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Statistical downscaling of GRACE 
terrestrial water storage changes 
based on the Australian Water 
Outlook model
Ikechukwu Kalu  1,2*, Christopher E. Ndehedehe 1,2, Vagner G. Ferreira 3, 
Sreekanth Janardhanan 4, Matthew Currell 2,5 & Mark J. Kennard 1,2

The coarse spatial resolution of the Gravity Recovery and Climate Experiment (GRACE) dataset 
has limited its application in local water resource management and accounting. Despite efforts to 
improve GRACE spatial resolution, achieving high resolution downscaled grids that correspond to 
local hydrological behaviour and patterns is still limited. To overcome this issue, we propose a novel 
statistical downscaling approach to improve the spatial resolution of GRACE-terrestrial water storage 
changes (ΔTWS) using precipitation, evapotranspiration (ET), and runoff data from the Australian 
Water Outlook. These water budget components drive changes in the GRACE water column in much of 
the global land area. Here, the GRACE dataset is downscaled from the original resolution of 1.0° × 1.0° 
to 0.05° × 0.05° over a large hydro-geologic basin in northern Australia (the Cambrian Limestone 
Aquifer—CLA), capturing sub- grid heterogeneity in ΔTWS of the region. The downscaled results are 
validated using data from 12 in-situ groundwater monitoring stations and water budget estimates 
of the CLA’s land water storage changes from April 2002 to June 2017. The change in water storage 
over time (ds/dt) estimated from the water budget model was weakly correlated (r = 0.34) with the 
downscaled GRACE ΔTWS. The weak relationship was attributed to the possible uncertainties inherent 
in the ET datasets used in the water budget, particularly during the summer months. Our proposed 
methodology provides an opportunity to improve freshwater reporting using GRACE and enhances the 
feasibility of downscaling efforts for other hydrological data to strengthen local-scale applications.

The applications of the Gravity Recovery and Climate Experiment (GRACE) mission in hydrological modelling 
and assessing freshwater changes over large and meso-scale river basins have been well documented e.g.,1–4. 
Unfortunately, the coarse spatial resolution of data from the mission limits its application over smaller spatial 
extents, especially to support local-scale freshwater reporting and accounting. The low-spatial resolution GRACE 
mass concentration (mascon) solutions at 0.5° or 0.25° grids are redistributed samples of a coarser GRACE 
product5. Since these resampled grids (0.5° or 0.25°) are spatially correlated from the native resolution of 3°, they 
do not contain physical information at a spatial scale finer than the original GRACE resolution6. Consequently, 
for finer spatial scale GRACE estimates to be employed in effective catchment-scale hydrological assessments, 
improved downscaling by assimilating localized hydrological information at a higher resolution7–9 is critical. This 
study aims at introducing physical information from high resolution hydrological fluxes to improve downscaled 
products such that they mimic the local-scale hydrologic behaviour of a large hydro-geologic basin in northern 
Australia (the Cambrian Limestone Aquifer—CLA).

Machine learning regression methods are capable of effectively solving non-linear problems and have become 
increasingly popular in statistical downscaling operations. This is evident in recent studies that have explored 
regression techniques to downscale GRACE data e.g.,10,11. For example, Vishwakarma, et al.6 improved the spatial 
resolution of global GRACE-TWS by exploiting the dominant common statistical modes between precipitation, 
evapotranspiration and runoff using partial least squares regression. The downscaled products were validated 
by checking the conservation of mass at a catchment scale. Ning et al.12 developed and tested an integrated 
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downscaling-validation procedure for GRACE derived TWS at 0.25° scale over Yunnan province, China, using 
a multi-linear regression method. They evaluated their downscaled product using in-situ groundwater levels, 
following the assumption that groundwater variations accounts for most of the TWS signals over the study region. 
Yin et al.13 designed a statistical downscaling model that uses discrete evapotranspiration data to downscale 
GRACE TWS based on the correlative relation method, with a proviso that the method is only feasible for 
regions where groundwater level variation is strongly correlated with evapotranspiration. Miro and Famiglietti9 
implemented the artificial neural network model to predict changes in GRACE data using high resolution 
datasets of precipitation, temperature, soil type and slope. Their results showed that the neural network model 
was effective in their downscaling process but maintained the need for better estimates and finer details of the 
predictors variables. Other studies have used land surface models and hydrological variables based on machine 
learning regression methods to provide downscaled TWS estimates e.g.,10,14–18.

One of the most popular methods of validating the performance of downscaled GRACE-TWS is through 
in-situ groundwater monitoring data19. This is plausible because, for most regions, groundwater resources 
comprise over 60% of freshwater use e.g.,13,20 and thus contributes significantly to the changes occurring in 
the TWS vertical column. However, due to the challenges of the typically sparse distribution of groundwater 
monitoring points in space and time and other inherent data gaps (e.g., comprehensive characterisation of aquifer 
storage coefficients and missing observations), monitored groundwater level variations in some regions may not 
be suitable for quantifying water storage changes12. Also, while groundwater monitoring networks are essential to 
understand changes in aquifer storage and water budgets, we very rarely have sufficient information to quantify 
storage volume changes using monitoring data alone. Converting groundwater level changes to storage volume 
changes requires knowledge of (i) the full spatial distribution of water level changes over the relevant scales, 
which requires a detailed and extensive monitoring bore network and (ii) the aquifer storage coefficient (specific 
storage and/or specific yield). This coefficient is very rarely known across the full extent of a basin/aquifer—even 
at the level of general averages. Surface water and soil moisture also significantly drive the TWS changes of several 
regions21, making in-situ groundwater monitoring insufficient in itself for validating TWS over those regions.

For our study, we used in-situ groundwater levels to validate our downscaled product. We believe this is 
justified, because the selected region’s groundwater resources maintain a substantial contribution to the regional 
water budget and the GRACE column and has recorded significant recharge over the past decades22. This is 
particularly true in the southern CLA, where the climate is arid and there is very little permanent surface water. 
Also, since the region is well monitored, the storage coefficients/specific yield values were available and obtained 
from Knapton et al.23. We also compared the water storage changes of our downscaled product with trends 
from the water budget equation (ds/dt) estimated using high resolution hydrological fluxes from the Australian 
Water Outlook AWO24. We argue that the water budget estimates quantified from the fluxes of precipitation, 
evapotranspiration (plant transpiration and soil and canopy water evaporation) and runoff (surface and base 
flows) are representative of the water storage dynamics of the region. Sheffield et al.25 reported a reasonable 
similarity between global hydrological models (e.g., NOAH-VIC) model and the GRACE-TWS which depicts 
that hydrological model parameters can potentially close the water budget and as such we investigate whether 
this approach is feasible and robust for the selected case study region.

The overarching aim of this study is to downscale GRACE-TWS from April 2002 to June 2017 using high 
resolution hydrological model parameters of the Australian Water Outlook (AWO). The selected case study is 
the Cambrian Limestone Aquifer, one of northern Australia’s most important aquifer systems. Specific objectives 
are, (i) statistical downscaling of GRACE-TWS to 0.05° grids using precipitation, ET and runoff estimates from 
the AWO model, (ii) validating the downscaled TWS data using in-situ groundwater level estimates and the 
water budget model (ds/dt) derived from the AWO hydrological flux variables (iii) exploring the efficiency of 
the support vector machine (SVM) regression in establishing a functional regression model between the AWO 
predictors and the GRACE-TWS estimates. Regional hydrological models, such as the AWO provide detailed 
insights into specific regions, enabling more accurate analysis of water availability, flood potential and the impacts 
of land use and climate change in local scale hydrological assessments than their global counterparts. These 
processes offer to demonstrate an approach for optimal statistical downscaling of GRACE data representing 
localized hydrological trends useful for studying very small regions (0.05°), and in turn contribute to improving 
water management and research throughout Australia and beyond.

Datasets
GRACE terrestrial water storage changes
TWS as quantified by GRACE is a fundamental constituent of the terrestrial water cycle and is defined as the 
sum of changes in surface water, snow, ice, soil moisture, canopy storage and groundwater. Besides the significant 
importance of GRACE-TWS in water resources, agriculture, climate, and ecosystem monitoring, it is a key 
quantity for quantifying land water storage dynamics. For this study, we took an ensemble mean of GRACE level 
3 mascon products from the centre for space research (CSR) of the University of Texas, Jet Propulsion lab (JPL) 
and the Goddard Space Flight Center (GSFC)26. The native resolution of the product is approximately 400 km 
due to the orbital altitude of the GRACE satellite. We used the filtered and processed samples of the nominal 
GRACE datasets which was provided at a 1.0° × 1.0° grid cell for our experiment. We computed the time series 
of the three GRACE-TWS anomalies relative to the long-term mean between 2004 and 2009 from the GRACE 
mascon field. Since we are dealing with variation of TWS over time, we obtain ΔTWS(t) from the TWS anomalies, 
whereby the time derivative was estimated with centred finite difference as in27

(1)�TWS(t) =
TWS(t + 1)− TWS(t − 1)

2�t
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where Δt means one month, and t−1, t, and t + 1 accounts for three consecutive months. All the data used for our 
study is summarized in Table 1. Our study period spanned from April 2002 to June 2017.

The Australian Water Outlook
Our high-resolution predictor dataset is the Australian Water Outlook (AWO) package, which consists of daily 
gridded model outputs (precipitation, evapotranspiration, and runoff) from 1911 to 2023. The AWO system 
incorporates a wide range of climate inputs, downscaling techniques, post processing and assimilation of near 
real time satellite soil moisture states as inputs to the Australian Water Resource Assessment Landscape model 
AWRA-L v724,29, to provide a consistent set of hydrological outputs at 0.05° grids across Australia. The absolute 
values of the predictors were used for the water budget estimation, while their changes (dynamics) were computed 
for the downscaling operation. The changes (dynamics) of each predictor variable (Table 1) are based on the 
removal of the long term mean of 2004–2009 from each month. This removal of long-term mean is designed to 
convert the datasets into a ‘net change’ in each time period (rather than absolute values), for easier comparison 
against the TWS variations from GRACE. All the data used in this experiment spans from April 2002 to Jun 
2017 and have been summarized in Table 1.

Groundwater level data (in‑situ)
The groundwater level (GWL) data used in this study were compiled from the Australian groundwater explorer30, 
which provides access to a wide range of groundwater datasets, including around 900,000 bore locations and 
groundwater levels and is updated annually. The groundwater level term used for our experiment was the ‘depth 
to water (DTW)’ variable which records measurements from the top of the ground surface to the groundwater 
level (Fig. 1). This means that positive values are below the ground surface while negative values are above the 
ground surface indicating artesian conditions. Therefore, given that we are assessing below the ground surface, 
almost all the readings were negative. To conform the GWL time series to the other datasets (which were all posi-
tive) used in our experiment, we performed a scalar multiplication of -1 throughout the time series (Fig. 1). This 
operation changed the GWL time series to all positives matching the other datasets used in our experiment. Since 
the BOM datasets is available at daily steps, we averaged the observations from each well to months and found 
the ensemble mean of the GWLs from the monitoring stations. Subsequently, they were converted to ΔGWLs 
by removing the long term mean of 2004–2009 from each month, similar to GRACE-ΔTWS. Equation 2 shows 
the calculation of the ΔGWL for each month:

where subscript i represents the time in months from April, 2002 to June, 2017.
The GWL data used in our experiment was initially processed and filtered using the following criteria;

1.	 Bores with more than 24 months missing data were eliminated.
2.	 Bores whose data quality flags were rated A were retained for analysis, whereas bores rated B to F were 

eliminated. The data quality flag captures the quality of the data based on the supplier, with those rated A 
considered to be the ‘best available given the technologies, techniques and monitoring objectives at the time 
of classification’ (see supporting information 1c for more details on quality ratings.

The aquifer where these monitored bores are located ranges between a thickness of 100–300 m and can 
be described as semi-confined. Further details on the geology and classification of the aquifer levels can be 
found in31. The 12 monitoring bores used for the validation procedure are all rated quality A (supplementary 
information 1c). Besides bores RN008221, RN010167, and RN029429 (Table 2), every other bore had missing 
months, which were estimated using linear interpolation. The linear interpolation method was used due to its ease 
in application and prevalent utilization within the hydrologic community, however, it is important to note that 
this approach may induce the associated uncertainties of the in-situ groundwater storage estimates considering 
the non-linearity of each individual bore readings. The overall uncertainty assessment of the monitoring bores 

(2)�GWL(i) = GWL(i) −meanGWL(2004 : 2009)

Table 1.   Summary of the dataset and sources used for our processing. (a)—https://​podaac.​jpl.​nasa.​gov/, 
(b)—https://​awo.​bom.​gov.​au/​produ​cts, (c)—http://​www.​bom.​gov.​au/​water/​groun​dwater/​explo​rer/​map.​shtml 
(b) represents the predictors.

Variable (data source) Source Temporal resolution Spatial resolution

CSR TELLUS GRACE (a) Analysis of GRACE-TWS solutions Monthly 1.0° × 1.0°

JPL TELLUS GRACE (a) Analysis of GRACE-TWS solutions Monthly 1.0° × 1.0°

GSFC TELLUS GRACE (a) Analysis of GRACE-TWS solutions Monthly 1.0° × 1.0°

AWO Precipitation (b) Analysis of rain gauge data Daily and monthly total 0.05° × 0.05°

AWO Evapotranspiration (b) Estimate of total ET from vegetation, soil and groundwater using the 
event-based approach28 Daily and monthly total 0.05° × 0.05°

AWO Runoff (b) Analysis of stream flow observations and satellite-based evapotranspi-
ration and soil moisture Daily and monthly total 0.05° × 0.05°

in-situ groundwater levels (c) Monitoring bores Daily –

https://podaac.jpl.nasa.gov/
https://awo.bom.gov.au/products
http://www.bom.gov.au/water/groundwater/explorer/map.shtml
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Figure 1.   Datasets used for our experiment. (a) Shows the in-situ groundwater estimates after scalar 
multiplication from the 12 monitoring stations and their ensemble mean. The black line at the 0 y-axis 
represents the ground surface. Readings above the ground surface indicates artesian conditions. (b) Represents 
the GRACE products from the three processing centres, CSR, JPL and GSFC and their ensemble mean which 
was used for our analysis, while (c) shows the AWO-based hydrological flux variables of precipitation, ET and 
runoff and their output based on the water budget (ds/dt). The vertical grey portion shown across the entire 
plots depicts the end of the Australian millennium drought around 2009 and 2010. This plot was generated 
using MATLAB R2023a software—https://​au.​mathw​orks.​com/​produ​cts/​matlab.​html).

Table 2.   Properties of the 12 monitoring groundwater level stations used for validation. Bore depth represents 
the mid-point of the screened interval, Fractured rock represents areas of hard rock between sedimentary 
basins.

Bore ID Latitude Longitude Bore depth (m) Geology Classification

RN005248 − 19.783995 134.184916 68.9 Quaternary sediments Fractured rock

RN010167 − 19.803048 134.060717 44.0 Tertiary sediments Fractured rock

RN010564 − 19.848769 134.158438 24.8 Tertiary sediments Fractured rock

RN033033 − 14.133654 131.395023 90.9 Quaternary sediments Upper aquifer

RN002522 − 14.46747 132.309845 46.9 Tindall Limestone Lower aquifer

RN034595 − 14.588332 132.034301 37.0 Quaternary sediments Upper aquifer

RN022394 − 14.503928 132.295794 123.6 Quaternary sediments Lower aquifer

RN034364 − 14.069437 131.250134 37.5 Tertiary sediments Upper aquifer

RN029429 − 14.532308 132.359108 118.0 Quaternary sediments Lower aquifer

RN034597 − 14.598042 132.044391 24.9 Tertiary sediments Fractured rock

RN008221 − 14.587929 132.46868 61.0 Georgina sediments Lower aquifer

RN034596 − 14.598015 132.0444 42.8 Tertiary sediments Fractured rock

https://au.mathworks.com/products/matlab.html


5

Vol.:(0123456789)

Scientific Reports |        (2024) 14:10113  | https://doi.org/10.1038/s41598-024-60366-2

www.nature.com/scientificreports/

shown in Table 2 provides context to their quality and efficiency in serving as a validation tool for the downscaled 
GRACE product.

Case study
The region of interest is an extensive carbonate aquifer—the Cambrian Limestone Aquifer (CLA) underlying a 
large portion of Australia’s Northern Territory, to the north of Alice Springs and south of Katherine32; Supporting 
Information 1a. The CLA comprises three geological sub-basins; Daly, Wiso and Georgina, within which ground-
water flows are inter-connected. The CLA was selected as a suitable test location for our downscaling operation 
because, due to the significant gradient in its climate parameters (rainfall and ET) from south to north, it may be 
difficult to capture the variations across the CLA with the original GRACE products, thus justifying the need for 
effective downscaling. The region encapsulates the entirety of the components in the GRACE vertical column (i.e., 
soil moisture, surface, and groundwater)33, and accounts for all the mass variations that GRACE captures, thus 
making it an ideal location for our exercise. The CLA is well-known for its abundant surface and groundwater 
resources which sustain the ecological and (particularly indigenous) cultural values of the region34,35.

The CLA’s recharge is regulated by climate and local geology—i.e., recharge is spatially restricted to areas 
where Cretaceous cover rocks are thin or absent36. At its northern limit, near Mataranka, annual precipitation 
averages about 800 mm and has moderately low variability from year to year. In the south, towards the Tennant 
creek, an averaged 400 mm has been recorded with high variability throughout the year37. This translates to 
regions north of Daly waters (Supporting information 1b) receiving relatively frequent recharge during the wet 
season (i.e., November–March). This is not the case in the south, as recharge occurs periodically during periods 
of abnormal high precipitations see36. The lag between such events ranges from a few years to a few decades.

Methodology and implementation
Statistical downscaling based on support vector machine
Hydrological variability has a strong relationship with GRACE ΔTWS at different temporal scales and orders. 
Conventional statistical downscaling methods have used several regression techniques for this operation using 
the parameters of the water budget equation e.g.,6. These parameters make up the predictor datasets used to 
downscale GRACE TWS.

To achieve consistency in the spatial grain size of the predictor and predictand variables, we used pixel 
averaging to aggregate the independent variables (i.e., precipitation, evapotranspiration, and runoff) changes 
derived from AWRA-L to 1.0° × 1.0° to match the grain size of the dependent variable (GRACE-ΔTWS). An 

Figure 2.   Flowchart of the downscaling process. This plot was generated using CorelDRAW v. 24.3.0.571 
software—https://​www.​corel​draw.​com/​en/​licen​sing/​educa​tion/).

https://www.coreldraw.com/en/licensing/education/
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empirical functional regression model38 was established between the dependent and independent variables using 
the SVM regression (Fig. 2).

The SVM is regarded as a non-parametric technique due to its reliance on kernel functions e.g.,39,40. We used 
the polynomial kernel to map the aggregated model into a high-dimensional feature space.

where ϕ represents the non-linear mapping function, and the respective weights and bias terms are represented 
by w and b. The SVM optimization model is given by;

l and n represent the number of samples, ξi , ξi∗ represents the upper and lower training errors, respectively, xi 
and yi represents the inputs and outputs of the training data, respectively, ε and C represents the insensitive loss 
factor and the regularized constant, respectively.

To generate the prediction function, f(·, ·, · ), we use the Lagrange multipliers ai and ai∗ as follows;

KP is the polynomial kernel function and is represented by;

The superscript, 2 represents the order of the polynomial kernel used in our learning process.
Using the regression function derived from Eq. (6), we predicted GRACE-TWS and extracted the residual 

between the predicted and original GRACE-TWS. The residuals account for the amount of GRACE-TWS that 
cannot be predicted by our regression model that may reflect the influence of climate change and anthropogenic 
effects (e.g., water extraction) on the CLA’s land water storage interactions32. Since the polynomial coefficient 
of the residual values have an interval of 1.0° × 1.0° grids, we applied cubic spline interpolation to make it 
consistent with the predictor spatial resolution of 0.05°. Cubic splines are continuous curves that involve fitting 
a series of cubic polynomials to the data in a way that ensures smoothness. It has the advantage of preserving 
the information contained in the original dataset and often provides higher-order accuracy than linear or lower-
degree polynomial interpolation. It can be designed to have ‘natural’ boundary conditions, where the second 
derivatives at the endpoints are set to zero and this enables a more stable and well-behaved interpolation. This 
tends to produce a more accurate representation of the underlying function, especially when the data points are 
closely spaced. This was implemented in our residual value by fitting the low 1.0° × 1.0°—degree polynomials 
to five subsets of values obtained by subtracting the lower endpoint of corresponding knot intervals in a 
conventional polynomial equation as in Eq. (8).

a, b, c, and d represents the coefficients on the interval [x, x1].
The regularized constant represented as C in Eq. 4 uncovers the trade-off between the flatness of the function 

and the amount up to which the differences larger than e are permitted when it is greater than 041. This is simi-
lar to the process of handling a so-called ε-insensitive loss function |ξ |ε described in Smola and Schölkopf42 as

We favoured the polynomial kernel in this operation because it represents the similarity of training samples 
in a feature space over polynomials of the original variables, which improves the learning of non-linear climatic 
models as has been reported in past literatures e.g.,39. The strength of our machine learning procedure is deter-
mined by the magnitude of the residuals (Supporting information 2). It is possible that other robust machine 
learning models could provide lower residuals than the SVM in this scenario, however, this can be explored in 
future research.

After GRACE-TWS was predicted using the regression model in Eq. 6, the final downscaled GRACE-TWS 
was obtained by adding the interpolated residuals back to the predicted GRACE-TWS. Our entire downscaling 
approach is represented in Fig. 2.

Validation and water budget compatibility assessment
To validate our downscaled product, we used in-situ groundwater levels from the Australian Groundwater 
Explorer consisting of 12 monitoring bores, unevenly spread across our study region (Table 2). We also assessed 
the water budget fit on the downscaled products using AWO’s high resolution variables, i.e., precipitation, 

(3)f (x) = wTϕ(x)+ b

(4)
min

w, b, ξ , ξ∗
0.5× wTw + C

n∑

i=1

(ξi + ξi
∗)

(5)s.t

{
yi − ({w, xi} + b) ≤ ε + ξi

({w, xi} + b)− yi ≤ ε + ξi
∗(i = 1, 2, . . . , l)

ξi , ξi
∗ ≥ 0

(6)f
(
x, ai , ai

∗
)
=

n∑

i=1

(
ai − ai

∗
)
KP(x, xi)+ b

(7)KP(x, xi) = (1+ xTxi)
2

(8)f (x) = a(x − x1)
3 + b(x − x1)

2 + c(x − x1)+ d

(9)|ξ |ε =

{
0 if |ξ | ≤ ε
|ξ | − ε otherwise
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evapotranspiration, and runoff. This was to test if the water budget is maintained by the downscaled product 
The water budget equation (Eq. 10) illustrates the water interchange between the ocean, land, and atmosphere. It 
provides a unique representation of land water storage changes based on hydrologic fluxes and has been shown 
to maintain a significant and similar trend to what GRACE measures e.g.,25,27.

Equation 10 expresses the sum of water gained by a catchment in the form of precipitation (P), as the total 
amount of water returning to the atmosphere through evapotranspiration (ET), water leaving the basin through 
runoff (R), and any variations in the basin’s terrestrial water storage (expressed as ds/dt). The state variables P, ET, 
R and ds are areal averages of distributed absolute values so that the sign | | indicate spatial averaging over the 
entire basin throughout the duration of our study period. We also explored the use of other statistical approaches 
in our validation as discussed in what follows.

Statistical rotation
We used the principal component analysis (PCA) technique to evaluate the spatio-temporal consistency between 
the original and downscaled GRACE-TWS. PCA is a dimension reduction technique that is well known for its 
efficiency in minimizing the dimensionality of large multivariate data43–45 while accounting for the strongest 
dominant variations in the data46. Determining the spatio-temporal consistency between the original and down-
scaled TWS estimates is very important to assess the similarity of both original and downscaled product, and 
this can be achieved by maintaining a significant correlation between the PC’s of the two datasets. The correla-
tion signifies that some, most or all the information contained in one variable (original TWS) is also contained 
in the other variable (downscaled TWS)47. Also, the PCA’s ability to isolate long-term signals and inter-annual 
periodic variations warrants its use in this context e.g.,48.

The original and downscaled matrix x and x̂  contains rows depicting the time T in months and K, the vari-
ables. L represents the loadings which provides the weights of the original variables in the principal components 
(PC). The y and ŷ  values represent the orthogonal original and downscaled PCs, with y, ŷT ,1 explaining the high-
est variability and y, ŷT ,2 to y, ŷT ,K representing the remaining variance. For our validation exercise, we restricted 
the PCs to y, ŷT ,1 and y, ŷT ,2 . The first PC is the linear combination of the original parameters that contributes the 
largest to the total variance; the second PC, uncorrelated with the first one, contributes the largest to the residual 
variance, this process continues until the total variance is analysed. Since the method is so dependent on the 
total variance of the original variables, we decided to normalize the variables. Hence, our final PCs were unitless.

We analysed the spatial patterns of the original and downscaled products using the eigenvectors, which is 
also referred to as the empirical orthogonal functions (EOFs). The EOFs which represent the spatial distribution 
of the original and downscaled products over time were generated from the sample covariance matrix of the 
centred data matrix for x and x̂  , respectively.

Estimating in‑situ based groundwater storage anomalies (GWSA)
The groundwater levels were converted to storages based on the storage coefficients and specific yields of the 
CLA’s karstic aquifer49,50:

where hm and hi represents the long-term mean of the GWL and GWL depths at different time periods, respec-
tively, A is the area influenced by the bores (in this case, the entire CLA) and Sy(c) represent the specific yield/
storage coefficient of the CLA. The CLA is a karstic aquifer majorly composed of limestone. It is overlain and 
confined by shale, sandstone, and dolostone from the Ordovician siltstone. The karstic nature of the aquifer mean 
that its formation exhibits very high transmissivities (> 5000 m2/d for the Cambrian limestone) and relatively 
low specific yield/storage coefficient with estimates ranging from 0.01 to 0.0623.

Seasonal trend and variability index
To further validate the downscaled products, we explored its consistency with in-situ GWS changes over dif-
ferent seasons with varying hydrological conditions. The north of Australia (where the CLA is located) has a 
pronounced dry (autumn–winter) and a wet (late spring–summer) season. However, to capture most of the sea-
sonal changes, we split them into Austral summer, autumn, winter, and spring seasons ranging from December 
to February, March to May, June to August, and September to November, respectively.

To estimate the seasonal trends for each grid in the original and downscaled products, we utilized a seasonal 
partitioning technique:

(10)|P − ET| = |R| + |
ds

dt
|

(11)





y,�yT ,1 = L11x,�xT ,1 + L12x,�xT ,2 + L13x,�xT ,3 + · · · + L1Kx,�xT ,K
y,�yT ,2 = L21x,�xT ,1 + L22x,�xT ,2 + L23x,�xT ,3 + · · · + L2Kx,�xT ,K

. . .

. . .

y,�yT ,K = LK1x,�xT ,1 + LK2x,�xT ,2 + LK3x,�xT ,3 + · · · + LKKx,�xT ,K




T = 1, . . . , 183

(12)GWSAin−situ = (hm × A× Sy(c) − hi × A× Sy(c))
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where n represents the number of grids over the CLA. The value of n for the 1.0° and 0.05° grids are 169 and 
68,121 respectively. Row 1–183 represents April 2002 to June 2017 in months. Therefore, one seasonal cycle which 
is from Jan to Dec has 12 months. Equation 10 was partitioned into different seasons by applying,

a and b signify the months for the respective seasons. For example, 12:2 depicts summer, 3:5 depicts autumn, 
6:8 depicts winter and 9:11 depicts spring. This operation was performed for the downscaled GRACE against 
the original GRACE, ΔGWSs and ds/dt estimates.

To test for parametric trends on the downscaled and in-situ ΔGWS products, we employed the Mann–Ken-
dall test51–54.

where MK denotes the Mann–Kendall statistic, n is the time in months over the study region, �TWSj and�GWLi 
represents the data values at time jandi(j > i).

The MK test statistic represents the positive and negative transformation for all significant grid points3. Under 
the null hypothesis, the statistics mean (E[M]) = 0, and the variance (σ) is depicted as;

where n is the number of data points, m is the number of sample datasets having the same value and tk is the 
number groups of data points that have k identical values. In our case where the sample size is 177 (complete 
yearly cycles running from January to December) we computed the standard normal test statistic ( Zt ) based on 
the Z-transformation given below,

This test is estimated to be Gaussian. The null hypothesis (H0) which indicates no trend was tested at a 95% 
confidence level.

Model performance evaluation
To evaluate the performance of our downscaled product, we applied the root mean square error (RMSE), 
Nash–Sutcliffe efficient coefficient (NSE) and mean absolute error (MAE). These statistical tools have been 
extensively applied in the performance evaluation of several hydrological models55,56 and are given by;

where n in Eqs. 18–20 represents the total number of estimates in months, �TWS
(0.05)
i  and �GWSi represents 

the downscaled GRACE and in-situ groundwater storage changes, respectively.

Results and discussion
Technical capability of our downscaling process and trend test
We demonstrate the capability of the SVM regression in downscaling GRACE ΔTWS signals from 1.0° to 0.05°. 
For the grid based SVM regression approach, our goal was to find a function f(x) that had the most deviation 
from the actually obtained targets for all the training data, and at the same time is as flat as possible. This means 
that we are not concerned about errors as long as they are less than ε for each grid. Since our aim was to establish 

(13)�TWS1.0,0.05 =





�1,1 �1,2 �1,3 . . . �1,n

�2,1 �2,2 �2,3 . . . �2,n

�3,1 �3,2 �3,3 . . . �3,n

.

.

.
.
.
.

.

.

. . . .
.
.
.

�183,1 �183,2 �183,3 . . . �183,n





(14)season(i) = �TWS[a : b] : 12 : [183]

(15)MK =

n−1∑

k=1

n∑

j=k+1

sgn
(
�TWSj −�GWLi

)
for 1 ≤ i < j ≤ n

(16)σ =
n(n− 1)(2n+ 5)−

∑m
k=1(tk − 1)(2tk + 5)

18

(17)Zt =






MK−1

[σ ]
1
2

if MK > 0

0, if MK = 0

MK+1

[σ ]
1
2

, if MK < 0

(18)RMSE =

√√√√ 1

n

n∑

i=1

(�TWS
(0.05)
i −�GWSi)

2

(19)NSE = 1−

∑n
i=1(�TWS

(0.05)
i −�GWSi)

2

∑n
i=1(�TWS

(0.05)
i −�GWSi)

2

(20)MAE =
1

n

∑n

i=1

∣∣∣�TWS
(0.05)
i −�GWSi

∣∣∣
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a functional regression relationship between the high-resolution predictors and the GRACE-TWS, we were 
looking for a function that approximates all pairs of (�P,ET ,RAWO ,�TWSGRACE) with ε precision or in other 
words, an f(x) whose convex optimization function is feasible (Eq. 5). Since this was difficult to achieve after 
minimizing f(x), we increased the threshold for the error margin and introduced some slack errors ξi , ξ∗i  (Eq. 4) 
to cope with the infeasible constraints of the optimization problem42. This same idea was used by57 to introduce 
a soft margin loss function which was later used in the support vector machines by58.

After the regression model was established, GRACE ΔTWS was predicted at 1.0° × 1.0°. The predicted samples 
were subtracted from the original samples to highlight the residuals. These residuals account for complex signals 
that the SVM model was unable to capture. The established regression model was then used to predict GRACE 
ΔTWS at 0.05° × 0.05°. After the prediction, it was important to add back the residual to the initial prediction 
through the residual correction process. Residual correction is vital because it fine tunes the downscaled product 
by adjusting for unmodelled fine-scale changes, thereby making sure that the downscaled estimates not only 
depict fine-scale details, but also improves the representation of regional and local conditions accurately56. The 
result of the SVM downscaling operation is shown in Fig. 3 for the peak Austral winter (July), spring (October), 
autumn (April), and summer (January) seasons for years 2005, 2010, 2014, and 2016, respectively.

After the downscaling process, it was important to assess the trends between the original and downscaled 
products. This was particularly pertinent to detect significant trend variations that might have occurred with the 
downscaled products tracking finer scale changes in water storage, especially in a hydrological complex region 
like the CLA. In Table 3, the Mann Kendall trend test result for the original and downscaled product is shown.

Table 3 shows positive trends for both the original and downscaled GRACE but showed negative trends 
for the in-situ ΔGWS values. This trend results reveal that, while the downscaled product provides informa-
tion of finer-scale details, the new information based on the CLA’s hydrological dynamics was not enough to 
change its trend from the original GRACE data. For the in-situ ΔGWS, no monotonic trend was observed. This 
clearly shows a balance in the water budget of the CLA represented by corresponding recharge and discharge 
of groundwater in the region.

Figure 3.   Terrestrial water storage changes over the CLA during the peak Austral winter (July), spring 
(October), autumn (April) and summer (January) seasons for selected years. The selected slices of July, 
October, April, and January are aimed at representing the mid-months for the winter, spring, autumn, and 
summer seasons, respectively. The first row contains an ensemble of the three CSR, JPL and GSFC GRACE 
mascon products, the second row contains the downscaled product based on the SVM-regression, and the last 
row shows the storage dynamics of the catchment based on the water budget changes (ds/dt) for the specific 
epochs shown in the columns. The individual downscaling of the CSR, JPL and GSFC products are shown in 
Supporting information 3, 4, and 5, respectively. This plot was generated using MATLAB R2023a software—
https://​au.​mathw​orks.​com/​produ​cts/​matlab.​html).

https://au.mathworks.com/products/matlab.html
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Testing the water budget fit on the downscaled product
The water budget was tested to see how well they fit the downscaled product. We estimated the water budget 
equation by improving the quantification approach of the CLA’s water storage dynamics59,60. This approach helped 
in minimizing uncertainty in our water budget estimation.

The water budget process in Eq. 10 is a universal concept used to explain the land water storage dynamics 
experienced in any catchment. This equation obeys the principle of conservation of mass and has been shown 
to be an indispensable tool for validating our understanding of catchment-water cycle6,25,27. One of the compli-
cations in the application of the equation in the context of GRACE data is the potential mismatch between the 
boundaries of surface and groundwater catchments, and the potential significant lag-times in the response of 
large groundwater systems to changes in other hydrological variables in the equation. The first of these issues is 
overcome in the current study by taking the extent of the CLA groundwater basin in its entirety (which contains 
numerous surface water sub-catchments), as the area of study.

For our study period and region, GRACE-TWS depicted a steady inter-annual trend while the water budget 
was able to capture intra-annual variations (Fig. 1c). This shows the robustness of regional hydrological models 
in monitoring relatively smaller, rapidly responsive catchments. This is important in downscaling because, the 
hydro-climatic actions, like climate oscillations and anthropogenic forcings that drive the multi-annual trends 
of regional models over small catchments are introduced as additional information in our downscaled product. 
Another interesting feature in the temporal patterns of the water budget ΔTWS and the GRACE-ΔTWS is the 
time lag. Knowledge of time lag is important for understanding the longest period over which the available stored 
freshwater resources can be sustainably exploited after the rainy seasons. The peak amplitude of the water budget 
(ds/dt) was between December and February while the peak amplitude for the downscaled GRACE-ΔTWS was 
from February to April throughout our study period (Fig. 4).

Xu et al.61 pointed out that when precipitation is converted to TWS during the water distribution process, 
there exists a possibility of a theoretical delayed response between TWS and precipitation. Since ds/dt is mod-
elled after hydrological fluxes, precipitation being the most dominant, this case holds for our study region. The 
delayed response of 1–2 months (Fig. 4) in GRACE-TWS observed when water enters the system as precipitation 
and distributes into the surface and sub-surface waters suggests that precipitation is the major driver of TWS 
over the CLA. Along with climatic factors, aquifer properties over the CLA such as the permeability and spe-
cific storage properties of the aquifer sediments (inter-layered limestone and mudstone)32 are the main driving 
force behind the delayed response of water budget (ds/dt) and GRACE ΔTWS62. For example, Awange et al.63 
reported a 6-month delay for aquifers characterized by unconsolidated sediments and a 0-month delay in Karst 
dominated aquifer in Ethiopia. Similarly, the CLA is composed of karstic features (sinkholes and dolines) and 
fracturing underlain by older Cambrian volcanic rocks. Recharge to the CLA is thought to be somewhat restricted 
by the extent of overlying, younger Creteaceous rocks (mudstone, sandstone, and clay) above the CLA36. It may 
therefore be plausible to attribute the time lag in TWS observed in Fig. 4a to the aquifer’s capacity to transmit 
climatic variations into changes in recharge and storage.

Validation and accuracy estimation of the downscaled product
Temporal and spatial variability
In the absence of other satellite based TWS product(s) or in-situ data for a direct comparison to GRACE, validat-
ing gridded downscaled ΔTWS estimates is difficult. Nevertheless, apart from the use of in-situ GWS and the 
water budget model, we validate the efficacy of our downscaled product by assessing the space–time consistency 
between the original and downscaled products. This was achieved by employing PCA technique to calculate the 
principal components and eigenvectors of the original and downscaled datasets. We examined the eigenvectors 
for both datasets and the eigenvalues associated with each principal component. The first three PCA modes 
which gave a cumulative variance of 96.3% and 96.9% for the original and downscaled products, respectively, 
were adopted as meaningful signals representing most of the total TWS variability of CLA for both scenarios.

The first PCA mode which explains 90.0% and 89.5% of variance for the respective original and downscaled 
variance (Fig. 5), depicts the annual variability of TWS changes over our test bed. This mode shows that the 
strongest annual variability (+ ve) over the CLA is prominent over the Daly basin (northernmost section of the 
CLA). These strong spatial loadings in the north of the CLA are largely precipitation-driven, contributing to the 
relatively high annual recharge rates in the region. This is in line with the findings of Bruwer and Tickell64 who 
estimated recharge to the Daly basin CLA (Tindall Limestone) to be approximately 330 GL/year greater than the 
other sub-basins to the south and less variable between years, as well as point-based diffuse recharge estimation 

Table 3.   Man–Kendall trend test result at alpha = 0.05 to find the trends for the original GRACE, downscaled 
GRACE, and in-situ ΔGWS. When H = 1, we reject the null hypothesis which means that a monotonic trend is 
present and when H = 0, we assume that there is insufficient evidence to reject the null hypothesis which means 
that no monotonic trend is present. The test was performed for the entire study period i.e., April 2002–June 
2017.

Test

Original GRACE Downscaled GRACE In-situ ΔGWS

H = 1 H = 1 H = 0

P-value 0.0003 0.0002 0.5318

Trends 0.3782 0.3505 − 0.0192
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by Crosbie and Rachakonda22. Significant surface runoff (following wet season monsoons), groundwater recharge, 
and discharge to the rivers in the basin (e.g., Daly, King Roper, and Flora) which are gaining streams (receiving 
groundwater discharge) along most of their length are likely responsible for the variability in the Daly32,65. This 
relatively high variability over the Daly basin results is captured in their corresponding PCs showed in Fig. 5a. 
It is also important to note the spike in the amplitude of PC1 around 2011. This spike was as a result of the 
heavy rainfalls between 2009 and 2010 that coincided with the end of the Australia millennium drought which 
was predominant in Southern Australia66. This signal was also captured by the in-situ GWS at around the same 
period (Fig. 5a).

The second and third PCA modes (Supporting information 6 and 7) explains 7% and 2.3%, respectively, for 
the original GRACE and 4.5% and 3.2%, respectively for the downscaled products. We categorize them as greater 
intra-annual variations as they depicted more consistent inter-annual variations. However, due to their minimal 
variance, they maintained little relationship with the in-situ ΔGWS and may not provide a comprehensive char-
acterization of TWS dynamics over the CLA. Most of these greater intra-annual signals are coming from eastern 
Wiso Basin and the North-western Georgina Basin. This variability is likely to be caused by ephemeral surface 
water bodies, seasonal flows and/or soil moisture in the region32,67. It is safe to conclude that the Daly basin 
witnesses more consistent variability in total water storage regardless of its relatively smaller size (Fig. 5, Sup-
porting information 6, 7). This means that the TWS here has a stronger seasonal change compared to the other 
regions of the CLA and this is consistent with the much higher total rainfall and more reliable wet/dry season 
experienced in the northern territory. Since the variability of catchments being significant, is not hindered by 
their sizes (Fig. 5c); it portrays the usefulness of downscaling the GRACE ΔTWS estimates to effectively monitor 
hydrological operations in relatively small scales.

Seasonal variability
We further explored the consistency of the downscaled GRACE against in-situ ΔGWS and water budget estimates 
over different seasons and their performance using statistical methods (Table 4). The largest discrepancies were 
observed during the autumn and summer period due to the complex hydro-climatic activities during this normal 

Figure 4.   a Time series of downscaled GRACE against the water budget trends (ds/dt) and observed in-situ 
groundwater level changes. (b–d) provides a visualization of the summary statistics for GRACE, water budget 
(ds/dt), in-situ ΔGWS, and downscaled GRACE, which are represented by the blue, black, green and red box 
plots, respectively, over the four seasons. The top and bottom of each box are the 25th and 75th percentiles of 
the observations, respectively. The distance between the bottom and top of each box is the interquartile range. 
Observations beyond the whisker length (i.e., lines extending above and below each box) are outliers and 
indicated with + symbols. This plot was generated using MATLAB R2023a software—https://​au.​mathw​orks.​com/​
produ​cts/​matlab.​html).

https://au.mathworks.com/products/matlab.html
https://au.mathworks.com/products/matlab.html
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wet season. During the autumn and summer season, temperature changes affect the state of water and influence 
ET rates, precipitation patterns are highly inconsistent, and the influence of natural and anthropogenic influences 
contributes to the complexity of this season, thus making it difficult to model than other seasons (Table 4). The 
idea for Fig. 6 was to examine the coherence of our downscaled products with the in-situ ΔGWS, ds/dt and 
the original GRACE under different hydrological conditions. While the autumn (March–May) and Winter 
(June–August) are characterized by significant latent heat transfers leading to high ET rates, low soil moisture, 
and a decline in the levels of surface waters, the spring months (September–November) and summer months 

Figure 5.   Validating our downscaled ΔTWS (PC 1) by checking its spatio-temporal consistency with the in-situ 
GWS changes and the original ΔTWS using principal component analysis. The pale red in (a) ranging from 
2002 to 2009 represents the period of the Australia’s millennium drought which ended in 2009/2010. (b) and 
(c) depicts the empirical orthogonal functions (EOFs) of the original and downscaled GRACE, respectively. 
The EOFs are loadings showing spatial patterns of ΔTWS over the CLA while the corresponding PC1 (a) are 
temporal variations which are normalized using their standard deviations to be unitless. This plot was generated 
using MATLAB R2023a software—https://​au.​mathw​orks.​com/​produ​cts/​matlab.​html).

Table 4.   Results showing the performance metrics for (i) downscaled GRACE v. in-situ ΔGWS and (ii) 
downscaled GRACE v. ds/dt.

Season

Downscaled GRACE v. in-situ ΔGWS Downscaled GRACE v. ds/dt

RMSE (mm) NSE MAE (mm) RMSE (unitless) NSE MAE (unitless)

Autumn 100.6197 − 1.4196 0.9330 86.5958 − 0.7922 18.0223

Spring 46.2429 − 0.1946 0.4730 46.0947 − 0.1869 0.7840

Summer 60.2856 − 0.1089 0.5546 72.9322 − 0.6230 29.5537

Winter 58.6199 − 0.1472 0.3678 53.2491 0.0534 7.0870

https://au.mathworks.com/products/matlab.html
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(December to February) months are characterized by high humidity and possible cyclones (Fig. 3). These hydro-
climatic events impact of the TWS over Australia and this was shown using our study area, however, we focus 
on the correlation between the downscaled products from PC1, PC2 and PC3 against in-situ GWS changes 
(Fig. 6a–c), water budget (Fig. 6d–f), and the original GRACE PC’s (Fig. 6g–i). PCA’s are very useful in identifying 
the dominant spatio-temporal patterns across seasons. For example, while the Northern part of Georgina basin 
witnessed a decline in TWS during the summer months, the southwestern part of the basin witnessed an increase 
in TWS during the same months (Figs. 5, 6).

We observed that the downscaled GRACE PC1, which contained most of the downscaled signals was signifi-
cantly correlated with the in-situ GWS changes, the water budget, and the original GRACE estimates (Fig. 6a,d,g). 
This is because it contains a large chunk of the variance proportion compared to PC2 and PC3. This shows that 
PC2 and PC3 cannot be relied upon to depict the spatio-temporal changes of TWS over our study region and 
period. Figure 6a,d,g shows a significant spatio-temporal consistency between the PC1 (strongest variability 
PC) and the other products used for validation. The coherency across board makes it statistically significant. 
Therefore, we can safely report that our downscaled estimate can be relied upon for making significant estimates 
for other regions in Australia, where similar hydro-climatic conditions exist.

For a 0-month ahead lag time, our experiment shows a correlation coefficient of r = 0.70 between the 
downscaled GRACE and in-situ GWS changes, and r = 0.34 between the downscaled GRACE and the water 
budget (ds/dt) (Table 5). The hydrological flux variables of precipitation, ET and runoff were poorly correlated 
here at r = 0.06, 0.39 and 0.18, respectively. These values increased over the 1-month and 2-month lag times to 
accommodate the time it takes for hydrological fluxes to reflect on terrestrial water storage changes. The 2-month 
ahead lag times recorded the strongest relationship between the downscaled products and the water budget 
products while maintaining the smallest errors as shown in Table 5. This trend was also observed in the first 

Figure 6.   Scatterplots showing relationships of the downscaled GRACE PC’s with in-situ groundwater storage 
changes (a–c), water budget model (d–f) and the original GRACE PCs (g–i). Seasonal samples are shown with 
different coloured symbols. Spearman’s correlation coefficients are given for each plot. Also shown are frequency 
distributions of residuals from the line of perfect fit (indicated with dashed line). This plot was generated using 
MATLAB R2023a software—https://​au.​mathw​orks.​com/​produ​cts/​matlab.​html).

https://au.mathworks.com/products/matlab.html
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(supporting information 8) PC plot, which is almost similar to the downscaled products due to its possession 
of ~ 90% signals, as well as the second (supporting information 9) and third PCs (supporting information 10) 
of the downscaled GRACE. This shows that the multi-annual signals are also sensitive to time lag changes 
of hydrological flux variables. We however, observed that the in-situ groundwater storage changes (GWSC) 
maintained the strongest relationship at the 0-month ahead lag time and the weakest correlation and the 2-month 
ahead lag time. This shows that the groundwater storage changes observed by the in-situ bores directly influence 
the observations from GRACE in real time. The strong correlations recorded between the downscaled GRACE 
and the water budget after lag adjustments shows that the downscaled GRACE is representative of the sub-grid 
heterogeneity and local-scale variations of water storage changes captured by the groundwater level variations 
over the CLA. On the other hand, the correlation between the downscaled GRACE and the water budget (even 
after lag adjustments) is at best average, which depicts that the inclusion of certain uncertainties in the water 
budget parameters makes land water storage understanding complex and is covered in the next section (5.2).

Uncertainty assessment/limitations
AWO’s water budget
The spatio-temporal variability evident in hydrological flux variables are driven by complex mechanisms ranging 
from climate variables and their interactions to anthropogenic influences. These are related to each other via 
the water budget equation. During our assessment of the water budget closure using the native AWO datasets 
(precipitation, ET, and runoff), it was observed that the ET values from the AWO are not only formed by the 
impacts of soil evaporation and vegetation transpiration, but also groundwater. Therefore, it becomes possible that 
these groundwater values present in the ET estimates may contribute to uncertainties in the AWO’s water budget 
closure for peculiar hydro-climatic regions in Australia. This is evident in Fig. 3h and l where the downscaled 
product did not match the water budget for the peak summer period. Given that the peak summer period is 
when ET is mostly dominant, its impact on our downscaling process is clearly based on its uncertainties. This 
was further confirmed in our study as we recorded a correlation of 0.20 between ET and the water budget model 
(ds/dt), while the precipitation and runoff fluxes correlated with the water budget at 0.76 and 0.57, respectively 
(Fig. 7c,f,i). Since ET can be said to be the most significant driver of the changes in our downscaled GRACE 
estimates when compared to other water budget terms (Fig. 7a,d,g), to improve our understanding of ET, we 
rely on the water budget equation. Previous studies have found that ET inferred from the water budget equation 
correlates with observational estimates, from either models or remote sensing platforms (in terms of seasonal 
cycles) but introduces larger magnitudes and larger inter-annual variabilities27,68,69, especially in summer months 
(Fig. 7f). More details can be found in supporting information 12.

In‑situ Groundwater storage changes
A major limitation in this study is the uneven spread and sparse number of monitoring bores used in estimating 
in-situ groundwater storage changes over the study area (supporting information 11, Fig. 7b,e,h). This contrib-
utes to uncertainties in our experiments because accurate quantification of storage volume changes from in-situ 
observations is heavily reliant on an extensive monitoring bore network which was not available. Also, during 

Table 5.   Performance metrics of the downscaled GRACE signals against the water budget parameters and 
in-situ groundwater storage changes adjusted for 0, 1 and 2 months ahead lag times.

Downscaled GRACE

r RMSE (mm) NSE MAE (mm)

0-month ahead lag

 Precipitation 0.06 90.12 − 0.99 65.35

 ET 0.39 61.75 0.09 48.55

 Runoff 0.18 66.31 − 0.05 49.97

 ds/dt 0.34 85.95 − 0.76 63.75

 In-situ GWSC 0.70 54.85 0.28 41.31

1-month ahead lag

 Precipitation 0.47 69.22 − 0.14 52.14

 ET 0.67 51.11 0.38 39.92

 Runoff 0.50 61.80 0.09 46.14

 ds/dt 0.02 76.45 − 0.39 56.10

 In-situ GWSC 0.61 57.31 0.20 43.75

2-month ahead lag

 Precipitaion 0.63 59.17 0.17 44.43

 ET 0.72 49.38 0.42 39.78

 Runoff 0.51 61.69 0.10 45.74

 ds/dt 0.26 69.13 − 0.13 50.08

 In-situ GWSC 0.41 62.47 0.13 47.89
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the conversion of GWLs to GWSC, we adopted storage coefficient values from Knapton et al.23. The storage 
coefficients/specific yield estimates from Knapton et al.23 were developed using a 3D hydro stratigraphic block 
model which identifies lateral and vertical geological distributions having similar hydrogeological characteris-
tics and then groups them in the same category. This model makes several assumptions based on the size of the 
basin and period of groundwater flows within the aquifer and is not designed to estimate storage coefficients in 
localized groundwater systems.

Our proposed downscaling method also contains uncertainties based on the interpolation of the missing 
months in the original GRACE datasets (JPL, CSR and GSFC), groundwater level readings, and the residuals 
obtained from the downscaling operation.

The uncertainty propagation of all the datasets used in our experiment is shown in supporting information 13.

Advancing TWS downscaling using regional hydrological models
In the context of downscaling GRACE-TWS data using high-resolution hydrological fluxes, the idea is to utilize 
additional data sources, such as precipitation, ET, runoff, which are available at higher spatial resolutions. By 
incorporating these high-resolution hydrological datasets, it becomes possible to enhance the spatial details of 
the GRACE estimates and obtain more localized information about TWS changes.

Since our aim of using high resolution datasets is to obtain a better insight into the local hydrological pro-
cesses of the region of interest, in this scenario, we argue that the use of estimates from regional hydrological 

Figure 7.   Correlation plot between the downscaled GRACE, in-situ GWS changes and the water balance model 
(ds/dt) against the hydrological fluxes of precipitation, evapotranspiration and runoff. The * in the regression 
values signifies parameters that were adjusted for a 2-month ahead time lag prior to their correlation. Seasonal 
samples are shown with different coloured symbols. Spearman’s correlation coefficients are given for each plot. 
Also shown are frequency distributions of residuals from the line of perfect fit (indicated with dashed line). This 
plot was generated using MATLAB R2023a software—https://​au.​mathw​orks.​com/​produ​cts/​matlab.​html).

https://au.mathworks.com/products/matlab.html
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models supersedes that from global hydrological models56. This is following the emergence of regional models 
as valuable tools for assessing and managing water resources at local scales70. While their global counterparts 
offer a broad understanding of the Earth’s hydrological system, regional models provide detailed insights into 
specific regions, enabling more accurate analysis of water availability, flood potential and the impacts of land 
use and climate change. By incorporating the uniqueness and high spatial resolution of the AWO model we 
were able to capture the effects of local precipitation patterns, evapotranspiration rates and runoff estimates in 
the water budget (Fig. 6a) which resulted in a more comprehensive understanding of the CLA’s changes in ter-
restrial water storage. The outputs from the AWO hydrological model provided spatially explicit information 
for our downscaling operation and improved the representation of the hydrological processes in the downscaled 
TWS estimates. Another useful aspect of regional models in the context of statistical downscaling lies in the 
inclusion of ancillary information, such as land cover details, soil properties, topography, and climate data, in 
accounting for the influence of TWS changes. Also, since estimates from regional models are often derived 
from ground-based observations and remote sensing products which have already been refined to capture local 
hydrological processes accurately, hydrological datasets from these models benefit from extensive calibration 
and validation efforts. By using these well-calibrated datasets, we can improve the accuracy and reliability of the 
downscaling process and enhance the confidence in the downscaled estimates. However, downscaling estimates 
can be improved with the introduction of additional predictor variables that represent and (or) contribute to 
the regional land water storage changes of specific regions, such as, soil moisture, surface water and even deep 
drainage estimates. This could result in the development of a more representative downscaled product which 
can be relied upon for local-scale water resource management and decision making.

Conclusion
GRACE satellite has for the first-time enabled space-based detection of terrestrial water storage changes at large 
scales and in inaccessible regions. However, based on past water management policies, decision makers are 
usually more interested in water storage changes at finer scales than what GRACE offers. To meet this need and 
realize the full potential of the GRACE mission in hydrology, it is pertinent to improve the spatial resolution 
of GRACE data through downscaling. This study presents the use of support vector machine in downscaling 
GRACE data with high resolution predictors of precipitation, evapotranspiration, and runoff from the Australian 
Water Outlook model so that the final downscaled output is representative of local scale hydrological dynamics 
of the CLA.

Downscaling GRACE-TWS using high resolution precipitation, ET and runoff is an efficient way of identify-
ing local-scale hydrological operations in relatively small catchments like the CLA. To validate our downscaled 
product, we used 12 in-situ groundwater monitoring stations spread unevenly across the study region. We also 
estimated trends from the water budget equation using the high-resolution predictors and performed statisti-
cal rotation using the principal component analysis on the original and downscaled products. These PC results 
from the downscaled TWS were compared to the in-situ groundwater level changes, water budget (ds/dt) and 
PC results from the original GRACE. With this operation, we were able to see that the downscaled PC1 products 
maintained a very high spatio-temporal consistency with the rest of the products, which was to be expected since 
it accounted for 90% of the total variability. The other PCs (i.e., PC2 and PC3) containing only strong intra-
annual variations cannot be relied upon to depict water storage dynamics of the CLA. The downscaled PC1 also 
maintained good agreement with the validation products across the different Austral seasons which signifies that 
the downscaled product is useful and consistent with GRACE and can be replicated for other smaller regions 
within Australia. The major findings from this study are:

	 i.	 Statistical downscaling using regional hydrological models improves the ability of the downscaled prod-
uct to characterize local-scale hydrological actions and represent small-scale features which may not be 
available in global hydrological models56.

	 ii.	 Machine learning applications in statistical downscaling of hydrological products are emerging as use-
ful tools in analysing complex, local-scale hydrological systems/basins and predicating the availability, 
distribution, and dynamics of water resources in catchment scales.

	 iii.	 Complex hydrological basins like the CLA with inter-connected sub-basins having varied land water 
storage dynamics rely on regression-based downscaling operation to handle the non-linear relationships 
between the water budget estimates, surface and groundwater variables from each sub-basin. The capa-
bility of the machine learning regression models in quantifying the intricate relationships between these 
inter-connected water systems leads to an improved accuracy in predicting high-resolution downscaled 
details which are representative of the averaged local-scale hydrology of the catchment.

Our study also revealed that the possible uncertainties in the AWO’s evapotranspiration dataset could impact 
on downscaling. This is because, ET constitutes a major driver of TWS changes over our study region but main-
tained the least correlation with the land water storage changes of the region (ds/dt) when compared to other 
hydrological fluxes. The uncertainties are mostly evident in the summer months (December, January, February). 
The summer months are the hottest with the most significant latent heat transfers all year round and are charac-
terized by irregular and sometimes intense rainfall events, leading to rapid changes in water storage. These high 
temperatures and prolonged sunlight during the summer months lead to significant evaporation rates, impacting 
water storage in lakes, rivers and reservoirs. Therefore, we recommend that future studies on the AWO’s ET data-
set is critical for a more accurate assessment of terrestrial hydrology and by extension downscaling operations.
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Data availability
High resolution predictor datasets used for our downscaling operation are freely available at: https://​awo.​bom.​gov.​
au/​produ​cts. GRACE-derived ΔTWS observations are available at https://​podaac.​jpl.​nasa.​gov/. In-situ ground-
water levels datasets used for validation are available at http://​www.​bom.​gov.​au/​water/​groun​dwater/​explo​rer/​
map.​shtml.

Code availability
We used MATLAB software for our statistical downscaling operation. The script is freely available for download 
from figshare via https://​doi.​org/https://​doi.​org/​10.​6084/​m9.​figsh​are.​25379​125.​v1.
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