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Weak hydrological sensitivity to temperature change over
land, independent of climate forcing
B. H. Samset 1, G. Myhre 1, P. M. Forster 2, Ø. Hodnebrog1, T. Andrews3, O. Boucher 4, G. Faluvegi5, D. Fläschner6, M. Kasoar 7,
V. Kharin8, A. Kirkevåg9, J.-F. Lamarque10, D. Olivié9, T. B. Richardson2, D. Shindell 11, T. Takemura 12 and A. Voulgarakis7

We present the global and regional hydrological sensitivity (HS) to surface temperature changes, for perturbations to CO2, CH4,
sulfate and black carbon concentrations, and solar irradiance. Based on results from ten climate models, we show how modeled
global mean precipitation increases by 2–3% per kelvin of global mean surface warming, independent of driver, when the effects of
rapid adjustments are removed. Previously reported differences in response between drivers are therefore mainly ascribable to
rapid atmospheric adjustment processes. All models show a sharp contrast in behavior over land and over ocean, with a strong
surface temperature-driven (slow) ocean HS of 3–5%/K, while the slow land HS is only 0–2%/K. Separating the response into
convective and large-scale cloud processes, we find larger inter-model differences, in particular over land regions. Large-scale
precipitation changes are most relevant at high latitudes, while the equatorial HS is dominated by convective precipitation changes.
Black carbon stands out as the driver with the largest inter-model slow HS variability, and also the strongest contrast between a
weak land and strong sea response. We identify a particular need for model investigations and observational constraints on
convective precipitation in the Arctic, and large-scale precipitation around the Equator.
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INTRODUCTION
As the global surface temperature changes, so will patterns and
rates of precipitation.1–3 Theoretically, these changes can be
understood in terms of changes to the energy balance of the
atmosphere, caused by introducing drivers of climate change,
such as greenhouse gases, aerosols and altered insolation.4–6

Climate models, however, disagree strongly in their prediction of
precipitation changes, both for historical and future emission
pathways, and per degree of surface warming in idealized
experiments.7–10 The latter value, often termed the apparent
hydrological sensitivity, has also been found to differ substantially
between climate drivers.4,11–14 Further, there is a strong contrast
between modeled and observed hydrological sensitivity (HS)
values,15 though this may also be ascribed to uncertainties in the
observations.
Multiple studies have found that the precipitation response to a

perturbation, such as an increase in greenhouse gas concentra-
tions, may usefully be divided into two broad categories with
different scaling properties: a fast change, associated with an
initial radiative and thermal reorganization of the atmospheric
column combined with rapid adjustments to cloud fractions and
microphysics, and a slower, response-driven change, associated
with an altered global surface temperature.16–20 The slow change
mainly scales with surface temperature, which in turn scales
closely with top-of-atmosphere radiative forcing, while the rapid
adjustments scale with the amount of additional energy absorbed
through the atmospheric column.11–13 In particular, black carbon

has been noted as an anthropogenic climate driver that is
significantly different from the others, due mainly to its high
atmospheric absorption and regionally heterogeneous radiative
forcing.13

Subtracting the rapid adjustments, the slow, thermal hydro-
logical sensitivity alone has been found to be more similar
between models.9 This indicates a greater universality in the
modeled connection between global surface temperature and
global precipitation, than for the processes that link precipitation
and rapid adjustments. As the physical mechanisms leading to
surface temperature change also vary between drivers, however, it
is relevant to investigate what fraction of the remaining inter-
model differences in slow HS that may be ascribed to global or
regional differences between climate drivers.
Recently, a range of global climate models performed idealized,

global step perturbations to a range of climate drivers, as part of
the Precipitation Driver and Response Model Intercomparison
Project (PDRMIP).13,20 See Methods for a full list. As models
performed both fully ocean–atmosphere coupled simulations and
prescribed sea-surface temperature (fSST) atmospheric simula-
tions, it is possible to extract and compare the thermal
hydrological sensitivity between drivers. Here, we show both the
total (sometimes labeled apparent) and slow hydrological
sensitivities, globally and for land and ocean regions separately,
and attempt to disentangle the differences between responses to
greenhouse gases, aerosol and solar climate forcing. An initial
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finding is that while the global mean slow HS values for different
drivers are indeed similar, they vary greatly between regions.
We also study the relative contribution to the responses from

modeled convective and large-scale processes, which are sepa-
rately treated and differently parametrized in current generation
climate models. As an example, recent literature shows that
convection-permitting models yield significant improvements
over parametrized treatments for reproducing climate statistics.21

We find notable differences in model diversity of convective and
large-scale precipitation responses in different regions, indicating
that this may be a key factor behind the previously documented
inter-model differences in future precipitation changes.8

RESULTS
In the following, we will first present the global mean, multi-model
hydrological sensitivities. Then we break them down into land,
ocean and zonal mean responses, and study how the models sub-
divide the total response between convective and large-scale
precipitation. For the impacts of climate change on society,
relative changes to precipitation are what matters. For this reason,
and to reduce reliance on differences in the baseline, we mainly
show precipitation change in percent relative to the preindustrial
baseline. To understand the full model treatment of precipitation,
including water transport, absolute changes are also relevant. We
therefore include these towards the end of the analysis.
Figure 1 shows the global, annual multi-model mean (and

median) apparent and slow hydrological sensitivities. For the
apparent response, we find the pattern previously shown and
discussed in,13 with a stronger HS for aerosols and insolation than
for greenhouse gas perturbations, and a negative response for BC
x 10. Briefly, this can be ascribed to atmospheric absorption, which
tends to stabilize the atmosphere and reduce precipitation on fast
timescales. Black carbon is the clearest example, where the early
stabilization largely dominates over the slow, surface temperature-
induced precipitation increase. CO2 also has some degree of
absorption and stabilization, while insolation and purely scattering
aerosols have very little. Within the uncertainty range, we find no
discernable land/ocean contrast in the apparent HS for any of the
climate drivers. Note the broad inter-model spread in BC HS. The
relative standard deviation (RSD, defined as the standard
deviation among the ten models divided by the multi-model

mean) for the global mean BC × 10 apparent HS is 80%, while for
the other drivers it is in the range of 10–20%.
Subtracting the rapid adjustments, we find the slow HS shown

in Fig. 1b. Here, all drivers show a consistent HS of around 2.5%/K,
with a RSD of 5–15% depending on the climate forcing agent,
except BC × 10 with an RSD of 30%. Furthermore, BC × 10 now
yields a positive response, demonstrating the importance of the
rapid adjustments for this climate driver. The land/ocean contrast
in the slow HS is striking. Over oceans, the HS ranges from 3%/K
for CO2 × 2, to 4%/K for BC × 10. Within the uncertainty range
there is no indication of a stronger response for aerosols than for
greenhouse gases or solar forcing. Over land, the HS ranges from
1%/K for CO2 × 2 and SO4 × 5, to a multi-model mean consistent
with no response for BC × 10. Here, however, there is significant
inter-model spread, as we discuss below.
Summarizing Fig. 1, we find no significant difference between

the climate drivers in their global slow, surface temperature-driven
HS. There is, however, a strong land/ocean contrast, with the latter
having a markedly stronger response than the former.
In Fig. 2, we show the slow HS for all models, globally and for

land and ocean regions separately. We also indicate the
contribution to the slow HS arising from convective precipitation,
and that from large-scale clouds.
Looking first at the global response to CO2 × 2 (top, left), we

note how the slow HS varies little between models, while the
fraction of the slow HS from convective precipitation ranges from
12 to 92%. Broadly, a model that has a high contribution from
convective precipitation in its CO2 × 2 response, also has it for the
other drivers, indicating that the split between precipitation types
is a model-specific rather than forcing-specific feature. Two
models (IPSL, CanESM2) show particularly strong contributions
from large-scale precipitation. For IPSL, this can be traced to a
strong, positive equatorial large-scale HS over oceans, and a broad
but weaker positive HS over the Southern Ocean regions. For
CanESM2, the large-scale HS is more similar in pattern to the
model mean, but generally stronger. No particular feature has
been identified across models with similar large-scale HS fractions
that allows us to predict this split based on circulation changes or
regional responses.
The ocean HS, as expected, is very similar to the global HS, as it

dominates the absolute precipitation changes. Over land, the
inter-model spread is markedly larger, and for most models the
standard deviation of the annual means cross the zero line.
Several models even show negative convective slow HS, but not
with statistical significance. For BC × 10, the tendency is towards a
strongly negative convective slow HS (1–3%/K), in some models
offset by a positive change in large-scale precipitation, such that
the multi-model mean HS comes out close to zero.
In Fig. 3, we show the geographic pattern of multi-model mean

HS values (corrected for the land area temperature response in the
fSST simulations, see Discussion). Hatched regions on the maps
indicate where the multi-model mean is more than one standard
deviation away from zero. Looking first at CO2 × 2, we find a HS
that is positive in most regions, albeit with a strength that varies
from zero over some land areas, to almost 30%/K in the inter-
tropical convergence zone (ITCZ). Northern and southern Africa
see a negative slow HS, as do a range of sub-tropical regions, likely
due to tropical expansion in the models. For CH4 × 3, we find a
very similar pattern to CO2 × 2. This response is more noisy,
however, likely simply due to the weaker radiative forcing of this
perturbation.13 The insolation perturbation is again very similar in
pattern to CO2 × 2, including the hints of reductions in sub-tropical
precipitation due to tropical expansion.
For BC × 10, the pattern is very noisy, and there are very few

regions with a multi-model mean more than one standard
deviation away from zero. This is partly due to the weaker surface
temperature change for the PDRMIP BC × 10 perturbation, but as
this surface temperature change is comparable to the CH4 × 3
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Fig. 1 Multi-model hydrological sensitivities, globally (black) and
over land (green) and ocean (red) regions. a Apparent HS. b Slow HS.
Error bars show one standard deviation across the model sample.
Crosses indicate the multi-model median value
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case, it is unlikely to be the only reason. Rather, we here see the
full effects of the inter-model differences in modeling the
precipitation response to BC. See further discussion below. We
discuss the main multi-model trends here, but the low significance
of the results should be kept in mind.
The broad pattern of BC × 10 is still similar to that found in

response to greenhouse gas perturbations and the Sol + 2%, but
the amplitudes are larger. In particular the North African
precipitation reduction is very strong, compensated by a
moistening of the South–East Asian monsoon region. The Arctic/
Antarctic responses are also large, and positive. The amplitude
and general variability of the slow HS pattern may also be ascribed
to the weakness of the temperature response.
One pattern seen for BC × 10 that differs from the greenhouse

gas and solar forcings, is a notable reduction in precipitation over
both the Pacific and the Atlantic just south of the Equator. A
possible contributor to this is the hemispherical asymmetry in the
BC perturbation. Such a feature is also seen for SO4 × 5, which

imposes a similar inter-hemispheric difference. Otherwise, the
sulfate forcing also exhibits a pattern similar to the other forcers
both in terms of regional variations, magnitude and robustness.
Figure 4 presents the multi-model zonal mean slow HS for all

drivers. In addition, we separate between land and ocean, and
overlay the contributions to the HS from convective and large-
scale precipitation changes. This enables us to disentangle the
factors contributing to the global mean results shown in Fig. 1b,
and identify where the differences between drivers and regions
originate.
Looking first at the global HS for CO2 × 2 (upper left), we find

that the total response of 2.4%/K (black) mainly arises from the
equatorial and polar regions. The mid latitudes show very modest
slow HS. Further, the Arctic and Antarctic responses are mainly
due to changes in large-scale precipitation (red), while the
changes in the equatorial region are dominated by convective
precipitation (blue). However, the multi-model spread is sizeable,
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Fig. 2 Slow hydrological sensitivity in all PDRMIP models, subdivided into convective and large-scale precipitation response fractions.
Columns show global, land and ocean regions, while the rows show the five climate drivers. The multi-model mean for each region and driver
is shown in blue. Error bars indicate one standard deviation of the multi-model mean for the total response
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as indicated by the gray hatching which shows the 25th–75th
percentile range for the global HS.
Separating the global response into land and ocean (2nd and

3rd rows), we find that for a CO2 perturbation, the convective
precipitation HS over land does not change, while the entire
equatorial, convectively driven HS contribution comes from the
ocean (ITCZ) regions. The large-scale precipitation changes in
polar regions can be seen both over land and ocean. We find a
slight hemispheric asymmetry in the convective response over
oceans, with around 2%/K at northern mid-latitudes, whereas no
response is seen in the southern hemisphere.
The subsequent columns show results from the four other

climate drivers perturbed in PDRMIP. Broadly, the zonal patterns
for CH4 × 3 and Sol + 2% follow those of CO2 × 2, with the
exception of the equatorial ocean where the convective HS
maximum for Sol + 2% extends further south (a second peak at 20°
S, where the greenhouse gas forcers yield little response). This

appears to be the main driver behind the slightly stronger slow
ocean HS for solar than for the CO2 × 2 forcing seen in Fig. 1b. We
ascribe this to a slightly stronger warming south of the Equator in
this experiment relative to the greenhouse gas perturbations (see
Supplementary Fig. S1, showing the surface temperature
changes), and the different way in which Sol + 2% and green-
house gases force the climate. Given that the latter drive changes
through longwave absorption, while stronger insolation mainly
increases shortwave fluxes at top-of-atmosphere and at the
surface, the response patterns and changes to convection can be
expected to differ. We are however unable to isolate these
differences with any significance in the present data set.
BC × 10 has the widest inter-model range and the largest land/

ocean contrast in Fig. 1b. Figure 4 shows that the global BC ×
10 slow HS is composed of a wide, positive, mainly convective
precipitation change over the (mainly NH) Equatorial oceans, and
a negative, land-only, change around both 30°N and 30°S.

Fig. 3 Multi-model geographical pattern of slow hydrological sensitivity. Colors show the 10-model mean response. Hatched regions indicate
where the multi-model mean is more than one standard deviation away from zero
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However, Fig. 3 indicates that there are significant regional
differences behind these peaks. The multi-model variability
is, in particular, driven by the ocean regions in the latitude range
0–30°N.
SO4 × 5 exhibits the strongest hemispheric asymmetry of the

five drivers. Its global HS is composed mainly of a very broad
(0–30°N) convective response over oceans, and a northern mid
latitude and high latitude (>30°N) response in both cloud types
over land.
Based on these findings, it is clear that there are major

similarities between the slow hydrological responses to all the five
drivers investigated here. However, the details show notable
differences, both in regional and cloud-type response, indicating
that the broad similarity seen in the global HS in Fig. 1b has a non-
trivial origin. One clear difference is the inhomogeneous nature of
the aerosol perturbations, compared to the well-mixed green-
house gas and insolation perturbations. Isolating any dynamical
impacts on the HS solely due to this difference is however beyond
the scope of the present study.
So far, we have presented relative changes in precipitation. In

Fig. 5, we regress the absolute HS (mm/K) from large-scale
precipitation against convective, over ocean and land regions, for
all drivers and models. While there is significant inter-model
diversity in all responses, some clear patterns emerge. Over land,
convective clouds are found to be responsible for roughly twice
the amount of precipitation change per kelvin heating that large-
scale clouds cause. For ocean regions, the pattern is similar except
that change in convective precipitation per kelvin heating is 4–6
times as prevalent.
BC × 10 is again the exception. In particular, it shows a very wide

spread in predicted absolute large-scale precipitation response.
Hence, developing observational constraints for large-scale
precipitation change is a key challenge for models in order to
reduce the multi-model diversity in BC precipitation response.

DISCUSSION
In ref. 13 based on the same results as in the present analysis, it
was shown that for many continental regions, rapid adjustments
still dominate the precipitation response even after equilibration.
For the total land area, that study found a fast precipitation
change fraction of up to 50% at equilibrium, depending on the
climate driver, though with significant model diversity. Here, we
have further shown that for land regions, the slow, temperature-
driven hydrological sensitivity is low (0–1%/K). At present, we have
seen close to 1 K of global surface temperature warming, due to a

combination of greenhouse gas, aerosol, insolation and other
forcing agents.22 Our results imply that the combined land area,
which is where the longer observational series are available,
precipitation change will be strongly affected by natural
variability, and likely also rapid adjustments—in particular for
regions with strong changes to BC concentrations. Recent studies
that have attempted detection and attribution of land area
precipitation change to global warming have shown that this is
possible but challenging.23,24 The low land area slow HS found
here indicates that such challenges will exist for some time, at
least for global land as a whole.
We have documented a clear contrast in the slow HS over land

and oceans, for all five climate forcers perturbed. This difference
can, to a large degree, be understood in terms of differences in
the surface heating, atmospheric response to regional forcing and
differences in surface relative humidity.25–28 For all forcers, the
land surface temperature changes more rapidly than over the
ocean (see Supplementary Fig. 1). As discussed, e.g., by Sherwood,
et al.19 this affects circulation, and is, in particular, expected to
affect deep convection.26,29,30 In the present results, such a
response is apparent in the zonal means in Fig. 4, for all drivers, in
particular in the ITCZ regions. While there is a general increase in
convective precipitation, this response is virtually absent over
land. Recently, Byrne and O’Gorman28,31 have discussed the land/
ocean contrast under global warming in terms of differences in
changes to relative humidity. While they find consistent fractional
changes in specific humidity over land and ocean, the larger
thermal response over land causes a decrease in relative humidity
here, which will inhibit precipitation. The effect is amplified by the
inclusion of evapotranspiration. Consistently, from an energy
balance perspective, Richardson, et al.32 showed that in response
to a 4 × CO2 perturbation, there is a strong flux of dry static energy
(H) from land to oceans, responsible for the main land/ocean
contrast in precipitation response. The authors further decompose
their H term into dynamic and thermodynamic contributions, and
find that the dynamic term strongly dominates. While a full
investigation into the dynamical and energy balance response to
the PDRMIP perturbations will be presented separately, the
present results indicate that the conclusions in the studies of
(mainly) CO2 perturbations cited above hold across multiple
drivers of climate change. For the remaining inter-model diversity
in the slow hydrological response, key factors for further
investigations are cloud responses33 and the role of CO2

physiological responses over land.34

Black carbon, which has previously been shown to induce a very
different fast precipitation response to the other drivers in
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PDRMIP, also stands out in terms of the slow hydrological
sensitivity in the present study. While the models broadly agree
on both the relative and absolute changes in convective and
large-scale precipitation due to the other drivers, for black carbon
the response is highly diverse. While this is likely partly due to the
low multi-model mean surface temperature change found for the
10 × BC perturbation, differences in basic model response and
individual net forcing will also contribute. As a comparison, we
note that the PDRMIP CH4 × 3 perturbation is similar in top-of-
atmosphere effective radiative forcing to that of the 10 × BC
perturbation, but that it has a much lower multi-model spread.
However, as shown in Samset, et al.13 the multi-model mean
atmospheric absorption for 10 × BC is 3.3 Wm−2, but with a
relative standard deviation of 40%, indicating a large spread in
modeled energy transferred to precipitation and other atmo-
spheric processes. The large inter-model spread in treatment of BC
microphysical effects (indirect and semi-direct effects), is also
known to still be a major source for differences in precipitation
response.35 The fact that four models used BC emissions while five
models used prescribed concentrations was however not found to
be a predictive factor for the diversity in the present study.
To improve predictions of future precipitation change, a crucial

first step is to identify the regions of largest diversity between
present models. As an example, motivated by the assumption that
CO2 is likely to be a dominating factor,36 we investigate the model
spread in zonal pattern of slow HS for total precipitation, and for
relative changes to convective and large-scale precipitation
separately, for the 2 × CO2 perturbation. Using the mean absolute
deviation (MAD) of the model sample as a measure, we compare
the diversity over the equator (10S-10N), over the lower mid-
latitudes (40S-20S, 20N-40N), and the Arctic (60N-80N). For the
total, slow HS, the MAD changes little, with values in the range
1.2–1.9%/K. For the slow HS of convective precipitation, there is a
marked increase in variability towards the Arctic, with a northern
mid-latitude MAD of 4.7%/K, and an Arctic MAD of 15%/K. For the
slow HS of large-scale precipitation, however, MAD is low (<2%/K)
in the Arctic and at both lower mid-latitudes, but 3.5%/K at the
Equator. Modeling of Arctic convective precipitation and Equator-
ial large-scale precipitation, and validation against observations,
are therefore highly relevant topics for future investigations, even
if the corresponding slow HS is found to be low.
We note that the present analysis depends on the assumption

that the fSST simulations performed capture all of the rapid
adjustments and none of the surface temperature change. This is
not fully justified, as land surface temperatures will, to some
extent, respond even if ocean temperatures are prescribed. In,13

we showed that, globally, our analysis procedure is not
significantly affected (<10% for individual models, and within
statistical errors for the multi-model means). Here, we extended
this analysis to include a correction for temperature increase in
each grid point. Assuming a slow HS over land consistent with our
global mean analysis (1%/K), we subtract the resulting local
precipitation increase from the adjustment term. This correction,
which has been included in Fig. 3, changes the slow HS values by
less than 10% for individual grid points, and mainly affects the
inner Eurasian continent. The sensitivity to the choice of slow land
HS is also low. Subsequent results are therefore assumed not to be
significantly affected by this assumption.
We have shown that the slow, surface temperature-driven

hydrological sensitivity in present climate models is broadly
similar between climate drivers (2–3%/K), but that there is a
significant contrast between land and ocean, with precipitation
over ocean regions responding more (3–4%/K) than over land
(0–1%/K), across all drivers.
This low slow HS over land, combined with earlier findings of

the importance of rapid adjustments, indicates that attribution of
continental mean precipitation changes to different climate
forcers is, and will continue to be, challenging. Regionally, the

ocean response consists of an equatorial change in convective
precipitation, while the land response is largest (in percentwise
change) for large-scale precipitation at high latitudes.
The changes in greenhouse gases and solar insolation give rise

to broadly similar slow precipitation changes, while those from
aerosols stand out. Anthropogenic sulfate has a hemispherically
asymmetric forcing, leading, for a positive forcing, to a displace-
ment of the ITCZ into the northern hemisphere, with a
corresponding precipitation reduction over oceanic regions that
lie south of the equator, while the greenhouse gases and solar
perturbation generally strengthen the existing ITCZ rainfall.
To reduce the modeled diversity in precipitation predictions, in

particular for scenarios with strong radiative forcing and surface
temperature change, we conclude that attention should be given
to developing observational constraints on, and model validation
of, large-scale precipitation processes in the Equatorial regions,
and convective precipitation in the Arctic. The extra complexity
added to the emerging climate response by black carbon
perturbations, due to its atmospheric absorption, also requires
further attention, in particular its link to large-scale precipitation
change.

METHODS
We use results from ten global climate models participating in PDRMIP.20

The models separately simulated the responses to abrupt, global doubling
of the CO2 concentration (CO2 × 2), tripling of methane concentration
(CH4 × 3), five-fold increase in sulfate concentrations or sulfate-related
emissions (SO4 × 5), ten-fold increase in black carbon (BC × 10), and a 2%
increase in solar irradiance (Sol + 2%).
Participating models are CanESM2, NorESM1, HadGEM2-ES, HadGEM3-

GA4, GISS-E2-R, IPSL-CM5A, CESM1-CAM4, CESM1-CAM5, MPI-ESM and
MIROC-SPRINTARS. See Table 3 in Myhre, et al.20 for references and model
details.
Mainly, the methods used in the present paper are identical to those

presented in.13 For each perturbation and a baseline simulation, models
provided output from 100 years of coupled/slab ocean simulations, and 15
years of prescribed, monthly-mean sea-surface temperature (fSST) simula-
tions. The coupled simulations allow us to diagnose the total precipitation
response, including both the slow temperature-driven and rapid response
components, while the fSST simulations provide a good approximation of
the rapid adjustments alone. Sample variance has been found to be similar
for signal and background simulations. We use the terms “total” and “fast”
precipitation response for these two cases, and calculate the “slow”,
temperature-driven response as the difference: ΔPslow = ΔPtotal − ΔPfast. The
total responses are diagnosed from the last 50 years of the coupled
simulations, and the fast from the last 10 years of the fSST simulations. For
a discussion on our methodology for diagnosing precipitation changes,
see.32 The impacts of land area temperature response in the models for
fSST are treated in the Discussion section.
The models also separately diagnosed the precipitation response due to

all cloud types (ΔPall), and convective processes (ΔPconv). Based on these,
we define a “large-scale” precipitation change as ΔPLS = ΔPall − ΔPconv.
These responses can be split into fast and slow components, just like the
total response.
We diagnose the global surface temperature response to each

perturbation (ΔTglob) from the coupled simulations. Then, we define the
hydrological sensitivity as HS = ΔPslow/ΔTglob. We use the global tempera-
ture change even when studying the regional or zonal mean HS, as
regional changes will always be due to a combination of local and external
factors when the perturbations applied are global. The total change in
precipitation per degree of warming is termed the apparent hydrological
sensitivity: HSapp = ΔPtot/ΔTglob.
The models reported their results on a variety of spatial grid resolutions.

To make multi-model maps and zonal averages, regional temperature and
precipitation changes were converted to a common 1° × 1° resolution
using first-order conservative remapping.37

The median absolute deviation (MAD) used in the Discussion section is
defined as MAD =median(|Xi-median(X)|), where Xi are the individual
model responses over the indicated region and X is the multi-model
sample.
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Data availability
All PDRMIP model results used for the present study are available to the
public through the Norwegian FEIDE data storage facility. The datasets
used for the figures are available upon request from the corresponding
author. For more information, see cicero.uio.no/en/PDRMIP.

Code availability
Analysis code is available upon request from the corresponding author. For
climate model code, refer to the corresponding authors of the references
cited in Table 3 in Myhre, et al.20
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