically significant changes at the 10% level are
indicated with striping.
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modulated by various factors, such as irrigation methods (e.g.,
sprinkler, drip, or flood irrigation), water availability, cost, or other
logistical issues, leading to uncertainty in the amount of irrigation
water to apply in the model. However, this will not qualitatively
change the overall conclusion of this study.
An important methodological decision for this study is the use

of convection-permitting grid spacing. This enables more
realistic simulation of convective processes by not needing to
use a deep convection parameterization. These parameteriza-
tions have known biases and issues properly responding to
CAPE and CIN perturbations to provide accurate representations
of large-scale convection, e.g., convection parameterizations do
not accurately reproduce the precipitation diurnal cycle47 and
thus could impact the timing of the irrigation. The associated
trade-off of increasing the accuracy of the precipitation
processes is a large increase in computation cost. We thus only
performed simulations for two warm seasons in 2011 and 2012.
Given that the differences from the irrigation effect are less than
20% between these two seasons, we believe the overall
conclusions will not change if the simulation were to be

extended to more years. Future studies should focus on
precipitation change over the east coast, given irrigation-
induced precipitation change is quite large there, as well as
the changes in circulation and low-level moisture transport.

METHODS
Models
The Advanced Research WRF version 3.8.1 was used in this study with
physical parameterization summarized in the Table 1 48. The model domain
covers the contiguous United States plus the western and eastern costal

Fig. 6 Spatial pattern of temperature biases in global and regional climate simulations and irrigation-induced cooling. a Systematic 2 m
air temperature bias in global climate models (see details of GCMs and reference dataset in the “Methods”), b 2m air temperature bias in the
control simulation against PRISM observations, and c irrigation-induced cooling simulated in this study. Only areas with a statistically
significant bias at 95% confidence intervals are plotted in a, while areas exceeding the 95% confidence interval are shown in hatches in c.

Table 1. Parameterizations used in the WRF model setup.

Microphysics Thompson55

Radiation RRTMG56

Planetary boundary layer MYNN57

Land surface model Noah58

Y. Qian et al.
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oceans, with horizontal grid spacing of 4 km and 65 vertical levels from the
surface to 50 hPa. The initial atmospheric and soil conditions, as well as
three-hourly lateral boundary conditions were obtained from NCEP FNL
(Final) Operational Global analysis data. The model outputs were archived
hourly to enable tracking of MCSs. Two sets of simulations, with irrigation
on or off, respectively, were conducted from March 15 to 31 October for
both 2011 and 2012, with each simulation extending continuously for the
entire respective period.

Irrigation scheme
An operational-like irrigation scheme was coupled to the land surface
component (i.e., Noah) of the WRF model to mimic sprinkler-type irrigation
over the contiguous United States16. The reason for choosing sprinkler
over flooding and dripping is that by far it is still the most common
irrigation method used in the United States. The land use and land cover
information in the model is based on the Moderate Resolution Imaging
Spectroradiometer (MODIS) 21-category data following the International
Geosphere-Biosphere Programme classification. A global map of potential
irrigated areas at a resolution of 5 arc min, provided by the Food and
Agriculture Organization49, is incorporated and regridded to the model
grid (4 km grid spacing). For a model grid cell to be possibly irrigated, the
land cover type needs to be cropland or pastures with irrigation fraction
greater than zero.
Irrigation is triggered only during the growing season (April–October)

when soil MA is below a certain threshold. Growing season is defined such
that green vegetation fraction (GVF) needs to be greater than a threshold
(GVFthresh) defined following the equation:

GVFthresh ¼ GVFmin þ 0:4 ´ ðGVFmax � GVFminÞ (1)

where GVFmin and GVFmax are the minimum and maximum monthly GVF
based on MODIS climatological value. During growing seasons, irrigation
will be triggered when root zone soil moisture availability (MA) is <0.5. The
moisture availability is defined as follows:

MA ¼ SM� SMWP

SMFC � SMWP
(2)

where SM is the soil moisture content, SMFC and SMWP are the soil
moisture field capacity and wilting point, respectively.
The amount of water irrigated is calculated as the difference between

soil moisture holding capacity and current soil moisture content over
the soil column at the time when irrigation is triggered. Then, irrigated
water is distributed evenly and behaves like precipitation to mimic
sprinkler irrigation through a 4 h time window starting from 0600 to
1000 LT.

Observations
The observations used to identify MCSs in this study are similar to those
used by Feng et al.29. The 3D mosaic Next-Generation Radar radar
reflectivity dataset over CONUS is obtained from the National Severe Storm
Laboratory Multi-Radar Multi-Sensor (MRMS) system50. The MRMS 3D radar
reflectivity has spatiotemporal resolution of 1 and 5min, respectively.
Quantitative precipitation estimates using high-resolution (1 km) mosaic
radar data with rain gauge network bias correction, known as the Q2
precipitation product (obtained from https://www.nssl.noaa.gov/projects/
mrms/), are also available every hour. The merged geostationary satellite
brightness temperature (Tb) data51 (https://doi.org/10.5067/
P4HZB9N27EKU) are obtained from the NASA Goddard Earth Sciences
Data and Information Services Center. The satellite dataset has spatio-
temporal resolution of 4 km and 30min, respectively. The MRMS 3D radar
and Q2 datasets are regridded to match the satellite 4 km grid every hour,
which is used to track MCSs. A second high-resolution precipitation
product from the Stage-IV multi-sensor precipitation dataset (https://doi.
org/10.5065/D6PG1QDD) is also used in this study. The Stage-IV
precipitation is produced by the 12 River Forecast Centers in the
continental United States, available at 4 km every hour52.

MCS tracking
Long-lived and intense MCSs are tracked using the FLEXTRKR algorithm
described in detail by Feng et al.29. FLEXTRKR uses Tb to identify and
track large cold-cloud systems associated with deep convection, and
further identifies MCS based on the duration, size and intensity of the
radar echo signatures. MCS is defined as a cold-cloud system that
exceeds a horizontal area of 60,000 km2, with a precipitation feature

extending longer than 100 km in any direction, and an embedded
convective radar echo stronger than 50 dBZ. All of these criteria must
be met continuously for longer than 6 h. These convective systems are
designated as long-lived and intense MCSs, and they account for 46%
of observed warm-season total rainfall in 201129. The same criteria
were applied to the model simulated radar reflectivity and outgoing
longwave radiation, which was converted to equivalent Tb, for
consistent MCS identification and tracking.

GCMs and reference dataset
The GCM simulations are from the fifth phase of the CMIP553 Atmospheric
Model Intercomparison Project experiment. Thirty model simulations are
obtained from the Earth System Grid Federation (https://esgf-node.llnl.
gov/projects/esgf-llnl/). Only one ensemble member (r1i1p1) from each
model is used. The observed monthly 2 m air temperature is station data
from the University of Delaware Air Temperature version 554. All data are
interpolated onto 1° × 1° horizontal degree.

DATA AVAILABILITY
NCEP FNL datasets are available at https://rda.ucar.edu/datasets/ds083.2/. The
irrigation fraction map is available at http://www.fao.org/aquastat/en/geospatial-
information/global-maps-irrigated-areas. Observed MRMS precipitation estimation is
available at https://www.nssl.noaa.gov/projects/mrms/. The merged geostationary
satellite brightness temperature (Tb) data55 is available at https://doi.org/10.5067/
P4HZB9N27EKU. Stage-IV precipitation is available at https://doi.org/10.5065/
D6PG1QDD. All the GCM results are available at the Earth System Grid Federation
(ESGF) from https://esgf-node.llnl.gov/projects/esgf-llnl/. The datasets generated and/
or analyzed during the current study are available in the repository at https://portal.
nersc.gov/project/m1660/yang560/IRI_MCS/.
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