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Improvement in variance
estimation using transformed
auxiliary variable under simple
random sampling

Hameed Alil, Syed Muhammad Asim?, Muhammad ljaz?, Tolga Zaman3* & Soofia Iftikhar*

This paper offers a novel approach to formulate efficient ratio estimator of the population variance
using a transformed auxiliary variable. The impact of transformation on auxiliary information has
also been discussed. It is observed that incorporating a transformed auxiliary variable result in a high
gain in efficiency. Theoretical properties of the newly developed estimators have been derived. The
empirical and simulation studies show that the suggested estimators outperformed the existing
estimators.
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Sampling is a crucial aspect of making well-informed decisions in various real-life domains. Inferences about
statistical populations or data are drawn from samples, and it is imperative that a sample accurately represents
every characteristic of the population of interest. Data is characterized by specific parameters, and estimating
population parameters from a sample poses a challenging task. Two essential measures for specifying data are
the measure of location and scale. This article focuses on the latter, specifically the estimation of variance, and
a frequently used measure of data scale. Estimating variance is vital in processes where precise quantification
of data variation is necessary. From economics and business to physical science, biological science, and envi-
ronmental sciences, sophisticated tools are required to measure variation for making informed decisions. For
instance, economists analyze the variation in commodity prices, manufacturers assess taste preferences for cus-
tomer satisfaction, and agriculturists study variability in climate factors to optimize yields and minimize costs.

Extensive research has sought to enhance the efficiency of ratio and product estimators for finite popula-
tion variance, considering the correlation between survey variables and auxiliary variables. Auxiliary variables
are those correlated with the main study variable, either positively or negatively. In environmental studies, for
example, auxiliary variables like wind speed or temperature are considered when estimating air quality variance.
Economic surveys may involve estimating household income variance using employment rates as an auxiliary
variable. In healthcare planning, patient demographics or medical histories serve as auxiliary variables when
estimating variance in patient recovery times.

Integrating auxiliary variables with the main survey variable to estimate variance provides additional infor-
mation, refining the accuracy of estimates. This additional information includes contextual data, environmental
factors, or supplementary metrics correlated with main study variable. The use of auxiliary information often
leads to more efficient and robust variance estimators. Similarly, the transformative role is notable in enhancing
estimate efficacy. Transformations make estimators flexible, allowing them to better utilize additional information
from auxiliary variables, such as mean, variance, skewness, kurtosis, quantiles, etc. This flexibility, along with
generalization and optimization constants, enhances the robustness of estimates against variations in the sample.

That is why various sample survey statisticians preferred transformed auxiliary variables instead of consid-
ering them in their original form. Keeping in view the above, numerous researchers developed many efficient
estimators of population variance. Some of the pioneer work on estimating variance of finite population using
auxiliary variable are due to! who proposed an unbiased estimator of variance and* compares variance estimators
under various sample designs with available auxiliary information. Illustrates improved bias and mean squared
error over common estimators. Similarly®, introduces chain estimators for finite population variance using double
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sampling and two auxiliary variables. Compares estimators based on mean square estimator (MSE) criterion.
Proposes a ratio-type exponential estimator for population variance, consistently more efficient than previous
estimators*. Conducts efficiency comparisons mathematically and numerically. Introduces a family of estimators
based on adaptations of previous work, showing efficiency through mean square error comparisons®. A general-
ized modified ratio-type estimator for population variance using known parameters of the auxiliary variable
was suggested by®. Compares with existing estimators for simulated and real data to show the performance of
the developed estimator against the competing estimators. Suggests a generalized class of finite population
variance, deriving large sample bias and mean square error. Considers special cases and provides numerical
examples for comparison’. Suggested estimator of population variance utilizing information on two auxiliary
variables under SRSWOR scheme®. A generalized exponential estimator for estimating population variance
using two auxiliary variables was proposed by’. Demonstrates efficiency through empirical and simulated stud-
ies using real and simulated data. Has suggested efficient formulation of population variance in simple random
sampling using supplementary variable'®. Using searl’s constants, develop an efficient estimator to estimate the
population variance'!. The bias and mean squared error of the proposed estimator is obtained up to the first
degree of approximation. Suggested a chain ratio type and chain ratio type exponential estimator of variance of
finite population using auxiliary information Improved version of the suggested class of estimators is also given
along with its properties'?. An empirical study is carried out in support of the findings of the study. Addresses
estimation of current population variance in the presence of random non-response’®. Examines proposed estima-
tors through empirical studies, comparing with estimators for complete response situations. Suggested a class
of estimators for finite population variance using an auxiliary attribute'*. Developed variance estimator using
the tri-mean and third quartile of the auxiliary variable, demonstrating its superior performance over various
competing estimators based on sampling properties, bias, and mean squared error'®. Suggested finite population
variance estimator using unconventional measures'®. Demonstrates efficacy and robustness through empirical
and simulation studies considering real data sets form various domain of life. Similarly,!” explores the effect of
distribution on suggested variance estimators. Compares twelve estimators across eight distributions through
simulation studies. Formulate a Searl’s ratio-type estimator using tri-mean and third quartile of the auxiliary vari-
able's. Demonstrates superiority through bias, mean squared error through theoretical comparison and empirical
studies. A hybrid-type estimators of population variance developed by, and demonstrated the efficiency over
competing estimators through theoretical and empirical comparisons. A generalized family of estimators of
population variance is formulated by?® and demonstrated the performance of the estimators through empirical
and simulation study. A robust ratio-type estimator for finite population variance suggested by?!, considering
robust covariance matrices. Derive conditions for efficiency against competing estimators and demonstrated the
performance of the suggested estimators through empirical and simulation study.

Novelty and significance
This work introduces innovative contributions in the field of survey sampling, with several key aspects. The paper
puts forward three novel ratio estimators designed for finite population variance. These estimators consider a
transformed auxiliary variable under simple random sampling without replacement. Demonstrated to outper-
form existing methods, these suggested estimators exhibit superior efficacy when there is a positive correlation
between the survey variable and auxiliary variable. In addition to theoretical comparisons of mean squared errors
(MSEs), the paper includes an empirical analysis using real data sets. Through a simulation study;, it substantiates
that the newly proposed estimators consistently outperform competing estimators across various scenarios, such
as different correlation and sample size, affirming their high efficiency. The versatility of the proposed estimators
is highlighted as they can seamlessly adapted into other sampling methodologies. This includes applications in
stratified random sampling, non-response sampling, and adaptive cluster sampling, leading to the derivation of
efficient versions of the estimators. The applicability of the proposed estimators extends to diverse fields such as
environmental studies, agriculture, and economics, especially in situations where a positive correlation between
the study and auxiliary variable exists. The heightened efficiency of these estimators can significantly enhance
the accuracy of population variance estimates, offering practical implications for decision-making processes in
real-world applications. The proposed estimator can significantly contribute in the estimation of parameters
other than variance, such as mean, median, coefficient of variation etc.

In conclusion, this paper significantly contributes to the field of survey sampling by introducing novel estima-
tors for finite population variance. The adaptability of these estimators to various sampling schemes and their
practical implications underscores their potential impact on enhancing accuracy in real-world decision-making.

Methodology

Consider a population Q = {(y;,x;) },i = 1,2,...N. of size N. Suppose a random sample (y;, z;) of size n is taken
from a population under simple random sampling without replacement case, i-e (SRSWOR). Let (y;, x;) be the
value of ith unit of the main study and auxiliary variable and z; = #(x;) is the transformed auxiliary variable
observed on the sample. The supplementary variate (x) is supposed to be correlated positively with the main

n
study variable (y). It is to be noted that the correlation between (;, z;) and between (y;, x; ) is same. Let y = % Sy
i=1

n n
X = % Yxjand Z = % > z; represents the sample mean of study variable, ancillary variable and transformed

i=1 i=1
ancillalry variable. ’
— N _ N _ N
Y=4 Z:lyi andX = Z:l x;and Z = 3 Zl z; be the population mean of variate (y),(x) and (2).
i= i= i= 2752 2 @
Let us define the random error due to sampling by &y = 2 o ande; = Z SZSX, such that
'y X
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E(eo) = E(e1) = Oand

E(eg) = (a0 — 1) = Vao
E(E%) = Mpos — 1) = Vo
E(gge;) = A2 — 1) = Vi

where . (1)
"
L=1/n, ¢ = ﬁ
Ha0 Koz

N
1 — _
MHrs = N ;,1 i — V) (x — X)°

where r and s be the non-negative integer and s, 4y, and [, are the second order moments and ¢ is the
moments ratio.

N n
1 2 1 _
SﬁziN_lz(Y,—Y),sﬁzn_lz()’i—)’)z
i=1 i=1
. )
-1 XN:(X—X)ZSZ=—1 XN:(x'—f)z
TN-14& ! VTUN-14 !

where CZ, CZ are the coefficient of variation of the survey variable and auxiliary variables Y and X respectively. oy
is the correlation coefficient between main study variable Y and auxiliary variable X, and B ;). B,), are the coef-
ficient of skewness and the coefficient of kurtosis of the auxiliary variables respectively.

In literature, some estimators of the population variance are given as

1. The usual classical estimator of population variance is given by

n

1
n=g= Loy ta) Q
i=1

where 7, is an unbiased estimator. Its variance is as under
4
Var(t)) = Sy V. (4)

2. Developed the estimator of population variance, it is given by?

SZ
TZ = 5)2/ <S%> > (5)
X
The MSE of 7, is as below.
MSE(t3) = Sy{Vio + Voa — 2V22) 6)

3. Provide the estimator of population variance, it is given below?

5 82 —s2
;=5 exp( 2 x), (7)
4 2+ 52
The MSE of 7, is given by
4 V04
MSE(13) ~ Sy4 Vao + o Vo (8)

4. For ratio estimator of population variance, the linear regression estimator developed by? is given by
2 2_ 2
T =5 +b(Sy ), (9)

2

s, Vay . .
here b = 4— represents the sample regression coeflicient.

sy Vao

The variance of 7, is as below
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V2
VW(Q) = s;*Vz;o (1 a V402\io4)' (10

5. The transformed estimator by? is as follows:

_ 2 2 2 asy +b _ a(Sz —s3)
= {klsy+k2(sx S")}{9<as§+b) Ta-Oep (a(s§+s,%)+2b ’ (1)

here k; and k; are optimization constants, 6 is generalization constants which can takes value between 0 and

1 and “a” and “b” some function of auxiliary variable. The optimum value of k; and k; are as below

1— 5q%(1+ 360 + 46%) Voq
VZ
1= 3201+ 30)VE + Vo (1 - 705 )

ky (opt) =

and

s2 V.
ky(opry = é{l +q(1 +6) + ky (opr) (vTZ; —q(1+ 9)) }

The minimum MSE at k; (o) and ky ¢ is given by

2
1 1—1q%(1+360 +40%)V,
MSE(ts) ~ S, {1— Zqz(l+9)2vo4} - 1{ il ; ) 4}\/2 (12)
1= 32001+ 30)VE + Vo (1 - 7o)
as?
where g = poae
The MSE of 7 is minimum at (6, a, b) = (1, 1, 0).
6. Introduced the following difference-cum-exponential estimator of population variance’,
2 2 _ 2 St — st
76 = [Cusy + (S — sx)} exp 2 (13)
where ¢1; and ¢} are optimization constants. The optimum MSE of 7¢ is given by
V2
S;[(szo —1)+ 8Vo4(l - V402‘504)}
MSE(t¢) = MSE(t4) — . (14)

V3
64{1+{Vyo— 72

7. Developed the following ratio estimator of population variance’*
s2 s2 $2—s2
_ 2 X X X X
o=l () ha(@)] o (53) &

The optimum value of k1 and ki, are given by

1A Vi + Vog + Ay + 16V
8 As

klloPT =

_ 1A Vy+21Vyy —3A; +16Vy,

k120pT 3 As

where
Ay =16(Vog — V2),
Ay =8(3VoaVar — 2V, + Vou)
and

Ay = Vi — 4Vou Vg — 16Vu Vi + 16V2, — 4Vy,.

The minimum MSE at k(o) and kys(opy)is given by
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- 16 FOVGy+64Vy, (Vo —1) Vg

4
MSE(r ) = Sl L [16V50{ V3 (4V40=3Vy+4)+(3V3, =8V, Vou) } (16)
7) min A3 16 .

8. Advocated the following difference-cum-exponential type exponential estimators of population variance
given by”

2 2 2 2 2
N Se—s se—S
Yy X X x x
T3 = | =4 €X + ex
$ [2{ p<s§+s§> p(Sx—i—s%

$2 — ¢2
52_52) SZ_sZ § ex x X
2 x X X X {9)
s2{aex +(1—oz)ex( )} §2 + 52
T9 = y{ p(syzc'f‘s;zc P St + st * xz S2 (18)
22 2 Sx T 9%
+kyp (S5 — 57) + kysy +(1—3)eXP<S%+S%)

)}+k1(s§_s§)+k2s;

Sﬁ —5326
= (57a) o

>

where k, and k, are optimization constants that minimize the MSE of tg.which is given by

V2
(v~ )+ 1)

MSE(tg) = MSE(ty) — = (19)
(i (- )
04
N D,DZ+ D,D? —2D,D,D
MSE(t9) = Sy |{ Vg + Q(QVpy +2V5,) } — == 5 ;) - e 34 5}. (20)
172 3
Dy = R*Vou,
Dy =1+ {Vos +2V(1 — 20) + &* Vs },
D3 =R[Vy2 + (1 — 20) Vial,
Dy = R[V; + Q2 V4]
and
1 -2w 1-2w
Ds = | Vg + {32Q2 + 5 Vo 4+ Jaw+ 5 Voa ¢ |-
9. Suggested a general type of estimator of population variance given by*
N wi (X — %) wa (82 —s2)
T = | (f 4 k(S2—2)) exp [ = x X R
@b [( (@) + k(S = 5)) exp X+ (0 — DX S+ (wy — 1)s2 21)

The particular case of estimator rg’b for estimating variance is obtained by putting a=0,
b=2w; = 0and w, = 1and wy= 2 as following

82 2
(sﬁ + k(82— si)) exp <(Sj2:+zg))}, (22)

Ty =
With MSE given by
MSE(t) i = MSE (fa,))
2., [{5@h) = 2 b)fs@ b + Gos — D{f@ )] (23)
T (804 — 835 — 1)

where

b
fla,b) = {ﬂpxycy + (5>521}

b
f(a,b) = {aplsz + (5)(522 - 1)}-

Which in case of variance estimator, the MSE 7 will induce the following particular case:
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[{£0.2)}* = 260.2Vio + (Vo — D{0.2)}]

(24)
(V04 - Vz%o - 1)

MSE(79) = MSE(t1) —

Proposed estimators

The first proposed estimator

Motivated by** and using transformed auxiliary variable, the following class of transformed ratio-product type
exponential estimator is suggestedor

5 Z z Z—z
Tpy = y C1 ; +C2(E) exp 71z
2 2 2 2
2 Vle—Vz> (Vlsx_)/2):| n (S —s1)
Tpp =S8, — ) +a2| ——— ex —_— 25
P y[l(ylsf—yz 2 Y182 — 2 P 1 (S2+s2) =2y, (5)

where ¢; and ¢; are optimization constants and y, and y; are suitable constants or some function of auxiliary
variables.

The second proposed estimator
Motivated by?, we can write the proposed estimator as a linear combination of usual ratio and exponential
estimators as followingOr

Tpy = Y17, + VY273

2 St St —s
Tpy = Sy 1!’1 57 + ‘//2 exXp Sz + 52 (26)
X X X

Y1, and v, are optimization constants whose value is to be obtained so that the MSE of 5, is minimum.

The third proposed estimator
Applying transformation to the auxiliary variable in (26), we can write the third proposed estimator as following

2 V4 Z—z
TP3=5y{1/’3<;)+¢4eXP (Z+z>} 27)

o) (nSi- Vz) (S —s1)
{‘” () w e (m CRE

Y3 and ¥4 are optimization constants whose value is to be determined so that the MSE of 7, is minimum. It
is to be noted that fory; = 1 and y, = 0.

The third proposed estimator tp; given by (26) become equivalent to the second proposed estimator tp,
given by (26).

Similarly, the first proposed estimator 7, given by (25) become equivalent to 75, as suggested by Muneer
et al.’ given by (13).

Theoretical properties of the proposed estimators
This unit aims at, deriving the theoretical properties of the new estimators using the notations given in (1) and
(2). Rewriting (25), (26) and (27) respectively in term of error terms, as following

1 3
Tpy = S}%(l + &0) [e1 (1 — mxer + miet + ) + a1 + mxen)] (1 - JTkEL + gnfsz +-- -),

2 2 1 32
=S +eqvi(l—ertel+-) +unl1—e +oel+- )

and
2 2.2 1 3 22
Tpy = S},(l + €0) wg(l — mer + ey +) + s 1— Eﬂkgl + gnks 4+ ]
wheremp = 155 or
k= 98T -
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1
14+¢e9+ Enksl—}—

T =822 |1+ —778—§JT8S +1—5ﬂ282 +c -1 2
=S =5, a 0 = TkEL = STKELEQ F ] 2| 1, (28)
—TRE180 — —TRE]
2 8
P 3y
(1//1+1//2—1)+(1/f1+1/f2)80—(¢1+7 &1+ 1//1+T &
Ty =S, =S, " . (29)
—(W1+*)8081
2
and
Vs 34
(W3+1ﬁ4—1)+(¢3+W4)£0—ﬂk(1ﬁ3+7 &1+ W3+T il
Ty — S =) , (30)

— 7Tk (1//4 + %) £0€1

Taking expectation of both sides of (28), (29) and (30) respectively, and after simplification we get

15 1
(a+e—-D+ Cl)‘{§”£(¢o4 - 1) - Eﬂk(%z - 1)}

Bias(tp,) = S2

Y > (31)

1 1
cllnk{iﬂk(d’oz —1) - g”k(d’m - 1)}
. —w 3y , 1)
Bias(tp,) =S, |:(‘/f1 +Y—1)+ (1/f1 + T))~(¢o4 —1) - A(‘ﬁl + 7) (62 — 1)}’ (32)

Bias(tp;) = S; [(% +¥a—1+ (ws + %)n,ﬁx(m —-1) - nkﬂh(xlfs + %) (622 — 1)}, (33)

Squaring both sides of (31), (32) and (33) respectively and applying expectation to get the MSE of
Tpy» Tpy and Tps, as following.

2
3 15 , 5
ci| 14+ e — mrer — Enkslso + ?”kgl +

2
E(rpl - s§> = SiE 1 . . , (34)
[%) (1 + &0+ Eﬂkgl + Eﬂk8180 - gnf£%> —1
V2 z
W1 +v2 =D+ @1 +¥2)eo — | Y1+ 5 &1+
E(tp, —8?) = SIE i 35
<TP2 y) y 31)1,2 5 1/12 ( )
Y1+ — Jer — (Y1 + — |0
8 2
or
Ya 2
W3+ s — 1)+ (Y3 + Ya)eo — i | ¥3 + 5 &1+

E(tp; —S}) = S}E : (36)

( ” y) 4 3y 2.2 Yy

Vs + e wiey — | Y3 + 5 £0€1
or
1 2
<*(361 — Cz)) +
(4 —12+ (@ +e)Vip+{ V2 72Vos

MSE(tp)) = S; k . (37)

Y 2(c1+c—1) Ec —lc
1 2 g1 3%

—Q(c1 +¢2) = 1)(Ber — )7k Va2
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(’ﬁl‘f’ﬂ) +

W1+ ¥2 — D? + (Y1 + ¥2)* Vao + " Vos
MSE(zp,) =8, 201+ 92— 1) (m + —2) (38)
(11’1 + w*){Z(l/fl +¥2) — 1}V
and
(% + %) +
W3+ s — D> + (Y3 + ¥a)* Vao + - ¢ Vos
MSE (tp;) = S;l 203 +Ya— 1) (I/IS + 74) - (39)

—2<¢’3 + w*) 203 + ¥g) — U Vo

The optimum value of ¢; and ¢; is obtain by differentiating (37) w.r.t ¢; and c; respectively and equating to
zero, as following

ad lAlkV4o+V04k +A2k+16V22k
—MSE(t =0= = —

e, ( Pl) Clopr 3 Ak

0 1 A1k Vao + 21 Vg — 3A2% + 16V i
L MSE(tp;) =0 = 3, = = 20 : : k-
3¢y ( Pl) C20pr 3 Ak

where,
Ak = 16(Voak — Va2k)»
Apg = 8(3VoukVark — 2V3y s + Vouk)»
and

Asg = Vi — 4Vouk Voo — 16Voak Voo + 16V3, . — 4Vouk.

putting the optimum value of ¢; and ¢, in (37), we get

{1{16"2”{"2”(4‘/40 S k+4)+(3v 14k 3V4oVo4k)}+H

MSE(tp,) 16
9V04 K T64Voux ( 04, k_l) Vio

4
~
—A

3k (40)

min

where
2
Voak = Vo and Vg =m Vo

Similarly, using calculus rule, the optimum value of 1, Y2, V3 and Y4 can also be obtain by differentiating
MSE of tp; and tp3 w.r.to Y1, V2, V3 and ¥4 and equating to zero. Hence, we obtain after simplification

19Vy, +40VE, V2, — 60V, V,, — 32V2 V,, + 32V3, — 16VE, + 32V,

Vi(opt) = — D
8(6Vay +5Viy Vip — 15V, Vay — 4V Vi + 84V, — Vg, +4V)y)
Va(opt) = D ;
2 2 2 2
v _19Vi + 40V Vi — 60Viy, Vapk — 32Vig Vi +32V3 — 16V, + 32V
3(opt) — Dy
and
2 2
<6V ke T 5VoukVio = 15V5ax Vo k = 4Vig Vg + 84VE —4VGy + 4V22k>
1//4(0‘[7t) = Dy
where
D =33V, — 16V, Va, — 80VE,V,, + 64VE — 16VE,
Dy =33Vgy — 16V, Vg — 80V, Voo + 64V3,  — 16V, k=1,2,...,6.
The MSE is given by
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st <<v04 + (25V3 — 10V3,) Ve +
D

MSE(tpy) = = ; 5 2) — 16V, V3, + 16V222> (41)
V04(8V22 — 40V, Vi) + 16V, Vi

2\ 14
MSE(zps) = Sfy Vour + (25Vi) — 10V3, ) Vi i+
Dic \ \ V541 (8Vpp — 40V, Vi) + 16V, Vi

) —16Vgy,Vio + 16V§2,k> (42)
Special Cases of 7,; and 7, in response to the transformation introduced
1. Fork=1,1p, and tp;takes the following form

S2—p s2—p §2 — 2
2 yx X P d x X
Tp | =S5 |1 +ol =—=||ep (7>
ey { ( %= Pyx ) <5§ = Pyx S3+ 5t — 20
~ Pyx St st
Tp3; =S V3| =— | + Yaexp (7 .
P { < — Pyx ) SJZC + 5;2¢ — 2pyx

wherey; =1 and y» = pyx

The bias and MSEs are given by

3 1 15 1
Bias(tpy,) = Sy (@1 + 2 — D + Ja =) Vart | Fa—ga Vo), (43)
. ~ 2 394 1//
Bias(tps;) Z Sy | (Y3 +¥a— D+ (¢35 + ry Voa1 — | V1 + —= | Va2 (44)
~ % |1 16V, { Va1 (4Viag=3Viu 1 +4) +(3V3,1 —8Vig Vo) } +
MSE(rPl,l)min_E |:E{ 9V34,1+64V04,l (V04,l_1) V40 (45)
and
S (VS + (25V2 —10V2 ) Vi, +
MSE(tp3,) = Dy << a + (25Vig 21) Vou —16V2, VE +16VE, | (46)
Vi1 (8Vagy — 40V, Vi) + 16V5, Vi
SZ
Voa1 = 7{Vog and V1 =, Vap, ) = T

2. Fork=2,y1 =1 and y, = Cy, tp; and tp3 will take the following form

S;—C s2—C §2— g2

2 X £ X X x X
T =S, |C =+ ¢ e X X ).
e y{l(sﬁ—@c) 2(53—@)} XP(S§+s§—2Cx)

2 2
Tz = 2 ¥ "G 4 e (%)L
oN S2 + 52 —2C,

The bias and MSEs are given by

. " 3L 5 1
Bias(tp; ) = vy | (e e —1) + S50 Voo + 352 Voaz |» (47)
) ~ 34 l//
Bias(tp; ) = Sﬁ [(1//3 +Ys— D+ <1//3 +— | Voaz — (V1 + — | Va2 |. (48)
o S| 116V a{Vann (4Vi4g—3Viu s +4) +(3V54, =8V Vi) }+
MSE(rPu)mmiA” [16 { Va2 +64Vos o (Vos—1) Vig (49)

and
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st
MSE(tp32) = =2 ) — 16V, Vi + 16V222,2>- (50)

2 4
V042 + (25V40 10V3,) Vouot+
D,

2 2 2
VO4,2 (8 V22,2 —40 V22,2 V40) + 16‘/22,2 V4O
2

S:
where Voso = 7122 Vos4 and Vo = T, V22>7T2 = ﬁ
X

3. Fork=3,y1 = p)x and y» = Cy,1p and tp3 will take the following form

_ 2 ,ony -G pyxsy — Ce Py (S5 — 53)
Tp13 = Sy |a +o > exp SR
'O)’xs =G PyxSy — Cx Pyx (Sx + Sx) —2C

/nys Cy Pyx (SJZc - 5326)
Tpas =24 s | 22X ) oy exp [ —2x ) ) L
=3 (2525 )+ (5 P
The bias along with the mean square error (MSE) is given by
. 3 1 15 1
Bias(tp; 3) = s? [(cl +o—1)+ (751 262) Vs + (§61 — gcz) V04,3}, (51)
- ~ 2 l/f !U
Bias(tpy3) = S +vs =D+ (Vs + — | Voaz — {1+ — | Va3 (52)

MSE(py 5) o S| 1 J 16V 3{ Vi 5 (4Vieg =3V 3 +4) +(3VEy 3-8V Viu3) 1+
P13 min= 455 | 16 Va3 +64Voy 3 (Vou3—1) Vig

and

) - 16V§4,3V30 + 16V222,3>- (54)

St [ Vous + (25VE, — 10V3,5) Voys+
MSE (tp33) = e (( ous T (25Vi — 523) Vou3

2 2 2
Ds VO4,3 (8 V22,3 —40 V22,3 V40) + 16‘/22,3 V4O

2
— 72 _ _ Py
where V04,3 = 7T3 V()4 and V22,3 = 7'[3 V22,]T3 = pyxs,chcx .

4. Fork=4,y; = Cy and y» = pyy.the estimators 7, and tp3 will take the following form

C,S2 Cys2 — Cy (82 — 52
Tpia = 52 — Pyx +o ’CS; Pyx exp ;( x2 Sx)
st — Pyx CiSz — Pyx Cx (Sx + Sx) - 2pyx
— Pyx Cy (Sﬁ — si)
Tpg =S V3| —— | +uexp | ———"2— | ».
P { ’ < Cx52 Pyx ) 4P <Cx (S,Zc + 5,25) - zpyx

The bias and MSEs are obtained as

, 3 1 15 1
Bias(tpy4) = S (c1+ea—-D+ PR Vo + 39 3@ Voaa |, (55)
. o 3y v
ias(tp;q) = S|+ =D+ (vs + Y Voga — | Y1+ — | Varu (56)
s 16V 4 { Vapa (4Vi4g—3Viy 4 +4) +(3VE,4 =8V Vou) } +
~ % | 1 224 224 40 04,4 04,4 40 Y 04,4
MSE(IPIA)min_A}A {15{ OV, 4 +64Vous (Vora—1) Vi (57)
and
Sy Voua+ (25Vi) — 10V3,,) Voy s+
MSE(tp34) = Du (( 5 S o | T 16VaaVie + 16V, . (58)
4\ \ Vo34 (8Vaps — 40V, Vi) +16V5,, Vi
2 CiS?
where V04,1 =Ty V04 and V22,1 =1 V22,7T4 = stz—ﬂyx .

5. Fork=5,y1 =Xand y, = Pyx» the estimators 7p; and tp3 will take the following form
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em( X(s2-<2)

2 XS} — Pyx Xs; — Pyx
C1 =5 +c =0 = TN A
sz — Pyx XSx — Pyx X(Sx + sx) - 2'0}”‘

Tp1,5 = 9y
Xs:—p X(s— )
2 X X X X
T =5 = | + € = .
P35 y{‘//3 <XS}% . ) 1//4 Xp (X(SJZC + 5;%) — Zpyx

The bias and MSEs are given by

Bi =S 1 Ya-Lta)v Bt
ias(tpy5) = y|(cr+e—1)+ S50 | Vas + 3 g ) Vs (59)
3
Bias(tpy5) = S; [(1//3 +¥s—1D+ <1//3 + %) Voas — (11’1 + %) sz,s} (60)

MSE(py 5) o S| 1 J 16V 5{ Vi 5 (4Vieg =3V s+4) +(3VEy 5 =8V Vou5) 1+
PL3 min™ 435 IVilys+64Voys (Vous—1) Vg

and

SE ([ Vs + (25VE — 10V2, ) Vidy s+
MSE (tp35) = J’(( oa5 + (25Vio 225) Vous

) - 16V§4,5V30 + 16V222,5>- (62)

2 2 2 2
Ds VO4,5 (8V22,5 - 4OVZZ,S V4O) + 16VZZ,S V4O
2 Xsz
where V04,5 SRS V()4 and V22,5 =75 V22 and 5 = ﬂ

6. Fork=6,y1 = pyx and yo =1

2 2 2_ 2

pyxs —1 PyxSy — 1 Pyx (S - )
ws=slal ooy ) tel ey ) e ey s
PyxSy — 1 PyxSy — 1 Pyx (Sx + sx) 2

2 2 2
2 p)'xsx -1 Pyx (Sx — SX)
T =53 ——— | +Ysexp | —————— .
P36 y{ (pyxspzc -1 > <pyx (S,ZC + 5)2‘) -2

The bias and MSEs are given by

Bias(tp ) = S5 |(c1 + D+ > Lo )v + b L), 63
ias(t = c+ce— —c] — ¢ —c] — —¢ ,
PL6 y | (1 2 ST 5% ) Ve g 17 ge ) Vous (63)
. ~ 3 W
Bias(tpsq) = S§ [(ws +Ya—1D+ (¢3 + %) Voae — (Wl + {) sz,e} (64)
o S| 1 [ 16Vay6{ Vi 6(4Vig—3Viy64)+(3V316—8Vio Voue) }+
MSE(rp, G)mm:é [ﬁ{ 9Vis6+64V0s6 (Voss—1) Vi (65)

and

4 6 2 2 4
Sy << Vous + (25Vig — 10V356) Voy 6+

— 16V, 6 Vi) +16V3 > (66)
2 2 2 2 04,6 7 40 22,6
Vi (8Vane — 40V Vi) + 16V, ¢ V40>

2
PhyS,
where V04,6 = 7[62 V()4 and V22,6 = T4 V22W and jT6(h) = % where V04,6 = 7T62 V04 and V22)6 =T V22,
wx (h)
SZ
g = 27’(
S§i—1

Efficiency comparisons
This section aims to compare the MSEs of the newly developed estimators with the competing estimators dis-
cussed in the literature.

Condition 1. By using (37), (38), (39) and (4) we can write

MSE(tp;) — Var(ty) <0, i = 1,2,3.

Fori — 157; |:1{16V22,k{vzz,k (4V403V04,k+4)+(3vg4,k8V40V04,k)}+}:| <0

Ay |16 9Vg4,k+64v04’k(v04yk—1) Vio—16A;, Vio
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st (( Ve, + (25V2 — 10V3,) Vi +
D

Fori = 22 —16V2, V3 +16VE5 —DV,, | <0.
Vi1 (8V,y — 40V, Vi) + 16V, VZO)

s Ve . + (25V2 — 10V2, ) VS, +
Fori = 3-2 (( ouk (25Vio 22”;) | —16VE,VE 16V, — DiVig |.
Dy Vouk (8V22,k — 40V, k V40) +16V5 Vio

Condition 2. By using (37), (38), (39) and (6) we can write
MSE(tp;) — MSE(12) < 0, i = 1,2,3.

2
S, [1 {16V22,k{V22,k<4V40_3V04,k+4)+(3V04,k_8V40V04,k)}+ }:| <0

Fori=1>~ 2
3k V364V (Voar—1) Vio=16A5, (Vio+Voa—2V22)

16

6 2 2\ 14 2 2 2 12
Fori:2§ (Vou + (25Vip — 10V5,) Vgy + Vi (8Vay — 40V, Vi) + 16V, Vi) — <0
P\ 16V V2 +16VE — D(Vag + Vou — 2Va2)
6 2 2 4 2 2
Vouy + (25Vip — 10V 1) Vou i + Vou i (8Vaax — 40V, Vi)
+16V3, 4 Vio <0

—16Vi, Vio + 16V3, . — Dk (Vag + Vou — 2V22)
Condition 3. By using (37), (38), (39) and (8) we can write.
MSE(tp;) — MSE(13) < 0,i=1,2,3.

S
i3
F0r1—3Dk

2
. S |1 16V22,k{V22,k (4V4o—3Vo4,k +4) +(3V04,k_8V40 V04,k) }+
Fori=1-2> |+ < 0.

A 16 3 Yo.
3k 9Vt 64Voux (Vous—1) Vig—1645 5 (Vao+ 13 V3

(Vs + (25Viy — 10V3,) Vi + V54 (8Vyy — 40V, Vi) + 16V5, Vi)

4

s
Fori=2% \% < 0.

D —16VE, Vi + 16V3 — D(V40 + % - sz)

6 2 2 4 2 2
< Vouk + (25Vig = 10V3 1) Vouk + Vouk (8Vanx — 40V V40)>
2 12
Fori=3 IS)—; 16V Vio <0
k

Voq
—16Vg, Vo + 16V3, , — Dk (v40 + - v22>

Condition 4. By using (37), (38), (39) and (10) we can write.
MSE (tp;) — MSE(t4) < 0,i=1,2,3.

. Sl 16V22,k{V22,k <4V40_3V04,k+4)+(3V(§4,k_8V40 V04,k) }+
Fori=14" |4 R V2, < 0.
3k OV3,,+64Vy, (V04yk71) V40716A3’kV40(17m)
6 2 2\ 14 2 2 2 172
o (Vos + (25Vi, — 10V5,) Vi, + Vi, (8Vy, — 40V, Vi) 4+ 16V3, Vi)
Fori=22 V2 < 0.
b —16VZ, V2 +16VZ — DVyg (1 - i)
Vo Vou
Vour + (25Vi — 10V3, ) Vork + Vour (8Vasx — 40V, Vi)
< 04,k 40 22k) Voak T Voak\® Voo 22,k V40 )
2 12
Fori:_%;—;1 +16VoxVio <0
k

V2
—16V§4’kVZO+l6V222,k—DkV40(1— 22 )

Vo Vos
Condition 5. By using (37), (38), (39) and (12) we can write
MSE(tp;) — MSE(t5) < 0,i=1,2,3. ;
16V { Voo (4Viao = 3Vour +4) + (3Visx — 8VigVour) }+
3

IVous +64Vour (Vour — 1) Vi
Fori=1 |1 0
1> | L < 0.
ori A3,k 16 {1_%‘12(1_‘_9)2‘/04}_

2
—16A;, {1—éq2(1+39+492)v04}

1,2 2 Ly 157)
1=3a700+30)Vyy 40(1 V04V40>
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(V& + (25V3 — 10V3,) Vay+

2 2 2 y72

Vs (8V,, — 40V, Vi) + 16V3, Vi,

Forizzﬁy L 5 ) < 0.
1 1— 1g%(1+ 36 +462)V,

D {1_Zq2(1+9)2VO4}_ { 84 ( ) Vo }

1= 122001 430) V2, + Vi (1 — 22
10701 +30) Vo, + Vao Vo4 Vao

> — 16V Vi + 16V3,—

6 2 2 4
( Vouy + (25Vip — 10V ) Voy i+
2 2 2 2
Vou (8Vanx — 40V, Vig) +16V3, Vi
2
{1-14°(14 30 +46) Vou }

V2
1= 32001+ 30)V, + Vao (1 — v )
Condition 6. By using Eqs. (37), (38), (39) and (14) we can write
MSE(tp;) — MSE(16) < 0,i=1,2,3.

16V 1 { Voo (4Vag = 3V +4) + (3Viax — 8VigVouy) }+
9V34,k + 64V s (Vour — 1) Vag—

V2
[(Vao = 1)+ 8V (1 - 7% )

V2
e {va-3))

(v& + (25VE — 10VE) Ve +

) — 16V Vig + 16V i

“©
N

=3
For1—3Dk

pdio Lty 2y b
Di<1 4(] (140)“Vyy

Fori=1.

Ay | 16MSE(zy) — <0

— 16V Vi + 16V3,—
Vs (8Vy, —40V,, Vfo) +16V3, szo)
Fori=2.

VZ
|:(V40 B 1) + 8V04(1 B V402‘§O4>:|
D| MSE(ry) —

=
64{1 + {v40 -
6 2 2 14
<VO4,k + (25Vip — 10V, ) Vou st
2 2 2 2
Vouk 8V — 40V, Vig) + 16V, Vi

) CL6VEV + 16V

Fori=3
—Dy. | MSE(t4) —

Vi —1) +8V,, (1 - 2
|:( 40 ™ )+ 04( _V40V04):|
VZ
64{1 n {V40 . Tfj}}
Condition 7. By using (37), (38), (39) and (16) we can write
MSE(tp;) — MSE(t7) < 0, i=1,2,3.

16V Vaok (4Vio = 3Viuse +4) + (3Viys — 8VigVous) }+
Vi +64Vous (Vouk — 1) Vo
{ 16V, { V3 (4V4g — 3Voy +4) + (3VE, — 8V Voy) } H ) 0'
+IVgs + 64V (Voy — 1) Vg
Vo, + (25VE — 10V3,) Vot
< Viy 8V, — 40V, Vi) + 16V5, Vi

< 0.

Fori=1.
_Asg
As

> — 16V, VE + 16V3,—

Fori=2. .
D 16V, { Vi (4Vyo — 3Voy +4) + (3V5, — 8V Vos) o
164; +IVa, + 64V, (Vo — 1) Vyg
6 2 2 4
Vouy + (25Vip — 10V, ) Voy i+ 2 2 2
2 2 2 2 - 16Vv04,k V40 + 16V22,k
Forie3 Vouk (8Vank — 40V, Vig) + 16V3 Vig

_ Dy 16V { Vi (4Vyg — 3Voy +4) + (3V024 — 8V Voa) }}

164, +9Vgy + 64V (Voy — 1) Vg
Condition 8. By using (37), (38), (39) and (19), we can write
MSE(tp;) — MSE(ts) < 0,i=1,2,3. ;

16Vge{ Voo (4Viao = 3Vous +4) + (3Vous — 8VioVour) }

3
FIVius +64Vou i (Vour — 1) Vg

V2 11,2
MSE(14) {(V40 - \TZ) + ZV04}

3.k 2
> S4 V:
v (e

Fori=1.
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6 2 2\ 14
Voy + (25V5) — 10V5,) Vo + 5 s X
’ ; L, | —16VEVE + 16V,
Vs (8Vyy — 40V, Vi) 4+ 16V5, Vi

Fori=2. V2 11,2
MSE(ty) {<V4o - Tﬁj) + 1V04}

S4 vz
v (- 2))
6 2 2 4
<V04,k + (25Vi — 10V, ) Vou it
2 2 2 12
Vour(8Vasx — 40V, 1 Vi) + 16V3,, Vi

Fori=3 V2 1
MSE(ty) {<V4o - v%)j) + 1V04}
4 - 2
S {1 (V- )
Condition 9. By using (37), (38), (39) and (20), we can write
MSE(tp;) — MSE(19) < 0,i=1,2,3.

) — 16V Vi + 16V,

16VZZ,k{ V22,k (4V40 - 3V04,k + 4) + (3V§4,k - 8V40 V04,k) }+

3
IVous +64Vou i (Vour — 1) Vi

4

Fori=14* < 0.
A3k
D, D3 + D,Dj — 2D;D,D
Ay [{ Vi + Q(QVyy +2V) } - =22 545
s | Vi (@23, + 272)) S
6 2 2 4
Vo + (25Vig = 10V39) Vot — 16V, V3 + 16V
st | \ V& (8Vy, — 40V, V2) + 16V V3 04740 2
Fori=24 0 0 0 X X < 0.
D,Ds + D,D; — 2D;D,Ds
—D|{Vy + Q(QVy, +2V,,) } — L1224 A0
(Vi + (@Yo +2V21)} o
6 2 2 4
( Vouk + (25Vig = 10V35 1) Vot ) 16V2 V2 + 162
2 2 2 2 - 04,k ¥ 40 22,k
Fori=3 i V04,k (8V22,k - 40‘/22)k V40) + 16‘/22,k V40 <0
Dy 2 2 ‘
D,D: 4+ D,D; — 2D,D,D
_Dk |:{V4O+Q(QVO4+2V22)} _ 175 2774 B 374 5:|
D ID 2 D 3
Condition 10. By using (37), (38), (39) and (24), we can write
MSE(tp;) — MSE(t19) < 0, i=1,2,3.
- ) -
16V 4 { Vo k (4Vao = 3Vous +4) + (3Vaus — 8VagVour) }+
3
Vi +64Vou (Vosk — 1) Vo
4
Fori=1 Afy < 0.
3k 2 2
({502} = 260.2Vi0 + (Vo - D{A0O.D}]
—Azk
) (V04 - Vfo - 1)
Population IV:
Population I: Source?
Source? Population II: Source? Y: Total amount of recyclable-
Y: Amount (tons) of recyclable waste | Y: The leaf area for the newly Population III: Source*” waste collection in Italy (2003) X:
collection in Italy in 2003 developed strain of wheat X: Weight | Y: weekly expenditure of food | Total amount of recyclable-waste
Summary statistics | X:Number of inhabitants in 2003 of leaves X: size of persons collection in Italy (2002)
Y 51.82 26.84 27.49091 62.62
X 11.26 106.20 3.7272 556.55
N 80 39 33 103
n 20 14 9 40
SJ, 18.35 6.24 9.976094 91.35
Sx 8.45 11.14 1.500198 610.16
ba0 2.26 2.26 5.72 37.12
[on 2.86 299 2.380 17.87
b2 222 2.40 1.43 17.22
Pyx 0.94 0.93 0.4237 0.72

Table 1. Summary statistics of various data sets.
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Vou(8Vyy — 40V, Vig) + 16V, V4o>

2

Fori=2
=D N [{£0.2)} = 260.2Vi + (Vos - D{A0.2}]
1

- - (V04 - Vfo - 1)

6 2 2 \14
( Vouy + (25Vip — 10V 1) Vo i+

—16V2, V2 + 16V2
2 2 2 2 04,k ¥ 40 22,k
Vouy (8Vapx — 40V, Vig) 4 16V5, V4o>

%]
N

Fori=3 < 0.

R [{£0.2)) = 260.2Vio + (Vo — D{0.2)}]
I (Vo= VB — 1)

The condition mentioned above always hold true for all type of real data where the correlation is positive
between the main study variable and supplementary variable.

Empirical analysis
This section aims to investigate the performance of the proposed estimators against the competing estimators
using data from some real-life situations. Table 1 consists of summary statistics of various datasets.

The percentage relative efficiency (PRE) of all estimators discussed in the literature against 71 has been used
as performance index. The formula of PRE is given below

Var(ty)
PRE = x 100 (67)
MSE(t;) or MSE (tpjk)
where,i =2,3,---,10.J=1,2,3. and k=1,2" - 6. are denoted by existing estimators and proposed estimators.

It is obvious from the Table 2 that the newly transformed estimators always perform well than existing esti-
mators for all real data sets. The transformation introduced results high gain in efficiency. The first proposed
estimator given by (25) is more efficient than the parent estimator suggested by**, moreover it also outperforms
all the competing estimators discussed in the literature. The second proposed estimator given by (26) is more
efficient even than our first proposed estimators and all other competing estimators. Further, incorporating the
transformed auxiliary variable in the second proposed estimator generates the third proposed estimators given
by (27) which are more efficient than all other estimators.

Simulation study

The simulation study of the suggested and existing estimators is conducted to assess the performance of both sug-
gested and existing estimators. Three different populations of size 10,000 have been generated using positive cor-
relation between main study and auxiliary variables. The intensity of correlation between the main study and the
supplementary variable is high, moderate, and low in the first, the second and the third population respectively.

Population no.
Estimator 1 2 3 4
T, 100.000 100.000 100.000 100.000
7, 185.2941 280.000 102.4253 175.7390
73 249.5049 352.4475 101.1806 149.7570
7 274.0411 458.0562 102.9216 175.9545
75 195.2023 290.7025 124.2060 183.5658

Conventional estimators
T4 289.34199 473.2631 153.7084 257.5825

7; 336.50648 663.02559 | 159.1806 178.7570
Ty 302.428041 584.1095 169.9411 196.2725
Ty 236.64728 203.75595 | 102.7552 115.8661
Ty 269.8926 430.5612 101.5689 171.9047
Tpyy | 339.83799 671.81178 | 171.4423 278.0721
Tp1z | 339.60901 664.96302 | 174.8473 279.5321
Tpig | 341.674241 674.76219 | 169.2539 296.2645
Proposed estimators Tp, | 455.9280 1312.5474 218.2653 | 4059.0256
Tp3y | 456.2014 1421.83896 | 220.6593 | 4066.6241
Tpyy | 457.8603 1340.99191 | 216.2530 | 4080.5010
Tpys | 278.8679 1314.1116 245.8746 | 4075.9032

Table 2. PRE of proposed and competing estimators against the usual estimator t,.
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Population
1 2 3
Estimators | n=50 |n=150 n=300 |n=50 |n=150 |n=300 |n=50 |n=150 |n=300
T, 100.00 | 100.000 100.00 100.00 | 100.00 100.00 100.00 | 100.00 100.00
7, 195.36 | 198.9839 | 201.47 101.55 | 102.46 100.37 104.84 |102.95 103.30
T3 93.38 97.6381 | 101.63 110.53 | 104.32 102.56 103.45 | 101.36 102.49
7, 212.54 |209.3710 |218.63 115.63 | 108.37 111.35 105.25 | 108.54 106.26
75 223.58 | 201.2898 |219.35 123.92 | 119.73 113.27 110.47 | 107.16 108.57
T 235.64 | 208.7391 | 202.63 120.46 | 123.18 115.27 115.65 | 107.16 110.75
7; 238.29 |230.4728 |224.38 139.47 |130.36 128.38 112.59 |110.47 108.73
Tg 23573 | 202.3729 | 223.24 130.28 | 121.46 119.37 110.45 |108.38 106.39
Ty 232.27 | 228.4732 |214.73 137.47 | 128.56 126.18 107.38 | 106.75 106.95
Ty 198.76 | 203.2417 |215.76 119.78 | 108.45 110.56 104.24 | 107.96 104.22
Tp1 241.47 | 241.66 240.63 141.46 | 138.86 131.25 119.27 | 11145 112.45
Tp1a 242.45 | 240.25 238.58 140.48 | 13245 131.57 11526 | 110.47 110.46
Tpie 241.35 | 235.76 226.65 139.73 | 131.46 129.45 112.46 11.52 108.98
Tpy 260.85 |262.37 275.46 185.36 | 189.83 190.89 135.85 | 136.86 141.86
Tp3 262.46 | 265.77 275.85 191.92 | 195.53 197.04 | 136.95 | 139.18 140.47
Tp3s3 265.66 | 266.75 276.85 195.84 | 195.95 198.90 140.43 | 142.65 145.96
Tpas 262.65 |263.75 275.75 186.53 | 189.54 190.66 136.06 | 136.93 142.47
Tpig 271.46 | 270.01 276.66 197.59 | 197.49 198.45 140.94 | 142.95 147.88

Table 3. Simulation results for the percent relative efficiencies of the newly developed estimators and
conventional estimators with respect to the usual estimator considering different sample sizes and correlation
coeflicients.

Population 1 1 = [5.0 10.0 |} = gg %g}p = 0.9665.

Population 2 u = [ 5.0 10.0 |} = 13060 ig}p = 0.7559.

. 10.0 1.5
Population 3 = [5.0 10.0 |} = L5 15 o =03983

We consider sample of sizes n=>50, 150, 300 are consider for each population, using simple random sampling
without replacement approach. The steps below summarize the whole simulation procedure in R-Studio.

Step 1: Population is generated using Bivariate normal distribution with mean vector u = ¢( 5.0 10.0 ) and
= gg %g } and calculated all parameters of auxiliary variable and constant from the data.

Step 2: From each of the target population, samples of n= 50, 150, 300 have been drawn using SRSWOR
method respectively, allow the loop to 100,000 times, select the sample, and calculated the estimates in each
iteration.

Step 3: Utilizing samples generated in step 2, the 100,000 values of t;,i=1,2,..10. and
Tpjksj = 1,2,3 andk = 1,2, .., 6., are obtained separately, using (4-20) and (23), (34) and (35), respectively.

Step 4: The estimates obtained from each iteration are store in a matrix and calculate the percent PRE averag-
ing over all iteration of each estimates by using the formula (67), and report the results in Table 3.

The simulation results indicate that the newly developed estimators are highly efficient as compared to the
conventional estimators in all situations. It is obvious that for the high correlation p > 0.96, the estimators are
tend to be more efficient than moderate p > 0.75 and low p > 0.39 correlation. Thus, the intensity of relation-
ship between the study and supplementary variable plays a vital role in increasing the efficiency. The newly
developed estimator retains its efficiency in all three cases. Further, the transformation also plays a remarkable
role in enhancing efficiency. As it can be seen from the simulation in the Table 3, the first transformed proposed
estimator is efficient than its parent estimator t; for different choices of y; and y,. Similarly, the third proposed
estimator is also efficient not only from the conventional estimators but also from the second proposed estimator
for different choices of y; and y,.

Conclusion

The empirical and simulation findings highlight the remarkable efficiency of the newly developed estimators
in comparison to conventional counterparts across diverse scenarios. Particularly noteworthy is the enhanced
efficiency of these estimators in situations with higher correlation, emphasizing the pivotal role of the strength of
the relationship between the study and supplementary variable. This aligns with the expectation that a stronger
correlation contributes to increased estimator efficiency.

Scientific Reports |

(2024) 14:8117 | https://doi.org/10.1038/s41598-024-58841-x nature portfolio



www.nature.com/scientificreports/

Furthermore, the robustness of the newly developed estimator is evident across all correlation levels—high,
moderate, and low. This consistent performance underscores the versatility and reliability of the proposed esti-
mators, making them applicable in a broad spectrum of scenarios.

The introduced transformation in the estimators emerges as a key contributor to enhanced efficiency. As
depicted in Table 3, simulation results affirm that the first transformed proposed estimator consistently out-
performs its parent estimator across various choices. Similarly, the third proposed estimator not only demon-
strates efficiency over conventional estimators but also surpasses the second proposed estimator for different
choices. This emphasizes the significant role played by transformations in elevating the overall performance of
the estimators.

Additionally, the proposed estimators exhibit flexibility and effectiveness in various sampling designs, such as
stratified random sampling, non-response sampling, and adaptive cluster sampling. The extension of these esti-
mators to non-conventional sampling designs, including adaptive cluster sampling and stratified adaptive cluster
sampling, is also under consideration for variance estimation. These estimators display flexibility in exploring
potential improvements in formulating estimates of population parameter utilizing two auxiliary variables.

In conclusion, the proposed estimators shows remarkable efficiency in finite population variance estima-
tion under the simple random sampling scheme without replacement. The encouraging findings suggest their
applicability in diverse survey scenarios, and future research avenues could further enhance their adaptability,
extending their utility to more intricate sampling designs.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding
author on reasonable request.

Received: 7 April 2023; Accepted: 3 April 2024
Published online: 06 April 2024

References
1. Sankhya, L. T. A general unbiased estimator for the variance of a finite population. Sankhya C 36, 23-32 (1974).
2. Isaki, C. T. Variance estimation using auxiliary information. J. Am. Stat. Assoc. 78, 117-123 (1983).
3. Al-Jararha, J. & Ahmed, M. S. The class of chain estimators for a finite population variance using double sampling. Int. J. Inf. Man-
age. Sci. 13, 13-18 (2002).
4. Shabbir, J. & Gupta, S. On improvement in variance estimation using auxiliary information. Commun. Stat. Theory Methods 36,
2177-2185 (2007).
5. Singh, R. & Malik, S. Improved estimation of population variance using information on auxiliary attribute in simple random
sampling. Appl. Math. Comput. 235, 43-49 (2014).
6. Subramani, J. Generalized modified ratio type estimator for estimation of population variance. Sri Lankan J. Appl. Stat. 16, 69
(2015).
7. Yadav, S. K., Kadilar, C., Shabbir, J. & Gupta, S. Improved family of estimators of population variance in simple random sampling.
J. Stat. Theory Pract. 9, 219-226 (2015).
8. Adichwal, N. K., Sharma, P. & Singh, R. Generalized class of estimators for population variance using information on two auxiliary
variables. Int. J. Appl. Comput. Math. 3, 651-661 (2017).
9. Sanaullah, A., Asghar, A. & Hanif, M. General class of exponential estimator for estimating finite population variance. J. Reliab.
Stat. Stud. 2017, 1-16 (2017).
10. Yadav, S. K., Misra, S., Mishra, S. S. & Khanal, S. P. Variance estimator using tri-mean and inter quartile range of auxiliary variable.
Nepal. J. Stat. 1, 83-91 (2017).
11. Lone, H. A. & Tailor, R. Estimation of population variance in simple random sampling. J. Stat. Manag. Syst. 20, 17-38 (2017).
12. Singh, H. P, Pal, S. K. & Yadav, A. A study on the chain ratio-ratio-type exponential estimator for finite population variance.
Commun. Stat. Theory Methods 47, 1442-1458 (2018).
13. Singh, G. N. & Khalid, M. Effective estimation strategy of population variance in two-phase successive sampling under random
non-response. J. Stat. Theory Pract. 13, 4 (2018).
14. Shahzad, U., Hanif, M., Koyuncu, N. & Sanaullah, A. On the estimation of population variance using auxiliary attribute in absence
and presence of non-response. Electron. J. Appl. Stat. Anal. 11, 608-621 (2018).
15. Yadav, S. K., Sharma, D. K. & Mishra, S. S. Searching efficient estimator of population variance using tri-mean and third quartile
of auxiliary variable. Int. J. Business Data Anal. 1, 30-40 (2019).
16. Gulzar, M. A, Abid, M., Nazir, H. Z., Zahid, F. M. & Riaz, M. On enhanced estimation of population variance using unconventional
measures of an auxiliary variable. J. Stat. Comput. Simul. 90, 2180-2197 (2020).
17. Harrison Oghenekevwe, E., Cecilia Njideka, E. & Chizoba Sylvia, O. Distribution effect on the efficiency of some classes of popula-
tion variance estimators using information of an auxiliary variable under simple random sampling. SJAMS 8, 27 (2020).
18. Sharma, D. K., Yadav, S. K. & Sharma, H. Improvement in estimation of population variance utilising known auxiliary parameters
for a decision-making model. Int. ] Math. Model. Numer. Optim. 12, 15-28 (2022).
19. Niaz, L, Sanaullah, A., Saleem, I. & Shabbir, J. An improved efficient class of estimators for the population variance. Concurr.
Comput. 34, €6620 (2022).
20. Kumar-Adichwal, N. et al. Estimation of general parameters using auxiliary information in simple random sampling without
replacement. J. King Saud Univ. Sci. 34, 101754 (2022).
21. Zaman, T. & Bulut, H. An efficient family of robust-type estimators for the population variance in simple and stratified random
sampling. Commun. Stat. Theory Methods 52, 2610-2624 (2023).
22. Singh, M. P. On the estimation of ratio and product of the population parameters. Sankhya Indian J. Stat. Ser. B (1960-2002) 27,
321-328 (1965).
23. Yadav, S. K. & Kadilar, C. A two parameter variance estimator using auxiliary information. Appl. Math. Comput. 226, 117-122
(2014).
24. Muneer, S., Khalil, A., Shabbir, J. & Narjis, G. A new improved ratio-product type exponential estimator of finite population vari-
ance using auxiliary information. J. Stat. Comput. Simul. 88, 3179-3192 (2018).
25. Sanaullah, A., Niaz, I., Shabbir, J. & Ehsan, I. A class of hybrid type estimators for variance of a finite population in simple random
sampling. Commun. Stat. Simul. Comput. 51, 5609-5619 (2022).
26. Murthy, M. N. Sampling theory and methods. Sampling Theory Methods 1967, 145 (1967).
27. Cochran, W. G. Sampling theory when the sampling-units are of unequal sizes. J. Am. Stat. Assoc. 37,199-212 (1942).

Scientific Reports |

(2024) 14:8117 | https://doi.org/10.1038/s41598-024-58841-x nature portfolio



www.nature.com/scientificreports/

28. Subramani, J. & Gnanasegaran, K. Variance estimation using quartiles and their functions of an auxiliary variable. Int. J. Stat. Appl.
2(5), 67-72 (2012).

Author contributions

Hameed Ali: conceptualization, validation, investigation, data curation, methodology, writing, review & editing,
formal analysis, visualization, original draft preparation. Syed Muhammad Asim: supervision, methodology,
conceptualization, validation, review & editing, data curation. Muhammad [jaz: supervision, validation, review
& editing. Tolga Zaman: supervision, validation, review & editing. Soofia Iftikhar: supervision, validation, review
& editing.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to T.Z.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

License, which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

Scientific Reports |

(2024) 14:8117 | https://doi.org/10.1038/s41598-024-58841-x nature portfolio


www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Improvement in variance estimation using transformed auxiliary variable under simple random sampling
	Novelty and significance
	Methodology
	Proposed estimators
	The first proposed estimator
	The second proposed estimator
	The third proposed estimator

	Theoretical properties of the proposed estimators
	Special Cases of  in response to the transformation introduced
	Efficiency comparisons

	Empirical analysis
	Simulation study
	Conclusion
	References


