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Improved data quality 
and statistical power of trial‑level 
event‑related potentials 
with Bayesian random‑shift 
Gaussian processes
Dustin Pluta 1,5, Beniamino Hadj‑Amar 2,5, Meng Li 2, Yongxiang Zhao 3, Francesco Versace 4 & 
Marina Vannucci 2*

Studies of cognitive processes via electroencephalogram (EEG) recordings often analyze group-level 
event-related potentials (ERPs) averaged over multiple subjects and trials. This averaging procedure 
can obscure scientifically relevant variability across subjects and trials, but has been necessary due 
to the difficulties posed by inference of trial-level ERPs. We introduce the Bayesian Random Phase-
Amplitude Gaussian Process (RPAGP) model, for inference of trial-level amplitude, latency, and 
ERP waveforms. We apply RPAGP to data from a study of ERP responses to emotionally arousing 
images. The model estimates of trial-specific signals are shown to greatly improve statistical power 
in detecting significant differences in experimental conditions compared to existing methods. Our 
results suggest that replacing the observed data with the de-noised RPAGP predictions can potentially 
improve the sensitivity and accuracy of many of the existing ERP analysis pipelines.

In studying the association of electroencephalogram (EEG) recordings and cognitive and behavioral outcomes 
in humans, researchers often focus on the study of event-related potentials (ERP), i.e., specific EEG segments 
time-locked to cognitive events or experimental stimuli1. Due to the substantial noise present in EEG recordings 
and the relatively weak signal, ERP analyses often focus on group-level effects that can be estimated from average 
ERPs2. For example, in the case study we consider in this paper, the goal is to detect differences in response to 
images with differing levels of emotional arousal, e.g. highly arousing, mildly arousing, or unarousing (Fig. 1). 
A commonly used analysis technique for this data summarises a specified time-window in the form of average 
amplitudes (i.e., voltage) to be analysed, for example, via one-way repeated measures ANOVAs across groups 
of subjects and/or conditions3, or with an empirical bootstrap procedure4,5. Consideration of the average ERP 
in statistical analyses is often necessary due to a lack of available tools to model trial-level ERP features. Con-
sequently, the potential impact of trial-level features on the estimation of the average ERP is often ignored or 
mitigated through pre-processing procedures6,7. Moreover, while there has been some study of within-subject 
variability of ERP characteristics, such as latency and amplitude, most results regarding the association of these 
features with cognitive and behavioral outcomes have been established only at the group level8–11.

Early approaches for the analysis of trial-specific latencies of ERPs were presented in12 and13, and later 
extended to include estimation of trial-specific amplitudes by14. This initial work on trial-specific latency and 
amplitude estimation lead to the development of a class of so-called Variable Signal plus Ongoing Activity 
(VSPOA) models, a general framework for the analysis of brain potentials that assumes that the observed signal 
for each trial is a linear combination of a fixed number of components, each of which may be shifted by some 
trial-specific latency, plus trial-specific ongoing background activity. The differentially variable component analy-
sis (dVCA) introduced by15 is a Bayesian VSPOA that provides maximum a posteriori estimates of trial-specific 
latencies, amplitudes and component waveforms. In an effort to improve upon dVCA16, proposed the analysis 
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of single-trial ERP and ongoing activity (ASEO) method, which assumes autoregressive ongoing brain activity, 
rather than white noise, as in dVCA, and which allows for estimation of latency on a continuous scale, whereas 
dVCA restricts latencies to be integer multiples of the sampling interval. However, both dVCA and ASEO suffer 
from the need to initialize the number of components and component waveforms. In practice, it is common to 
inspect the average ERP of the data and initialize the components as segments of the average ERP17,18. However 
this data-driven initialization may impact the resulting inference and bias the estimated components toward the 
average ERP. In addition to VSPOA models, a number of other methods for trial-level ERP analysis have been 
proposed, including spatial and wavelet filtering19,20, graph-based variability21,22, and linear mixed models23,24. 
While these methods are effective in obtaining estimates of trial-specific parameters and component waveforms, 
they are often not suitable for inference of arbitrary single-trial characteristics, and may suffer from restrictive 
assumptions regarding waveform structure and initialization, the single-trial noise model, and incorporation 
of prior scientific beliefs.

Methods described above have been mainly developed for the analysis of trial-level ERP signal, that is, single 
trial EEG data collected and processed according to time-locked stimuli. In recent years, there has been renewed 
interest in trial-by-trial analyses of raw EEG signals, i.e., not time-locked, using, e.g., support vector machines25,26, 
spatial network discriminant analysis27, topological data analysis28, and deep neural networks29–31. In contrast 
to model-based trial-level ERP analysis, these methods are primarily for the prediction of trial conditions from 
single-trial EEG waveforms, rather than inference of ERP components and trial-specific quantities of interest. 
A comparison of the performance of logistic regression, support vector machines, and neural networks in EEG 
signal classification and ERP detection in different signal-to-noise ratio (SNR) settings is given in32. While these 
predictive algorithms have found success in application, particularly for training of brain-computer interface 
systems33–35, it is often difficult to identify and interpret the discriminating features.

Motivated by the need for rigorous, flexible, and interpretable methods for trial-level analysis of ERP data, 
we developed the Random Phase-Amplitude Gaussian Process (RPAGP) modeling framework, which assumes 

Figure 1.   Trial-level ERP data modeling. In each experimental trial, a subject is shown an image drawn from 
a database consisting of images which are classified as high emotional arousal, low emotional arousal, and 
emotionally neutral. Trial-level data from ERP experiments is often summarized into condition-specific average 
curves for further analysis. The late positive potential (LPP) window is defined as ranging from 300 to 700 ms 
after stimulus presentation.
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that individual trials are generated as a common structural signal transformed by a trial-specific amplitude 
and phase shift plus ongoing brain activity. In the proposed RPAGP framework, a form of VSPOA model, the 
unknown signal is modeled via a Gaussian Process (GP) prior and an autoregressive process is assumed for the 
ongoing brain activity. We set priors on the trial-specific model parameters and design an efficient algorithm for 
posterior inference. In contrast to methods for group-level analysis of ERP data, our method produces estimates 
and uncertainty quantification of the structural signal and trial-specific characteristics, along with posterior 
distributions for trial-specific signals. This feature makes it possible for RPAGP to improve the sensitivity and 
accuracy of existing ERP analysis pipelines by replacing the observed data with the de-noised model predic-
tions. Here we use the data from36 to illustrate the use of RPAGP for testing of trial-level characteristics. Previous 
group-level analysis of this data has shown significance evidence that the amplitude of the late positive potential 
(LPP, see Fig. 1) is proportional to the level of arousal of the image, a result which is corroborated by the existing 
literature3,37–41. We reproduce such result with a trial-level analysis of single subject data. We also show how data 
quality and statistical power can potentially be greatly improved via our model-based de-noising.

Our proposed model falls within the general class of VSPOA models, as discussed above. Even though 
motivated by neuroscientific beliefs about the structure and characteristics of ERP signals, it has been difficult 
to develop a practical statistical implementation of these general models, due to the challenge of specifying the 
form of the component curves a priori in a manner that admits valid statistical inference. The closest construc-
tion to the proposed RPAGP model is the ASEO method of16 which assumes a VSPOA model with autoregres-
sive ongoing activity and uses an iterative numerical algorithm for inference that depends on extensive use of 
the Fourier transform. To the authors’ knowledge, the most readily available implementation of ASEO is in 
the FieldTrip MATLAB toolbox as part of the “event timing analysis” routine42. However, running ASEO via 
FieldTrip requires a priori specification of the number of components, and either the initial latencies of each 
component or initial estimates of the component waveforms through a decomposition of the average ERP, which 
in turn requires choosing the time window associated with each component. More importantly, while providing 
accurate point estimates of model parameters and reconstruction of component waveforms, the ASEO algorithm 
does not provide uncertainty quantification of these estimates, and so it is limited for statistical inference. On 
the contrary, RPAGP allows a flexible construction via the use of Gaussian process priors, which provides full 
inference on trial-level latency, amplitude, and the structural signals associated with each experimental condi-
tion. We demonstrate the proposed model is practical for application to data produced by most current ERP 
experiments, and does not require subjective initialization of component curves. In the Supplementary Material 
A1 we use simulated data to further investigate performance of the proposed RPAGP model to reconstruct the 
structural signal.

Results
We consider the data analysed in36 to study emotional processes. In each experimental trial, a subject is shown an 
image drawn from a database of images43–45. For the analyses of this paper we included 32 images rated as highly 
arousing, 29 rated as low arousing, and 16 rated as emotionally neutral (Fig. 1, see “Methods”). Scientific inter-
est is primarily regarding the mean of the task-related signal over the LPP window, which is defined as ranging 
from 300 to 700 ms after stimulus presentation. Previous analyses have shown that the magnitude of the LPP 
mean averaged over trials and subjects is positively associated with the level of arousal of the stimuli3. We re-
analysed the data by fitting the proposed RPAGP model (see “Methods”) to the trial-level data in the LPP window, 
standardized to [0, 1] with increments �t = 1/224 , and assuming a common structural signal across all trials.

Single subject analysis
In order to illustrate the application of the RPAGP model we first present results from the analysis of one subject. 
Figure 2 shows the data (left panel), together with empirical means, averaged by condition, and 90% bootstrap 

Figure 2.   Single-subject analysis of trial-level ERP signals. (left) Raw trial data from a single subject. (right) 
Means by condition show the expected relationship, but the associated 90% confidence bands, obtained by the 
empirical bootstrap, are wide and do not clearly suggest a statistically significant difference between the low and 
neutral categories.
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confidence intervals (right panel) computed by a stratified bootstrap procedure (see “Methods”). The 90% con-
fidence bands are used here for better visualization of the condition estimates, as the 95% bands would obscure 
the differences. The empirical estimates suggest differences in the LPP means by condition, but it is not clear 
if these differences are statistically significant. As is evident from the data, there is substantial noise present in 
single-trial ERP data, due to on-going brain activity and idiosyncratic fluctuations. These noise components 
are not accounted for in the empirical bootstrap method, resulting in wide confidence bands. On the contrary, 
Fig. 3 shows the temporally-aligned RPAGP trial predictions ỹi(t) , estimated via the posterior median, obtained 
by fitting the proposed PGP model (left panel) and the RPAGP model means obtained by averaging the aligned 
trial estimates by condition, together with the 90% credible intervals (right panel). We note that the posterior 
estimates of the means by condition calculated from the RPAGP model exhibit similar shape and scale to the 
empirical estimates, but with much less uncertainty relative to the empirical bootstrap method; the separation of 
estimated response by condition is clear from the model fits, but less apparent when considering the bootstrap 
estimates. Application of RPAGP allows removal of the noise and latency components, which results in narrower 
credible bands and a more powerful detection of differences among conditions.

One may notice that the empirical means and posterior mean ERPs in Figs. 2 and 3 look markedly different, 
particularly in the neutral condition. This is the result of the RPAGP modeling assumptions and differences in 
the methods of estimation. In the empirical approach, each condition is considered individually, and the respec-
tive trials are averaged to obtain a condition-specific empirical ERP estimate. With this approach, structural 
characteristics of the background activity may be present in the condition averages. Furthermore, subsetting the 
trials by condition can result in larger variance estimates. In comparison, the model-based RPAGP estimates are 
obtained under the assumption that the structural shape of the ERP is common across all conditions. Therefore, 
the higher voltage from 300 to 500 ms observed in the Neutral condition, for example, is likely not captured 
by the model as it is not consistently present in the other two conditions. Furthermore, since amplitudes of the 
Neutral condition trials are close to zero, the posterior mean curve will be close to the zero curve, and could 
obscure features in the Neutral condition even if it were significantly present in all conditions. The zeroing of 
the Neutral condition curve is not unexpected, as the assumption of the Neutral condition images is that they 
produce a small or no LPP response. This also explains why we see little difference in the High condition curves, 
as the signal is strongest in this condition and structures from background activity are less prominent in the 
empirical mean relative to the Neutral condition. Plots of raw trial data and means by condition, together with 
the temporally-aligned RPAGP trial posterior estimates and means by condition, for 4 additional subjects, are 
shown in the Supplementary Material A1.

Posterior densities of the trial LPP means (Fig. 4, see “Methods”) show that trials from the selected subject 
follow the expected trend on average, with a large amount of variability in the LPP means of individual trials, 
resulting in distributions by condition with substantial overlap. Despite the wide range of trial LPP means, the 
posterior distributions of the difference of LPP means among conditions are positive and tightly concentrated 
away from zero, clearly supporting the LPP hypotheses µHigh

LPP > µLow
LPP > µNeutral

LPP  . The largest difference in mean 
is exhibited by the comparison of the High and Neutral conditions, with an estimated difference in means 
(90% CI) of 1.37 (1.33, 1.42); the High–Low and Low–Neutral differences were similar, with means and CIs of 
0.78 (0.75, 0.81) and 0.60 (0.55, 0.64) respectively. For comparison, the empirical bootstrap procedure also finds 
the largest difference between the High and Neutral categories with an estimated difference in means (90% confi-
dence interval) of 1.41 (0.97, 1.84). The Low–Neutral and High–Low differences are estimated as 0.61 (0.22, 0.98) 
and 0.70 (0.24, 1.15) respectively. While each of the three comparisons are found to be significantly greater than 
zero and with similar point estimates for both methods, we observe that the bootstrap confidence intervals are 
wider than the model credible intervals.

Finally, Fig. 5 shows the RPAGP estimates of trial LPP means ordered sequentially over the course of the 
experiment. These plots can be useful to understand the variability of the characteristic of interest over the course 
of the experiment. We note that both the Low and High trials tend to have larger mean than the Neutral trials 
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Figure 3.   Inference from RPAGP on single-subject trial-level ERP signals. (left) The temporally-aligned RPAGP 
trial predictions, estimated via the posterior median, extract the task-related signal from the trial-specific noise. 
(right) Means by condition obtained by averaging the trial estimates. The 90% credible bands provide strong 
evidence of a difference in means among conditions.
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and that there is greater variability present in both emotionally arousing categories compared to neutral images, 
with the High condition images showing the greatest variability overall.

Impact on data quality
Next, we present results from the application of the RPAGP model to ERP data recorded from 161 subjects 
participating in the LPP emotional response image experiment of36. Table 1 shows the proportion of subjects 
satisfying the expected LPP mean relationships among conditions for the RPAGP method, the empirical boot-
strap (EMP) method and a standard ANOVA test performed on the empirical means from the original trial data, 
averaged by condition. We also report results we obtained by applying the ASEO algorithm via the Fieldtrip 
MATLAB toolbox42 to obtain estimates of the trial-specific signals, from which the ASEO trial-specific LPP 
means were computed. Confidence intervals of the differences in LPP means by condition were constructed 
by following the empirical bootstrap procedure but replacing the observed data with the ASEO trial-specific 
estimates. Significance of difference in LPP means was determined from these confidence intervals as with the 
empirical bootstrap procedure. On all three tests, RPAGP finds a much higher proportion of subjects satisfying 
the expected mean relationships compared to ASEO, EMP, and ANOVA, with RPAGP detecting 86.3%, 75.8%, 
and 70.2% of subjects showing significant differences for the High–Neutral, High–Low, and Low - Neutral tests, 
respectively. This is compared to 45.3%, 26.7%, 18.6% for ASEO; 44.1%, 29.2%, and 22.4% for EMP; 42.9%, 
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experiment.
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28.8%, and 16.8% for ANOVA, on the same tests, respectively. We note that RPAGP shows joint significance on 
all three comparisons for 52.2% of subjects, compared to only 6.8% of subjects detected by EMP. For a further 
examination of test performance, we focus on a comparison of RPAGP and EMP, since ASEO and ANOVA show 
lower proportions of significant subjects on all three tests.

We also tested whether our method increases the risk of detecting false positives. For each subject, we ran-
domly divided the trials of each condition into two groups and performed an ANOVA test for the difference in 
means. We repeated this random split 1000 times for each condition and calculated the percentages of significant 
tests. With the modeled data, the average of significant results was 4.3%, 4.5% and 4.6% for the High, Low and 
Neutral conditions, respectively. For comparison, applying the same procedure to the raw ERP data resulted in 
4.5%, 4.5% and 4.4% significant differences for the High, Low and Neutral conditions, respectively. We conclude 
that our method substantially increases the chance of detecting a true positive while not increasing the prob-
ability of false positives.

To quantify the practical effect of the model de-noising provided by RPAGP in the LPP experiment, Fig. 6 
illustrates the change in signal-to-noise ratio (SNR, see “Methods”) and a comparison of the point estimates of 
difference in the means by condition, for the RPAGP and EMP methods, and Fig. 7 shows a comparison of the 
CI widths for these estimates. The RPAGP model greatly improves the SNR compared to the EMP method, with 
a 15-fold increase in SNR on average. This improvement in SNR could result from increases in the estimated 
differences, decreases in the widths of the corresponding CIs, or a combination thereof. Examination of the 
point estimates for differences in means produced by RPAGP and EMP shows that they are essentially equivalent 
(Fig. 6), but, as seen in Fig. 7, the CIs produced by EMP are much wider than those produced by RPAGP. Thus the 
improvement in SNR is entirely due to the narrower confidence intervals associated with the RPAGP estimates, 
rather than increased point estimates. The additional cases detected by RPAGP but not EMP (bright green) are 
primarily those with small point estimates, but also include a number of cases with relatively large point esti-
mates. RPAGP detects a significant relationship for all but one test, with a point estimate of differences among 
the means by condition above 0.135, and shows consistent CI widths across all subjects and tests. In contrast, 
EMP fails to identify a significant relationship even for some comparisons with estimated differences; the EMP 
CIs are substantially larger than the RPAGP CIs across all tests and subjects, and much greater variability of CI 

Table 1.   Impact on data quality. Proportion of subjects giving expected results. RPAGP detects a substantially 
higher proportion of subjects following the expected mean relationship among categories compared to ASEO, 
EMP and ANOVA. This is primarily due to the de-noising process of the model, which reduces uncertainty 
about the estimates for the differences among conditions, compared to the other methods that do not account 
for the structured and idiosyncratic noise present in ERP data (see Figs. 6 and 7 and text).

High–neu. High–low Low–neu. All 3 tests

RPAGP 0.863 0.758 0.702 0.497

ASEO 0.453 0.267 0.186 0.031

EMP 0.441 0.292 0.224 0.068

ANOVA 0.429 0.288 0.168 0.038

All 4 methods 0.429 0.267 0.168 0.031
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Figure 6.   Improvement on data quality of the RPAGP denoising. (left) Comparison of the signal-to-noise 
ratio (SNR) of the model predictions (RPAGP) against the empirical means (EMP). The de-noising process of 
the model improves the SNR for all but one trial, with a 15-fold improvement on average. (right) The RPAGP 
and empirical estimates of the differences in LPP means by condition essentially agree for all trials, thus the 
improvements in statistical power for RPAGP primarily result from the removal of noise.
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width is evidence in the EMP CIs. This stark difference in CIs is due to the separation of signal and noise in the 
RPAGP model, making the resulting error estimates less susceptible to subject- and trial-specific variations that 
are not related to the stimuli.

For further evidence, we calculated the Standardized Measurement Error (SME, see “Methods”), a measure 
of (subject-level) data quality proposed by46 for averaged ERPs, using both the raw data and the RPAGP trial 
predictions. Results showed that the RPAGP de-noising decreases the SME compared to the raw data, but also 
that the resulting change in SME is relatively small, with the RPAGP trial predictions showing an average decrease 
(standard error) of 0.039± 0.062 relative to an average SME of 0.555 computed over the raw data and model 
predictions. This close correspondence in SME from the raw data and trial predictions indicates that the model 
does not substantially reduce inter-trial variability relative to the raw data. In conjunction with the results on 
improvement in SNR from application of RPAGP, the correspondence of SME suggests that the improvement of 
RPAGP over EMP (Table 1) comes primarily from a reduction in noise of the estimated parameters, rather than 
from a boosting of the LPP signal (Fig. 6), nor from a reduction in the inter-trial variability.

In the Supplementary Material A1, we report additional investigations into the performances of RPAGP that 
were performed based on simulated data. Simulated settings, in particular, allow us to calculate Mean Squared 
Errors (MSEs) between the estimated and the true structural signal. We simulated data for two categories, fol-
lowing the general structure suggested by the real ERP data of our application. Details of data generation are 
provided in the Supplementary Material A1. We investigated performances for different values of the model 
parameters σβ , στ and σε (see “Methods”) and by averaging results over 50 replicated datasets. Figure A.1 shows 
the true structural signal f, the simulated trial-level data and the RPAGP estimate f̃ = ̂̄βf  , computed as the 
posterior median of the distribution of the temporally-aligned trial estimates, for one dataset simulated with 
σβ = 0.1, στ = 0.01 and σε = 0.1 and n = 30 . By adjusting for the trial-specific latencies, RPAGP is able to pro-
vide a more accurate estimate of the true structural signals relative to the empirical means. MSEs obtained by 
estimating the true structural signal by RPAGP and by the empirical mean of the raw data, and averaged over 
the 50 replicates, are reported in Table A.1. RPAGP shows substantially smaller MSE compared to EMP in the 
presence of latency, and is at least as accurate as EMP when no latency is present.

Improvement in statistical power
Results above have indicated that the denoised signals produced by RPAGP are potentially less noisy and of 
better quality than the observed trial-level data. Our next question is to whether the availability of the denoised 
estimates can also result in a reduction of the number of trials needed to power a particular study, with respect 
to the standard practice of using average curves obtained from raw data. We therefore assessed the power of the 
RPAGP method for testing the three hypotheses implied by µHigh

LPP > µLow
LPP > µNeutral

LPP  based on the LPP emo-
tional responses data from36 and varying number of trials (see “Methods”), for the subject considered in “Single 
subject analysis”. Results of this analysis for total number of trials n = 15; 25 , are reported in Table 2 and show 
that RPAGP has power at least as great as the empirical bootstrap test for all tests and sample sizes considered. 
Furthermore, RPAGP substantially outperforms the empirical method in testing for differences between the Low 
and Neutral conditions, which is the test with lowest signal-to-noise ratio.

For further investigation, we performed a two-group power analysis on simulated data with varying numbers 
of trials and by generating data with different signal-to-noise ratios. Details of the signals generation are given in 
the Supplementary Materials A1. For each setting, results were averaged over 50 replicated datasets. The estimated 
powers are given in Table A.2. The results show that the power of the RPAGP test is substantially greater than 
that of the empirical method in the majority of simulation settings considered, and is universally better than the 
empirical method for the largest sample size considered ( n = 30 ). In the easier settings, with low SNR, RPAGP 
has estimated power near or equal to 1, compared to 0.35 for the empirical method.
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Figure 7.   Differences in LPP means between categories. The 90% credible intervals for differences in LPP 
means between categories produced by RPAGP (right) are substantially narrower than the 90% confidence 
intervals obtained via empirical bootstrap (left).
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Discussion
We have developed the Random Phase-Amplitude Gaussian Process (RPAGP) modeling framework, as a Bayes-
ian implementation of a VSPOA model for trial-level analysis of ERP data. The approach assumes ERP trial data 
are generated by trial-specific phase shifts and amplitude scalings of a common structural signal that is flexibly 
modeled with a Gaussian process prior. In contrast to methods for group-level analysis of ERP data, our method 
produces estimates and uncertainty quantification of the trial-specific parameters and the structural signal, in 
addition to posterior distributions of trial-specific signals. Trial-level models for ERP data offer markedly advan-
tages over average-based approaches. Firstly, adjusting for variations in trial-level characteristics may result in 
improved ERP signal estimates, as we have demonstrated in the analyses of this paper. This, in turn, leads to 
increased statistical power for condition-level inferences compared to empirical methods. Furthermore, analysis 
of the distribution of trial-level ERP features may reveal scientifically relevant patterns across trials within a 
subject, or across subjects.

The availability of trial-level signal estimates makes it possible for RPAGP to supplement any existing ERP 
analysis method by replacing the observed data with de-noised model predictions. De-noised trial predictions 
may be used, without requiring additional processing, to improve the sensitivity and accuracy of existing ERP 
analysis pipelines, such as averaging the extracted signals over a scientifically relevant time window, perform 
spectral analysis and/or assist in detecting outlying or erroneous trials that may not have been removed during 
pre-processing. We have applied RPAGP to data from a study where the interest is in detecting differences in 
ERP responses to images with differing levels of emotional arousal. Results, in particular, have shown how data 
quality and statistical power can potentially be greatly improved via our model-based de-noising.

Possible extensions of the RPAGP model presented here could incorporate alternative assumptions regarding 
the structure of the data, and further expand its range of applications. For example, for clarity of presentation and 
application to LPP experimental data, we have assumed a common structural signal for all trials, with potential 
differences among conditions determined solely by latencies or amplitudes. A direct and simple extension of the 
proposed model is to allow for different structural signals across experimental categories, each modeled as an 
independent GP prior, for comparison and testing of trial-level features across categories when there is little infor-
mation regarding the structure of the condition-specific signals. This form of the model can be implemented with 
minor changes to the Algorithm 1. Furthermore, the most general class of VSPOA models assume that observed 
data result from a linear combination of multiple component waveforms, each with its own trial-specific phase 
and amplitude. While identifying the approximate time intervals and shapes of these components for algorithm 
initialization can facilitate estimation of trial-specific features, as in16, building a flexible inferential procedure 
incorporating these structural assumptions has not yet been developed, to our knowledge. With the proposed 
RPAGP model as a starting point, a multiple-component trial-level model similar to the framework in16 may be 
possible through further refining of the model priors. Finally, we did consider some analysis and interpretation 
of trends in the amplitude and latencies over the course of the experiment, given some of the apparent condi-
tion differences that can be seen in Fig. 5. However, given the characteristics of the experimental design, these 
patterns in a single subject are likely spurious. A formal analysis of trends in ERP amplitudes over the course of 
the experiment using the proposed model is an interesting possible direction for future work.

Methods
Study participants
For the analyses of this paper, we used data from 161 individuals enrolled in a previous study in which ERPs 
were collected on brain reactivity to an array of emotionally arousing images36. Participants in the original study 
lived at a stable address within Harris county, TX, did not report any psychiatric disorder during a screening 
interview, were between the ages of 18 and 55 years, were able to speak English, had access to a telephone, were 
negative to a urine drug panel and to a urine pregnancy test. The mean age of the sample was 35 years (SD = 9), 
75% of the sample were females and the racial distribution included 37% Blacks, 28% Whites, 14% Asian, 21% 
others (including not reported).

Picture viewing task
The images used in the study were selected from the International Affective Picture System (IAPS)43 and from 
a collection used in44,45 created by downloading images from the internet and from another libraries of images. 

Table 2.   Statistical power analysis. Estimated power in testing for differences in mean amplitudes across 
conditions for empirical bootstrap and RPAGP on ERP data. RPAGP consistently shows power at least as 
great as the empirical testing power, with the greatest increase in testing the difference of Low and Neutral 
conditions.

n = 15 n = 25

Empirical H-L 0.65 0.9

RPAGP H-L 0.85 1.0

Empirical H-N 0.95 1

RPAGP H-N 1 1

Empirical L-N 0.50 0.50

RPAGP L-N 0.75 0.90
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The images used for the study belonged to 8 categories (Erotica, Romantic, Food, Neutral, Neutral Objects, Pol-
lution, Attack, Mutilations) with 16 pictures in each condition. To conduct the analyses described in this paper, 
we excluded images depicting objects (i.e., food, pollution, and neutral objects) and re-classified erotic and 
mutilation contents as “High arousing” and romantic and attack contents as “Low arousing”. The images were 
presented for 4 s in pseudo-random sequences (no more than two consecutive pictures of the same condition). 
A 3–5 s random intertrial interval, showing a white fixation cross against a black background, followed each 
image. The slideshow lasted approximately 20 min and included four 30 s intervals, during which the participant 
was instructed to relax. The images were presented on a plasma screen placed approximately 1.5 m from the 
participant’s eyes. The images subtended approximately a 24◦ horizontal viewing angle.

Data collection procedures
All study procedures for the original study were approved by the UT MDAnderson IRB and were conducted 
in accordance with the relevant guidelines and regulations. Written informed consent was collected from each 
participant before starting any procedure. Details about the study are provided in the original publication36. 
Briefly, the study included one in-person laboratory visit when, after obtaining informed consent, eligibility 
was confirmed and the electroencephalogram (EEG) data were recorded while participants passively looked at 
a slideshow that included a wide array of images selected from a standardized database. During the slideshow, 
EEG was continuously recorded using a 129-channel Geodesic Sensor Net, amplified with an AC-coupled high 
input impedance (200 M � ) amplifier (Geodesic EEG System 200; Electrical Geodesics Inc., Eugene, OR), and 
referenced to Cz. The sampling rate was 250 Hz, and data were filtered online by using 0.1 Hz high-pass and 100 
Hz low-pass filters. Scalp impedance of each sensor was kept below 50 K � , as suggested by the manufacturer. At 
the conclusion of the visit, participants were debriefed and compensated for their time.

Data reduction procedures
Eyeblink artifacts were corrected using a spatial filtering method as implemented in the BESA software (BESA 
GmbH, Grafelfing, Germany), data were re-referenced to the average reference and eyeblinks were corrected. 
Data were imported into BrainVision Analyzer 2.1 (Brain Products GmbH, Gilching, Germany) and filtered 
with a high-pass filter of 0.1 Hz (12 dB/octave), a low-pass filter of 30 Hz (12 dB/octave), and a notch filter of 
60 Hz. The data were then segmented into 900-ms segments, starting 100 ms before stimulus presentation. The 
100-ms interval before stimulus presentation was defined as the baseline and subtracted from every data point 
in the segments. Artifacts were identified in the segmented data and channels contaminated by artifacts in more 
than 40% of the segments were interpolated using six neighboring channels. Voltage data averaged from 10 
centroparietal sensors (EGI electrodes 7, 31, 37, 54, 55, 79, 80, 87, 106, 129) were used in the analyses, as these 
channels had shown the highest LPP differences between experimental conditions36.

Empirical bootstrap estimates
For B = 10, 000 bootstrap iterations, trials were resampled with replacement, stratified by condition, so that each 
bootstrap sample contained the same number of trials in each condition as the original data. For each bootstrap 
iteration, mean curves by condition were then computed over the resampled trials. The estimated means by 
condition and associated confidence intervals were then calculated as the mean and empirical quantiles of the 
bootstrapped distribution of the means by condition. Empirical bootstrap estimates of the differences in the 
LPP means by condition were obtained similarly by calculating the average over the LPP window for each of the 
bootstrapped means by condition. For each pair of conditions, we conclude that the LPP means are significantly 
different if the 5% empirical quantile of the bootstrap distribution of the difference in the means is positive.

Random phase‑amplitude Gaussian process model
Let y1, . . . , yn be n realizations of a stochastic process on [a, b] → R observed at T evenly spaced points; without 
loss of generality, we will assume a = 0, b = 1 in the sequel. We first consider a general form of a curve registra-
tion model, to motivate the construction of the proposed RPAGP model. In curve registration, the aim is to match 
two or more functions that might exhibit a common shape distorted by function-specific variations referred to 
as warpings47–50. The problem of curve registration is typically stated as follows: given two functions, f1, f2 , find 
the warping function γ such that f1 and f2 ◦ γ are optimally matched according to some criteria. The general 
class of warping functions consists of all orientation preserving diffeomorphisms of [0, 1], but in practice the 
space of warping functions considered is often restricted to some subset of parameterized functions, e.g. linear 
transformations51. To accommodate transformations along both the horizontal and vertical axes, an additional 
warping function is introduced; in this setting, it is common to consider linear transformations γ1, γ2 , resulting 
in the phase-amplitude curve registration problem52–55. Accordingly, we assume that the observed data yi result 
from a structural signal function f, composed with trial-specific left- and right-transformations gi , hi respectively, 
plus structured noise vi , as

Specification of this model requires selecting the form of the transformations gi , hi , a class of signal functions, 
and the noise structure. This general form of curve registration model has been explored in the literature for 
different classes of transformations and signal curves, at various levels of generality47,51,56.

In ERP studies, there is often scientific interest in estimating differences in signal amplitude and latency across 
trials, as these differences have been shown to be associated with cognitive and behavioral outcomes2,3,17. This 

(1)
yi(t) = (gi ◦ f ◦ hi)(t)+ vi(t), i = 1, . . . , n; t = k�t,

for k = 0, . . . ,T − 1.
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suggests parameterizing the class of transformations as gi(x) = βix , hi(x) = x − τi , where βi , τi are the trial-
specific amplitude and latency respectively. We assume f is an element of the reproducing kernel Hilbert space 
(RKHS) determined by a positive-definite kernel function κ(t ′, t) . This allows for the class of signal functions to 
be tailored to a specific application through the choice of an appropriate kernel and prior distribution over the 
RKHS. In the present work, we assume Gaussian process priors with radial basis kernel for f, which is both suf-
ficiently flexible and computationally tractable for the analysis of ERP data11. Lastly, following empirical results 
in the ERP literature16,57, the ongoing background activity is assumed to follow an autoregressive structure. 
Formally, our proposed RPAGP model can be written as

with �t = 1/(T − 1) . Similar to the terminology of53, we refer to f as the structural signal.

Priors on model parameters
To complete the specification of the RPAGP model, we propose the following priors for the model parameters. 
Letting τ = (τ1, . . . , τn) the vector of latency parameters, the prior for τ is constructed assuming a normal 
distribution

 where the marginal variance σ 2
τ  should be chosen according to the plausible range of latency for the given sci-

entific application. If the RPAGP model is implemented with time coded on the unit interval (as in the present 
work), then it will be necessary to translate the scale of the real latency (in, e.g.  milliseconds) to the correspond-
ing value in [0, 1].

When the trial-specific amplitudes βi can be assumed to be unrestricted on R , it is convenient to adopt the 
prior βi

ind
∼ N (µβ , σ

2
β ) , which allows for efficient sampling. Choice of the prior parameters is discussed below. 

In some applications, it may be necessary to restrict βi ≥ 0 , in which case a truncated normal may be used. As 
for the GP kernel κ and associated priors, these should be selected according to prior beliefs about the structural 
signal f. Throughout this article, we adopt the commonly used squared exponential kernel given by 
κSE(t

′, t) = exp
{
− ρ2

2 (t
′ − t)2

}
 . The length scale parameter ρ > 0 governs the smoothness of the functions in 

the associated RKHS; we use the prior ρ ∼ Gamma(aρ , bρ) , with aρ and bρ chosen according to the plausible 
range of values for the signal length scale. Further details are provided in58; an extensive investigation of GP 
covariance structures in the context of EEG data is given in11. As for the AR coefficients φ = (φ1, . . . ,φp) , these 
are given a prior N (0,�φ) , where �φ = diag{σ 2

φ1
, . . . , σ 2

φp
} , with variance values chosen to concentrate the prior 

mass in the interval [−1, 1] . Finally, the prior for the white noise variance σ 2 is Gamma(aσ , bσ ) , with hyperpa-
rameters chosen to place diffuse mass over reasonable values for the error variance for the observed data.

We note that, as formulated thus far, the scales of the βi and f are not identifiable due to invariance of the likeli-
hood under transformations of the form βi → rβi , f →

1
r f  for any constant r  = 0 applied over all i = 1, . . . , n . 

To resolve this, one may fix a nonzero value for βi for one trial, or alternatively, fix a nonzero value of f (t∗) = a 
at one point t∗ . When exploring these options, we found that the former solution may introduce errors or affect 
the model fit if the selected trial is an outlier or especially noisy relative to the other trials, and therefore generally 
advocate for the latter solution. In fixing a value of f, it is beneficial to choose a time point for which f is likely 
nonzero, and to fix the value close to the value of the expected signal. If the scale of f and the observed signals 
are substantially different, priors for the βi ’s must be calibrated accordingly. In practice, it is useful to examine 
the empirical mean to identify a reasonable time point and scale for f. In this case, it is suggested to set the prior 
parameters µβ and σβ so that there is prior mass over the plausible range of observed scaling factors relative to 
the mean curve. A sensitivity analysis of RPAGP, conducted on simulated data, indicated robust performances of 
RPAGP in estimating trial-specific amplitude and latency parameters (see Supplementary Material, Table A.3), 
suggesting that hyperparameter tuning can be reasonably guided by prior scientific knowledge.

Posterior inference via MCMC
Let θ = (β , τ , ρ,φ, σ 2) represent the vector of model parameters, with β = (β1, . . . ,βn) ∈ R

n the vector of 
trial amplitudes, τ = (τ1, . . . , τn) ∈ R

n the vector of trial latencies, ρ > 0 the length scale parameter of the GP 

(2)
yi(t) = βi f (t − τi)+ vi(t), i = 1, . . . , n; t = k�t,

for k = 0, . . . ,T − 1

(3)

f ∼ GP(0, κ)

vi(t) =

p∑

j=1

φivi(t − j�t)+ εi(t)

εi(t)
iid
∼ N (0, σ 2),

(4)τ ∼ N

(
0, σ 2

τ

(
In −

1

n+ 1
11′

))
,
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squared exponential kernel for the GP prior, φ = (φ1, . . . ,φp) the vector of autoregressive coefficients, and σ 2 
the error variance. Given f and θ , the conditional distribution of y can be computed from the multivariate normal 
conditioning formula as

with µyi |f
= Kyi f

K−1
f f  and �yi |f

= �yi
− K

′

yi f
K−1
f Kyi f

 , and where Kyi f
(t′, t) = βi exp{−

ρ2

2 (t
′ − t − τi)

2} and 

�yi
= β2

i Kf +�v for Kf (t
′, t) = exp{− ρ2

2 (t
′ − t)2} and �v the covariance matrix of an AR(p) process. The log-

likelihood is

Given that (f , y)|θ are jointly normal, the closed-form posterior for f |y, θ is calculated as

that is, f |y, θ ∼ N (µf |y ,�f |y) , with

The procedure in Algorithm 1 produces a chain of B draws from the joint posterior of (θ , f ) . Given the current 
parameter values θb−1 , values for τ b,βb, and ρb are generated as a series of Metropolis-within-Gibbs steps; alter-
natively, if β is unconstrained, βb may be sampled from the closed-form posterior for Bayesian linear regression 
(BLR). Then, f b is sampled from the closed-form posterior conditional on τ b,βb, ρb . The residual activity is 
calculated by removing the trial-specific mean vbi = yi − E[yi|θ

b] , from which draws of φb, σ 2,b are made using 
closed-form posterior updates. We note that in general this procedure requires O(T3) operations for inverting Kf  
and �v , but scales linearly with n, and is thus usually computationally feasible for real data from ERP experiments.

Algorithm 1.   Sampling algorithm.
Given the output of Algorithm 1, inference may be conducted through analysis of the posterior samples 

{θb}Bb=1 . In particular, testing for differences in mean latency and amplitude across groups of trials (i.e., experi-
mental conditions) can be carried out directly from the posterior samples of β and τ , as we show in the simula-
tions below. Furthermore, the posterior draws of the structural signal f can be used to provide visualization of 
the estimated signal shape and posterior variability, as described below.

Inference on trial‑level ERP signals
An important feature of the output from our model is the availability of samples on the structural signal f, which 
in turn allows us to produce posterior samples of trial-specific signals. Let τ b,βb and f b be the bth MCMC draws 
of the respective parameters. Model predictions ŷi(t) of the individual trials can then be obtained as, e.g., the 
pointwise-median of the posterior samples of the signal for trial i calculated as ŷbi (t) = βb

i f
b(t − τ bi ) . Here, 

however, we focus on the temporally-aligned trial estimates ỹi(t) = β̂i f (t) , calculated as the median of the pos-
terior samples ỹbi (t) = βb

i f
b(t) . This effectively treats the estimated latencies τ̂i as nuisance parameters, allowing 

analysis of features of interest adjusting for trial-specific latency. In our application, preference for the aligned 
estimates follows from the scientific assumption that the LPP window (see Fig. 1) should be adjusted for each 
trial according to the trial-specific latency. The aligned estimates may also be averaged to compute f̃ = ̂̄βf  , the 
structural signal scaled by the mean amplitudes of the trials (possibly within each condition), which is the most 
“natural” scaling of f relative to the data.

(5)yi|f ∼ N (µyi |f
,�yi |f

),

ℓ(θ) =

n∑

i=1

[(
yi − µyi |f

)′
�−1

yi |f

(
yi − µyi |f

)
+ log(|�yi |f

|)

]
+ nT log(2π).

p(f |y, θ) ∝ p(y|f , θ)p(f |θ) =

exp

{
−
1

2

n∑

i=1

(yi − µyi |f
)′�−1

yi |f
(yi − µyi |f

)

}

exp

{
−
1

2
f ′K−1

f f

}
,

µf |y = �f |y

n∑

i=1

y
′
i�

−1
v Kyi f

K−1
f and�−1

f |y = K−1
f

(
n∑

i=1

Kyi f
�−1

v Kyi f

)
K−1
f + K−1

f .
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Inference on LPP means
Next, we present inference on differences in LPP means across categories using the RPAGP fit. Let us denote 
the LPP mean as µLPP . When referring to the parameter for a specific stimulus condition, e.g. Highly arousing, 
we will denote this as µHigh

LPP  . To estimate the LPP means, we produce the aligned trial estimates ỹbi  from the bth 
MCMC draw and compute the corresponding LPP means by averaging the ỹbi  within each condition, and then 
averaging over the LPP window. That is, for condition c ∈ {High, Low,Neutral} , trial conditions ci , nc the number 
of trials in condition c, and LPP window [tlwr = 300, tupr = 700] with length TLPP = tupr − tlwr , the bth posterior 
draw of the LPP mean is

and the posterior distribution of the differences of means can then be calculated as µ̂c1,b
LPP − µ̂

c2,b
LPP , for conditions 

c1, c2 . Similarly, an LPP mean for a single trial i, is calculated as µ̂i,b
LPP = 1

TLPP

∑tupr
t=tlwr

ỹbi (k�t).
Testing of the LPP hypotheses for differences in conditions is conducted by computing the 5% lower credible 

bound for the mean differences, and concluding significance if this value is positive. In comparing performance 
of RPAGP and frequentist methods, we note that while the bootstrap confidence intervals and Bayesian cred-
ible intervals have different theoretical foundations, it has been shown that Bayesian CIs approximately satisfy 
frequentist coverage properties under fairly general conditions. Further discussion is provided in59.

Parameter settings
Considering the choice of priors and hyperpriors, our model has a total of 6+ p free parameters, for autoregres-
sive order p, which reduces to 7 parameters if all autoregressive coefficient priors are chosen to be the same. 
The parameters and hyperparameters that must be set to initialize the model are: (i) the variance of the latency 
paramaters; (ii) the variance of the amplitudes; (iii) the hyperprior scale and shape for the length scale of the 
structural signal; (iv) the prior for the autoregressive noise parameters, including the choice of the AR order; 
and (v) the hyperprior scale and shape for the variance of the white noise. In all analyses of this paper, prior 
hyperparameters were chosen to specify weakly informative priors consistent with the assumptions and available 
prior information from existing ERP studies. In order to ensure identifiability of the β parameters, we chose to 
fix the value of the structural signal 400 ms after stimulus presentation to be approximately equal to the value 
of the grand average at this time point. We consequently chose the prior βi

ind
∼ N (1, 0.5) to place the majority 

of the prior mass on (0, 2), σ 2
τ = 0.02 to put approximately 95% of marginal prior mass for latencies equal to 

±9 time points, or shifts of ±4 % of the LPP window, and aρ = 12, bρ = 1 to give a wide range of plausible GP 
length scales. The autoregressive order for v was selected as p = 2 after examination of the autocorrelation and 
partial autocorrelation functions of data residuals resulting from subtraction of the subject-specific average 
ERPs and the residuals from RPAGP fit with white noise error; prior variance for φ1,φ2 was set at 0.5. The prior 
for σ 2 was set as Gamma(1, 1).

The RPAGP model was fit via Algorithm 1 for B = 8000 MCMC draws. On a MacBook Pro computer with 
2 GHz Quad-Core Intel Core i5 and 16 GB RAM, this took about 10 hours, for one subject. Analyses on multi-
ple subjects were run in parallel on a cluster computer. For Metropolis-Hastings sampling, Gaussian proposal 
distributions centered at the previous parameter draw were used, with variances set at 0.005 and 1 for τ and ρ , 
respectively. Convergence of all parameters was assessed by the Gelman-Rubin diagnostic measure R̂ , with sam-
pling terminated when all parameters yield R̂ < 1.1 as recommended in60. Effective sample sizes for all parameter 
posterior samples were also calculated following termination and evaluated according to the stopping rule in61 
as an additional check for any issues with sampling.

Data quality measures
To quantify the practical effect of the model de-noising provided by RPAGP in the LPP experiment, we consider 
the signal-to-noise ratio (SNR), here defined as the ratio of the point estimate LPP mean for condition c to the 
90% credible interval width for the estimate, that is SNR =

µ̂c
LPP

CIupr−CIlwr
62. The SNR quantifies the magnitude of 

the signal relative to the variability of the noise in the data, i.e., a larger SNR indicates a more easily detected 
signal. When computing SNR for difference in LPP means between different experimental condition, we evalu-
ated the SNR as the ratio of the absolute value of the difference LPP means for condition c1 and c2 to the corre-
sponding 90% credible interval width, namely SNR = µ̂

c1,c2
LPP

CIc1,c2upr −CIc1,c2lwr

 , with µ̂c1,c2
LPP = |µ̂

c1
LPP − µ̂

c2
LPP |

An alternative measure of (subject-level) data quality is the standardized measurement error (SME) proposed 
by46. The SME of a sample y relative to a statistic of interest R(y) is defined as the sampling standard deviation, 
which can be estimated via a bootstrap resampling procedure. In our context, with the LPP mean µ̂LPP as the 
statistic of interest, the SME is SD(µ̂c1

LPP − µ̂
c2
LPP) , where c1, c2 refer to two experimental conditions, e.g., High 

and Low arousing images. A lower SME score indicates lower variability of the test statistic across trials.

Power analysis
We assessed the power of the RPAGP method for testing the three hypotheses implied by µHigh

LPP > µLow
LPP > µNeutral

LPP  , 
for varying number of trials, as follows. In order to mimic the relative sizes of the categories in the original sam-
ple, for total number of trials n = 15; 25 , we resampled with replacement 0.4n trials from each of the High and 

µ̂
c,b
LPP =

1

ncTLPP

tupr∑

t=tlwr

∑

i:ci=c

ỹbi (k�t)
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Low conditions, and 0.2n trials from the Neutral condition, to create 20 synthetic data sets for each sample size. 
We then conducted the test for difference of LPP means, concluding significance if the 5% quantile of the poste-
rior distribution of the difference of the means is positive. The estimated power is computed as the proportion of 
significant tests. Similarly, for comparison, we conducted the empirical bootstrap test for differences in means by 
conditions. For each synthetic data set, we resample with replacement to create B = 10,000 bootstrap data sets. 
On each of these data sets, we compute the LPP means by condition and pairwise differences in means, conclud-
ing a significant difference when the 5% quantile of the bootstrap distribution of difference of means is positive.

Data availability
ERP data supporting the findings of this study are available from the corresponding author upon reasonable 
request.

Code availability
Code implementing the Bayesian RPAGP model described in the “Methods” section of this paper can be down-
loaded from GitHub at https://​github.​com/​Benia​mino92/​Bayes​RPAGP/.
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