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Improvement in variance 
estimation using transformed 
auxiliary variable under simple 
random sampling
Hameed Ali 1, Syed Muhammad Asim 1, Muhammad Ijaz 2, Tolga Zaman 3* & Soofia Iftikhar 4

This paper offers a novel approach to formulate efficient ratio estimator of the population variance 
using a transformed auxiliary variable. The impact of transformation on auxiliary information has 
also been discussed. It is observed that incorporating a transformed auxiliary variable result in a high 
gain in efficiency. Theoretical properties of the newly developed estimators have been derived. The 
empirical and simulation studies show that the suggested estimators outperformed the existing 
estimators.

Keywords Auxiliary variable, Mean square error, Population variance, Percentage relative efficiency

Sampling is a crucial aspect of making well-informed decisions in various real-life domains. Inferences about 
statistical populations or data are drawn from samples, and it is imperative that a sample accurately represents 
every characteristic of the population of interest. Data is characterized by specific parameters, and estimating 
population parameters from a sample poses a challenging task. Two essential measures for specifying data are 
the measure of location and scale. This article focuses on the latter, specifically the estimation of variance, and 
a frequently used measure of data scale. Estimating variance is vital in processes where precise quantification 
of data variation is necessary. From economics and business to physical science, biological science, and envi-
ronmental sciences, sophisticated tools are required to measure variation for making informed decisions. For 
instance, economists analyze the variation in commodity prices, manufacturers assess taste preferences for cus-
tomer satisfaction, and agriculturists study variability in climate factors to optimize yields and minimize costs.

Extensive research has sought to enhance the efficiency of ratio and product estimators for finite popula-
tion variance, considering the correlation between survey variables and auxiliary variables. Auxiliary variables 
are those correlated with the main study variable, either positively or negatively. In environmental studies, for 
example, auxiliary variables like wind speed or temperature are considered when estimating air quality variance. 
Economic surveys may involve estimating household income variance using employment rates as an auxiliary 
variable. In healthcare planning, patient demographics or medical histories serve as auxiliary variables when 
estimating variance in patient recovery times.

Integrating auxiliary variables with the main survey variable to estimate variance provides additional infor-
mation, refining the accuracy of estimates. This additional information includes contextual data, environmental 
factors, or supplementary metrics correlated with main study variable. The use of auxiliary information often 
leads to more efficient and robust variance estimators. Similarly, the transformative role is notable in enhancing 
estimate efficacy. Transformations make estimators flexible, allowing them to better utilize additional information 
from auxiliary variables, such as mean, variance, skewness, kurtosis, quantiles, etc. This flexibility, along with 
generalization and optimization constants, enhances the robustness of estimates against variations in the sample.

That is why various sample survey statisticians preferred transformed auxiliary variables instead of consid-
ering them in their original form. Keeping in view the above, numerous researchers developed many efficient 
estimators of population variance. Some of the pioneer work on estimating variance of finite population using 
auxiliary variable are due  to1 who proposed an unbiased estimator of variance  and2 compares variance estimators 
under various sample designs with available auxiliary information. Illustrates improved bias and mean squared 
error over common estimators.  Similarly3, introduces chain estimators for finite population variance using double 
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sampling and two auxiliary variables. Compares estimators based on mean square estimator (MSE) criterion. 
Proposes a ratio-type exponential estimator for population variance, consistently more efficient than previous 
 estimators4. Conducts efficiency comparisons mathematically and numerically.  Introduces a family of estimators 
based on adaptations of previous work, showing efficiency through mean square error  comparisons5. A general-
ized modified ratio-type estimator for population variance using known parameters of the auxiliary variable 
was suggested  by6. Compares with existing estimators for simulated and real data to show the performance of 
the developed estimator against the competing estimators.  Suggests a generalized class of finite population 
variance, deriving large sample bias and mean square error. Considers special cases and provides numerical 
examples for  comparison7.  Suggested estimator of population variance utilizing information on two auxiliary 
variables under SRSWOR  scheme8. A generalized exponential estimator for estimating population variance 
using two auxiliary variables was proposed  by9. Demonstrates efficiency through empirical and simulated stud-
ies using real and simulated data.  Has suggested efficient formulation of population variance in simple random 
sampling using supplementary variable10. Using searl’s constants, develop an efficient estimator to estimate the 
population variance11. The bias and mean squared error of the proposed estimator is obtained up to the first 
degree of approximation. Suggested a chain ratio type and chain ratio type exponential estimator of variance of 
finite population using auxiliary information Improved version of the suggested class of estimators is also given 
along with its  properties12. An empirical study is carried out in support of the findings of the study. Addresses 
estimation of current population variance in the presence of random non-response13. Examines proposed estima-
tors through empirical studies, comparing with estimators for complete response situations.  Suggested a class 
of estimators for finite population variance using an auxiliary  attribute14.  Developed variance estimator using 
the tri-mean and third quartile of the auxiliary variable, demonstrating its superior performance over various 
competing estimators based on sampling properties, bias, and mean squared  error15. Suggested finite population 
variance estimator using unconventional  measures16. Demonstrates efficacy and robustness through empirical 
and simulation studies considering real data sets form various domain of life. Similarly,17 explores the effect of 
distribution on suggested variance estimators. Compares twelve estimators across eight distributions through 
simulation studies.  Formulate a Searl’s ratio-type estimator using tri-mean and third quartile of the auxiliary vari-
able18. Demonstrates superiority through bias, mean squared error through theoretical comparison and empirical 
studies. A hybrid-type estimators of population variance developed  by19, and demonstrated the efficiency over 
competing estimators through theoretical and empirical comparisons. A generalized family of estimators of 
population variance is formulated  by20 and demonstrated the performance of the estimators through empirical 
and simulation study. A robust ratio-type estimator for finite population variance suggested  by21, considering 
robust covariance matrices. Derive conditions for efficiency against competing estimators and demonstrated the 
performance of the suggested estimators through empirical and simulation study.

Novelty and significance
This work introduces innovative contributions in the field of survey sampling, with several key aspects. The paper 
puts forward three novel ratio estimators designed for finite population variance. These estimators consider a 
transformed auxiliary variable under simple random sampling without replacement. Demonstrated to outper-
form existing methods, these suggested estimators exhibit superior efficacy when there is a positive correlation 
between the survey variable and auxiliary variable. In addition to theoretical comparisons of mean squared errors 
(MSEs), the paper includes an empirical analysis using real data sets. Through a simulation study, it substantiates 
that the newly proposed estimators consistently outperform competing estimators across various scenarios, such 
as different correlation and sample size, affirming their high efficiency. The versatility of the proposed estimators 
is highlighted as they can seamlessly adapted into other sampling methodologies. This includes applications in 
stratified random sampling, non-response sampling, and adaptive cluster sampling, leading to the derivation of 
efficient versions of the estimators. The applicability of the proposed estimators extends to diverse fields such as 
environmental studies, agriculture, and economics, especially in situations where a positive correlation between 
the study and auxiliary variable exists. The heightened efficiency of these estimators can significantly enhance 
the accuracy of population variance estimates, offering practical implications for decision-making processes in 
real-world applications. The proposed estimator can significantly contribute in the estimation of parameters 
other than variance, such as mean, median, coefficient of variation etc.

In conclusion, this paper significantly contributes to the field of survey sampling by introducing novel estima-
tors for finite population variance. The adaptability of these estimators to various sampling schemes and their 
practical implications underscores their potential impact on enhancing accuracy in real-world decision-making.

Methodology
Consider a population � =

{(

yi , xi
)}

, i = 1, 2, ...N . of size N. Suppose a random sample 
(

yi , zi
)

 of size n is taken 
from a population under simple random sampling without replacement case, i-e (SRSWOR). Let 

(

yi , xi
)

 be the 
value of ith unit of the main study and auxiliary variable and zi = t(xi) is the transformed auxiliary variable 
observed on the sample. The supplementary variate (x) is supposed to be correlated positively with the main 
study variable 

(

y
)

 . It is to be noted that the correlation between 
(

yi , zi
)

 and between 
(

yi , xi
)

 is same. Let y = 1
n

n
∑

i=1

yi , 

x = 1
n

n
∑

i=1

xi and z = 1
n

n
∑

i=1

zi represents the sample mean of study variable, ancillary variable and transformed 

ancillary variable.

Y = 1
N

N
∑

i=1

yi and X = 1
N

N
∑

i=1

xi and Z = 1
N

N
∑

i=1

zi be the population mean of variate 
(

y
)

,(x) and (z).

Let us define the random error due to sampling by  ε0 =
s2y−S2y
S2y

 and ε1 =
s2x−S2x
S2x

 , such that
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where r and s be the non-negative integer and µrs ,µ20 and µ02 are the second order moments and φrs is the 
moment’s ratio.

where C2
y ,C

2
x are the coefficient of variation of the survey variable and auxiliary variables Y and X respectively.ρyx 

is the correlation coefficient between main study variable Y and auxiliary variable X, and β(1)x ,β(2)x are the coef-
ficient of skewness and the coefficient of kurtosis of the auxiliary variables respectively.

In literature, some estimators of the population variance are given as

1. The usual classical estimator of population variance is given by

where τ1 is an unbiased estimator. Its variance is as under

2. Developed the estimator of population variance, it is given  by2

The MSE of τ2 is as below.

3. Provide the estimator of population variance, it is given  below22

The MSE of τ3 is given by

4. For ratio estimator of population variance, the linear regression estimator developed  by2 is given by

here b =
s2yV22

s2xV40
 represents the sample regression coefficient.

The variance of τ4 is as below

(1)

E(ε0) = E(ε1) = 0 and

E
�

ε20
�

= �(φ40 − 1) = V40

E
�

ε21
�

= �(φ04 − 1) = V04

E
�

ε0ε1
�

= �(φ22 − 1) = V22

where

� = 1/n , φrs =
µrs

µ
r/2
20 µ

s/2
02
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1

N

N
�
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(2)
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N
�
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�
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1

n− 1

n
�

i=1

(yi − y)2
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1

N − 1

N
�
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�
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, S2y =

1

N − 1

N
�

i=1

(xi − x)2



























.

(3)τ1 = s2y =
1

n− 1

n
∑

i=1

(

yi − y
)2
,

(4)Var(τ1) = S4yV40.

(5)τ2 = s2y

(

S2x
s2x

)

,

(6)MSE(τ2) ∼= S4y{V40 + V04 − 2V22}

(7)τ3 = s2y exp

(

S2x − s2x
S2x + s2x

)

,

(8)MSE
(

τ3
)

≈ S4y

{

V40 +
V04

4
− V22

}

.

(9)τ4 = s2y + b
(

S2x − s2x
)

,
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5. The transformed estimator  by23 is as follows:

here k1 and k2 are optimization constants, θ is generalization constants which can takes value between 0 and 
1 and “a” and “b” some function of auxiliary variable. The optimum value of k1 and k1 are as below

and

The minimum MSE at k1(opt) and k2(opt) is given by

where q =
aS2x

aS2x+b
.

The MSE of τ is minimum at (θ , a, b) = (1, 1, 0).

6. Introduced the following difference-cum-exponential estimator of population  variance7,

where c11 and c11 are optimization constants. The optimum MSE of τ6 is given by

7. Developed the following ratio estimator of population  variance24

The optimum value of k11 and k12 are given by

where

The minimum MSE at k11(opt) and k12(opt) is given by

(10)Var
(

τ4
)

= S4yV40

(

1−
V2
22

V40V04

)

.

(11)τ5 =
{

k1s
2
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(
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)
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θ

(
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)

+ (1− θ) exp
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a
(
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)

a
(

S2x + s2x
)

+ 2b
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,
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(

V22

V04
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,

(12)MSE(τ5) ≃ S4y
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−
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.

(13)τ6 =
[

c11s
2
y + c22

(

S2x − s2x
)

]

exp

(

S2x − s2x
S2x + s2x

)

,

(14)MSE(τ6) = MSE(τ4)−
S4y

[

(

V40 − 1
)

+ 8V04

(
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V40V04
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64
{
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{
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(15)τ7 = s2y

[
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(

S2x
s2x

)

+ k12

(

s2x
S2x

)]

exp

(

S2x − s2x
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)

k11OPT = −
1

8

A1V40 + V04 + A2 + 16V22

A3

k12OPT =
1

8

A1V40 + 21V04 − 3A2 + 16V22

A3
,

A1 = 16(V04 − V22),

A2 = 8
(

3V04V22 − 2V2
22 + V04

)

and

A3 = V2
04 − 4V04V22 − 16V04V22 + 16V2

22 − 4V04.
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8. Advocated the following difference-cum-exponential type exponential estimators of population variance 
given  by25

where k1 and k2 are optimization constants that minimize the MSE of τ8.which is given by

and

9. Suggested a general type of estimator of population variance given  by20

The particular case of estimator τ a,b9   for estimating variance is obtained by putting a = 0, 
b = 2,w1 = 0 and w2 = 1 and ω2 =  2 as following

With MSE given by

 where

Which in case of variance estimator, the MSE τ will induce the following particular case:

(16)MSE
(

τ7
)

min
∼=

S4y

A3

[

1

16

{

16V22

{

V22(4V40−3V04+4)+
(

3V2
04−8V40V04

)}

+9V3
04+64V04(V04−1)V40

}

]

.

(17)τ8 =

[

s2y

2

{

exp

(

S2x − s2x
S2x + s2x

)

+ exp

(

s2x − S2x
S2x + s2x
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+ k1
(

S2x − s2x
)

+ k2s
2
y

]

exp

(

S2x − s2x
S2x + s2x

)

,

(18)
τ9 =







s2y

�

α exp

�

S2x − s2x
S2x + s2x

�

+ (1− α) exp

�

s2x − S2x
S2x + s2x

��

+k11
�
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�

+ k22s
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S2x + s2x

�

+(1− δ) exp

�

s2x − S2x
S2x + s2x

�



















,

(19)MSE(τ8) ∼= MSE(τ4)−
S4y

{(

V40 −
V2
22

V04

)

+ 1
4V

2
04

}

{

1+
(

V40 −
V2
22

V04

)} .

(20)MSE(τ9) ∼= S4y

[

{

V40 +�
(

�V04 + 2V22

)}

−
D1D

2
5 + D2D

2
4 − 2D3D4D5

D1D2 − D2
3

]

.

D1 = R2V04,

D2 = 1+
{

V04 + 2V22(1− 2ω)+ ω2V04

}

,

D3 = R[V22 + (1− 2ω)V04],

D4 = R[V22 +�V04]

D5 =

[

V40 +

{{

2�+
1− 2ω

2

}

V22 +

{

αω +
1− 2ω

2

}

V04

}]

.

(21)τ(a,b) =

[

(

t̂(a,b) + k
(

S2x − s2x
))

exp

(

w1

(

X − x
)

X + (ω1 − 1)x
+

w2

(

S2x − s2x
)

S2x + (ω2 − 1)s2x

)]

,

(22)τ9 =

[

(

s2y + k
(

S2x − s2x
)

)

exp

(

(

S2x − s2x
)

S2x + s2x

)]

,

(23)

MSE(t)min = MSE
(

t̂(a,b)
)

−
t2(a,b)

n

[

{

f3(a, b)
}2

− 2f2(a, b)f3(a, b)δ03 + (δ04 − 1)
{

f2(a, b)
}2

]

(

δ04 − δ203 − 1
)

f2(a, b) =

{

aρXYCγ +

(

b

2

)

δ21
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aρ12Cγ +

(

b

2
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Proposed estimators
The first proposed estimator
Motivated  by24 and using transformed auxiliary variable, the following class of transformed ratio-product type 
exponential estimator is suggestedor

where c1 and c2 are optimization constants and γ2 and γ2 are suitable constants or some function of auxiliary 
variables.

The second proposed estimator
Motivated  by2, we can write the proposed estimator as a linear combination of usual ratio and exponential 
estimators as followingOr

ψ1 , and ψ2 are optimization constants whose value is to be obtained so that the MSE of τP2 is minimum.

The third proposed estimator
Applying transformation to the auxiliary variable in (26), we can write the third proposed estimator as following

Or

ψ3 and ψ4 are optimization constants whose value is to be determined so that the MSE of τP3 is minimum. It 
is to be noted that for γ1 = 1 and γ2 = 0.

The third proposed estimator τP3 given by (26) become equivalent to the second proposed estimator τP2  
given by (26).

Similarly, the first proposed estimator τP1 given by (25) become equivalent to τP7 as suggested by Muneer 
et al.9 given by (13).

Theoretical properties of the proposed estimators
This unit aims at, deriving the theoretical properties of the new estimators using the notations given in (1) and 
(2). Rewriting (25), (26) and (27) respectively in term of error terms, as following

and

where πk =
γ1S

2
x

γ1S2x−γ2
. or

(24)MSE
(

τ9
)

= MSE(τ1)−

[

{

f3(0, 2)
}2

− 2f2(0, 2)V40 + (V04 − 1)
{

f2(0, 2)
}2

]

(

V04 − V2
40 − 1

)

τP1 = s2y

[

c1

(

Z

z

)

+ c2

( z

Z

)

]

exp

(

Z − z

Z + z

)

(25)τP1 = s2y

[

c1

(

γ1S
2
x − γ2

γ1s2x − γ2

)

+ c2

(

γ1s
2
x − γ2

γ1S2x − γ2

)]

exp

(

γ1
(

S2x − s2x
)

γ1
(

S2x + s2x
)

− 2γ2

)

τP2 = ψ1τ2 + ψ2τ3

(26)τP2 = s2y

{

ψ1

(

S2x
s2x

)

+ ψ2 exp

(

S2x − s2x
S2x + s2x

)}

(27)τP3 = s2y

{

ψ3

(

Z

z

)

+ ψ4 exp

(

Z − z

Z + z

)}

τP3 = s2x

{

ψ3

(

γ1S
2
x − γ2

γ1s2x − γ2

)

+ ψ4 exp

(

γ1
(

S2x − s2x
)

γ1
(

S2x + s2x
)

− 2γ2

)}

τP1 = S2y(1+ ε0)
[

c1
(

1− πkε1 + π2
k ε

2
1 + · · ·

)

+ c2(1+ πkε1)
]

(

1−
1

2
πkε1 +

3

8
π2
k ε

2
1 + · · ·

)

,

τP2 = S2y(1+ ε0)

{

ψ1

(

1− ε1 + ε21 + · · ·
)

+ ψ2

(

1−
1

2
ε1 +

3

8
ε21 + · · ·

)}

,

τP3 = S2y(1+ ε0)

{

ψ3

(

1− πkε1 + π2
k ε

2
1 + · · ·

)

+ ψ4

(

1−
1

2
πkε1 +

3

8
π2
k ε

2
1 + · · ·
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,
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and

Taking expectation of both sides of (28), (29) and (30) respectively, and after simplification we get

Squaring both sides of (31), (32) and (33) respectively and applying expectation to get the MSE of 
τP1, τP2 and τP3 , as following.

or

or

(28)τP1 − S2y
∼= S2y
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+

c2

�

1+ ε0 +
1

2
πkε1 +

1

2
πkε1ε0 −

1

8
π2
k ε

2
1

�

− 1









2

,

(35)E
�

τP2 − S2y

�

∼= S4yE









(ψ1 + ψ2 − 1)+ (ψ1 + ψ2)ε0 −

�

ψ1 +
ψ2

2

�

ε1+

�

ψ1 +
3ψ2

8

�

ε21 −

�

ψ1 +
ψ2

2

�

ε0ε1









2

,

(36)E
�

τP3 − S2y

�

∼= S4yE









(ψ3 + ψ4 − 1)+ (ψ3 + ψ4)ε0 − πk

�

ψ3 +
ψ4

2

�

ε1+

�

ψ3 +
3ψ4

8

�

π2
k ε

2
1 − πk

�

ψ3 +
ψ4

2

�

ε0ε1









2

,

(37)MSE
�

τP1
�

∼= S4y















(c1 + c2 − 1)2 + (c1 + c2)
2V40 +



















�

1

2
(3c1 − c2)

�2

+

2(c1 + c2 − 1)

�

15

8
c1 −

1

8
c2

�



















π2
k V04

−(2(c1 + c2)− 1)(3c1 − c2)πkV22















,
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and

The optimum value of c1 and c2 is obtain by differentiating (37) w.r.t c1 and c2 respectively and equating to 
zero, as following

where,

putting the optimum value of c1 and c2 in (37), we get

where

Similarly, using calculus rule, the optimum value of ψ1,ψ2,ψ3 andψ4 can also be obtain by differentiating 
MSE of τP2 and τP3  w.r.to  ψ1,ψ2,ψ3 andψ4 and equating to zero. Hence, we obtain after simplification

and

where

The MSE is given by

(38)MSE
�

τP2
�

∼= S4y



















(ψ1 + ψ2 − 1)2 + (ψ1 + ψ2)
2V40 +



















�

ψ1 +
ψ2

2

�2

+

2(ψ1 + ψ2 − 1)

�

ψ1 +
3ψ2

8

�



















V04

−2

�

ψ1 +
ψ2

2

�

{2(ψ1 + ψ2)− 1}V22



















(39)MSE
�

τP3
�

∼= S4y



















(ψ3 + ψ4 − 1)2 + (ψ3 + ψ4)
2V40 +



















�

ψ3 +
ψ4

2

�2

+

2(ψ3 + ψ4 − 1)

�

ψ3 +
3ψ4

8

�



















π2
k V04

−2

�

ψ3 +
ψ4

2

�

{2(ψ3 + ψ4)− 1}πkV22



















.

∂

∂c1
MSE

(

τP1
)

= 0 ⇒ c1OPT = −
1

8

A1,kV40 + V04,k + A2,k + 16V22,k

A3,k
,

∂

∂c2
MSE

(

τP1
)

= 0 ⇒ c2OPT =
1

8

A1,kV40 + 21V04,k − 3A2,k + 16V22,k

A3,k
.

A1,k = 16
(

V04,k − V22,k

)

,

A2,k = 8
(

3V04,kV22,k − 2V2
22,k + V04,k

)

,

and

A3,k = V2
04,k − 4V04,kV22,k − 16V04,kV22,k + 16V2

22,k − 4V04,k .

(40)MSE(τP1)min
∼=

S4y
A
3,k





1
16







16V22,k

�

V22,k

�

4V40−3V04,k+4
�

+
�

3V2
04,k−8V40V04,k

��

+

9V3
04,k+64V04,k

�

V04,k−1
�

V40









.

V04,k = π2
k V04 and V22,k = πkV22

ψ1(opt) = −
19V4

04 + 40V2
04V

2
40 − 60V2

04V22 − 32V2
40V22 + 32V2

22 − 16V2
04 + 32V22

D
,

ψ2(opt) =
8
(

6V4
04 + 5V2

04V
2
40 − 15V2

04V22 − 4V2
40V22 + 8�V2

22 − 4V2
04 + 4V22

)

D
,

ψ3(opt) = −
19V4

04,k + 40V2
04,kV

2
40 − 60V2

04,kV22,k − 32V2
40V22,k + 32V2

22,k − 16V2
04,k + 32V22,k

Dk

ψ4(opt) =
8
(

6V4
04,k + 5V2

04,kV
2
40 − 15V2

04,kV22,k − 4V2
40V22,k + 8�V2

22,k − 4V2
04,k + 4V22,k

)

Dk

D = 33V4
04 − 16V2

04V
2
40 − 80V2

04V22 + 64V2
22 − 16V2

04

Dk = 33V4
04,k − 16V2

04,kV
2
40 − 80V2

04,kV22,k + 64V2
22,k − 16V2

04,k , k = 1, 2, . . . , 6.
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Special Cases of τ
P1

and τ
P3

 in response to the transformation introduced

1. For k = 1, τP1 and τP3 takes the following form

where γ1 = 1 and γ2 = ρyx

The bias and MSEs are given by

and

V04,1 = π2
1V04 and V22,1 = π1V22 , π1 =

S2x
S2x−ρyx

.

2. For k = 2, γ1 = 1 and γ2 = Cx , τP1 and τP3 will take the following form

The bias and MSEs are given by

and

(41)MSE(tP2) =
S4y

D

((

V6
04 +

(

25V2
40 − 10V2

22

)

V4
04+

V2
04

(

8V22 − 40V22V
2
40

)

+ 16V2
22V

2
40

)

− 16V2
04V

2
40 + 16V2

22

)

(42)MSE(τP3) =
S4y

Dk

((

V6
04,k +

(

25V2
40 − 10V2

22,k

)

V4
04,k+

V2
04,k

(

8V22,k − 40V22,kV
2
40

)

+ 16V2
22,kV

2
40

)

− 16V2
04,kV

2
40 + 16V2

22,k

)

τP1,1 = s2y

[

c1

(

S2x − ρyx

s2x − ρyx

)

+ c2

(

s2x − ρyx

S2x − ρyx

)]

exp

(

S2x − s2x
S2x + s2x − 2ρyx

)

τP3,1 = s2y

{

ψ3

(

S2x − ρyx

s2x − ρyx

)

+ ψ4 exp

(

S2x − s2x
S2x + s2x − 2ρyx

)

}

.

(43)Bias
(

τP1,1
)

= S2y(h)

[

(c1 + c2 − 1)+

(

3

2
c1 −

1

2
c2

)

V22,1 +

(

15

8
c1 −

1

8
c2

)

V04,1

]

,

(44)Bias
(

τP3,1
)

∼= S2y

[

(ψ3 + ψ4 − 1)+

(

ψ3 +
3ψ4

8

)

V04,1 −

(

ψ1 +
ψ2

2

)

V22,1

]

(45)MSE
(

τP1,1

)

min
∼=

S4y
A3,1

[

1
16

{

16V22,1

{

V22,1

(

4V40−3V04,1+4
)

+
(

3V2
04,1−8V40V04,1

)}

+

9V3
04,1+64V04,1

(

V04,1−1
)

V40

}]

(46)MSE
(

τP3,1
)

=
S4y

D1

((

V6
04,1 +

(

25V2
40 − 10V2

22,1

)

V4
04,1+

V2
04,1

(

8V22,1 − 40V22,1V
2
40

)

+ 16V2
22,1V

2
40

)

− 16V2
04,1V

2
40 + 16V2

22,1

)

.

τP1,2 = s2y

[

c1

(

S2x − Cx

s2x − Cx

)

+ c2

(

s2x − Cx

S2x − Cx

)]

exp

(

S2x − s2x
S2x + s2x − 2Cx

)

.

τP3,2 = s2y

{

ψ3

(

S2x − Cx

s2x − Cx

)

+ ψ4 exp

(

S2x − s2x
S2x + s2x − 2Cx

)}

.

(47)Bias
(

τP1,2
)

= S2y(h)

[

(c1 + c2 − 1)+

(

3

2
c1 −

1

2
c2

)

V22,2 +

(

15

8
c1 −

1

8
c2

)

V04,2

]

,

(48)Bias
(

τP3,2
)

∼= S2y

[

(ψ3 + ψ4 − 1)+

(

ψ3 +
3ψ4

8

)

V04,2 −

(

ψ1 +
ψ2

2

)

V22,2

]

.

(49)MSE
(

τP1,2

)

min
∼=

S4y
A3,2

[

1
16

{

16V22,2

{

V22,2

(

4V40−3V04,2+4
)

+
(

3V2
04,2−8V40V04,2

)}

+

9V3
04,2+64V04,2

(

V04,2−1
)

V40

}]
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where V04,2 = π2
2V04 and V22,2 = π2V22,π2 =

S2x
S2x−Cx

.

3. For k = 3, γ1 = ρyx and γ2 = Cx,τP1 and τP3 will take the following form

The bias along with the mean square error (MSE) is given by

and

where V04,3 = π2
3V04 and V22,3 = π3V22,π3 =

ρyxS
2
x

ρyxS2x−Cx
.

4. For k = 4, γ1 = Cx and γ2 = ρyx . the estimators τP1 and τP3 will take the following form

The bias and MSEs are obtained as

and

where V04,1 = π2
1V04 and V22,1 = π1V22,π4 =

CxS
2
x

CxS2x−ρyx
.

5. For k = 5, γ1 = X and γ2 = ρyx , the estimators τP1 and τP3 will take the following form

(50)MSE
(

τP3,2
)

=
S4y

D2

((

V6
04,2 +

(

25V2
40 − 10V2

22,2

)

V4
04,2+

V2
04,2

(

8V22,2 − 40V22,2V
2
40

)

+ 16V2
22,2V

2
40

)

− 16V2
04,2V

2
40 + 16V2

22,2

)

.

τP1,3 = s2y

[

c1

(

ρyxS
2
x − Cx

ρyxs2x − Cx

)

+ c2

(

ρyxs
2
x − Cx

ρyxS2x − Cx

)]

exp

(

ρyx
(

S2x − s2x
)

ρyx
(

S2x + s2x
)

− 2Cx

)

τP3,3 = s2y

{

ψ3

(

ρyxS
2
x − Cx

ρyxs2x − Cx

)

+ ψ4 exp

(

ρyx
(

S2x − s2x
)

ρyx
(

S2x + s2x
)

− 2Cx

)}

.

(51)Bias
(

τP1,3
)

= S2y

[

(c1 + c2 − 1)+

(

3

2
c1 −

1

2
c2

)

V22,3 +

(

15

8
c1 −

1

8
c2

)

V04,3

]

,

(52)Bias
(

τP3,3
)

∼= S2y

[

(ψ3 + ψ4 − 1)+

(

ψ3 +
3ψ4

8

)

V04,3 −

(

ψ1 +
ψ2

2

)

V22,3

]

(53)MSE
(

τP1,3

)

min
∼=

S4y
A3,3

[

1
16

{

16V22,3

{

V22,3

(

4V40−3V04,3+4
)

+
(

3V2
04,3−8V40V04,3

)}

+

9V3
04,3+64V04,3

(

V04,3−1
)

V40

}]

(54)MSE
(

τP3,3
)

=
S4y

D3

((

V6
04,3 +

(

25V2
40 − 10V2

22,3

)

V4
04,3+

V2
04,3

(

8V22,3 − 40V22,3V
2
40

)

+ 16V2
22,3V

2
40

)

− 16V2
04,3V

2
40 + 16V2

22,3

)

.

τP1,4 = s2y

[

c1

(

CxS
2
x − ρyx

Cxs2x − ρyx

)

+ c2

(

Cxs
2
x − ρyx

CxS2x − ρyx

)]

exp

(

Cx

(

S2x − s2x
)

Cx

(

S2x + s2x
)

− 2ρyx

)

τP3,4 = s2y

{

ψ3

(

CxS
2
x − ρyx

Cxs2x − ρyx

)

+ ψ4 exp

(

Cx

(

S2x − s2x
)

Cx

(

S2x + s2x
)

− 2ρyx

)}

.

(55)Bias
(

τP1,4
)

= S2y

[

(c1 + c2 − 1)+

(

3

2
c1 −

1

2
c2

)

V22,4 +

(

15

8
c1 −

1

8
c2

)

V04,4

]

,

(56)Bias
(

τP3,4
)

∼= S2y

[

(ψ3 + ψ4 − 1)+

(

ψ3 +
3ψ4

8

)

V04,4 −

(

ψ1 +
ψ2

2

)

V22,4

]

(57)MSE
(

τP1,4

)

min
∼=

S4y
A3,4

[

1
16

{

16V22,4

{

V22,4

(

4V40−3V04,4+4
)

+
(

3V2
04,4−8V40V04,4

)}

+

9V3
04,4+64V04,4

(

V04,4−1
)

V40

}]

(58)MSE
(

τP3,4
)

=
S4y

D4

((

V6
04,4 +

(

25V2
40 − 10V2

22,4

)

V4
04,4+

V2
04,4

(

8V22,4 − 40V22,4V
2
40

)

+ 16V2
22,4V

2
40

)

− 16V2
04,4V

2
40 + 16V2

22,4

)

.
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The bias and MSEs are given by

and

where V04,5 = π2
5V04 and V22,5 = π5V22 and π5 =

XS2x
XS2x−ρyx

.

6. For k = 6, γ1 = ρyx and γ2 = 1

The bias and MSEs are given by

and

where  V04,6 = π2
6V04 and V22,6 = π6V22w and π6(h) =

ρ(h)S
2
wx (h)

ρ(h)S
2
wx (h)

−1
. where V04,6 = π2

6V04 and V22,6 = π6V22 , 

π6 =
S2x

S2x−1
.

Efficiency comparisons
This section aims to compare the MSEs of the newly developed estimators with the competing estimators dis-
cussed in the literature.

Condition 1. By using (37), (38), (39) and (4) we can write

τP1,5 = s2y

[

c1

(

XS2x − ρyx

Xs2x − ρyx

)

+ c2

(

Xs2x − ρyx

XS2x − ρyx

)]

exp

(

X
(

S2x − s2x
)

X
(

S2x + s2x
)

− 2ρyx

)

τP3,5 = s2y

{

ψ3

(

XS2x − ρyx

Xs2x − ρyx

)

+ ψ4 exp

(

X
(

S2x − s2x
)

X
(

S2x + s2x
)

− 2ρyx

)}

.

(59)Bias
(

τP1,5
)

= S2y

[

(c1 + c2 − 1)+

(

3

2
c1 −

1

2
c2

)

V22,5 +

(

15

8
c1 −

1

8
c2

)

V04,5

]

,

(60)Bias
(

τP3,5
)

∼= S2y

[

(ψ3 + ψ4 − 1)+

(

ψ3 +
3ψ4

8

)

V04,5 −

(

ψ1 +
ψ2

2

)

V22,5

]

(61)MSE
(

τP1,5

)

min
∼=

S4y
A3,5

[

1
16

{

16V22,5

{

V22,5

(

4V40−3V04,5+4
)

+
(

3V2
04,5−8V40V04,5

)}

+

9V3
04,5+64V04,5

(

V04,5−1
)

V40

}]

(62)MSE
(

τP3,5
)

=
S4y

D5

((

V6
04,5 +

(

25V2
40 − 10V2

22,5

)

V4
04,5+

V2
04,5

(

8V22,5 − 40V22,5V
2
40

)

+ 16V2
22,5V

2
40

)

− 16V2
04,5V

2
40 + 16V2

22,5

)

.

τP1,6 = s2y

[

c1

(

ρyxS
2
x − 1

ρyxs2x − 1

)

+ c2

(

ρyxs
2
x − 1

ρyxS2x − 1

)]

exp

(

ρyx
(

S2x − s2x
)

ρyx
(

S2x + s2x
)

− 2

)

τP3,6 = s2y

{

ψ3

(

ρyxS
2
x − 1

ρyxs2x − 1

)

+ ψ4 exp

(

ρyx
(

S2x − s2x
)

ρyx
(

S2x + s2x
)

− 2

)}

.

(63)Bias
(

τP1,6
)

= S2y

[

(c1 + c2 − 1)+

(

3

2
c1 −

1

2
c2

)

V22,6 +

(

15

8
c1 −

1

8
c2

)

V04,6

]

,

(64)Bias
(

τP3,6
)

∼= S2y

[

(ψ3 + ψ4 − 1)+

(

ψ3 +
3ψ4

8

)

V04,6 −

(

ψ1 +
ψ2

2

)

V22,6

]

(65)MSE
(

τP1,6

)

min
∼=

S4y
A3,6

[

1
16

{

16V22,6

{

V22,6

(

4V40−3V04,6+4
)

+
(

3V2
04,6−8V40V04,6

)}

+

9V3
04,6+64V04,6

(

V04,6−1
)

V40

}]

(66)MSE
(

τP3,6
)

=
S4y

D6

((

V6
04,6 +

(

25V2
40 − 10V2

22,6

)

V4
04,6+

V2
04,6

(

8V22,6 − 40V22,6V
2
40

)

+ 16V2
22,6V

2
40

)

− 16V2
04,6V

2
40 + 16V2

22,6

)

.

MSE(τPi)− Var(τ1) < 0, i = 1, 2, 3.

For i = 1
S4y

A3,k

[

1

16

{

16V22,k

{

V22,k

(

4V40−3V04,k+4
)

+
(

3V2
04,k−8V40V04,k

)}

+

9V3
04,k+64V04,k

(

V04,k−1
)

V40−16A3,kV40

}]

< 0
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Condition 2. By using (37), (38), (39) and (6) we can write
MSE(τPi)−MSE(τ2) < 0, i = 1, 2, 3.

For i = 1 
S4y
A3,k

[

1
16

{

16V22,k

{

V22,k

(

4V40−3V04,k+4
)

+
(

3V2
04,k−8V40V04,k

)}

+

9V3
04,k+64V04,k

(

V04,k−1
)

V40−16A3,k(V40+V04−2V22)

}]

< 0.

For i = 2 
S4y
D

(
(

V6
04 +

(

25V2
40 − 10V2

22

)

V4
04 + V2

04

(

8V22 − 40V22V
2
40

)

+ 16V2
22V

2
40

)

−

16V2
04V

2
40 + 16V2

22 − D(V40 + V04 − 2V22)

)

< 0.

For i = 3 
S4y
Dk









�

V6
04,k +

�

25V2
40 − 10V2

22,k

�

V4
04,k + V2

04,k

�

8V22,k − 40V22,kV
2
40

�

+16V2
22,kV

2
40

�

−16V2
04,kV

2
40 + 16V2

22,k − Dk(V40 + V04 − 2V22)









< 0.

Condition 3. By using (37), (38), (39) and (8) we can write.
MSE(τPi)−MSE(τ3) < 0 , i = 1,2,3.

For i = 1 
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Condition 4. By using (37), (38), (39) and (10) we can write.
MSE(τPi)−MSE(τ4) < 0 , i = 1,2,3.

For i = 1 
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Condition 5. By using (37), (38), (39) and (12) we can write
MSE(τPi)−MSE(τ5) < 0 , i = 1,2,3.

For i = 1 
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Condition 6. By using Eqs. (37), (38), (39) and (14) we can write
MSE(τPi)−MSE(τ6) < 0 , i = 1,2,3.

For i = 1. 
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Condition 7. By using (37), (38), (39) and (16) we can write
MSE(τPi)−MSE(τ7) < 0 ,  i = 1,2,3.

For i = 1. 
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Condition 8. By using (37), (38), (39) and (19), we can write
MSE(τPi)−MSE(τ8) < 0 , i = 1,2,3.

For i = 1. 
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Condition 9. By using (37), (38), (39) and (20), we can write
MSE(τPi)−MSE(τ9) < 0 , i = 1,2,3.

For i = 1 
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Condition 10. By using (37), (38), (39) and (24), we can write
MSE(τPi)−MSE(τ10) < 0 ,  i = 1,2,3.
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Table 1.  Summary statistics of various data sets.

Summary statistics

Population I: 
Source26 
Y: Amount (tons) of recyclable waste 
collection in Italy in 2003
X:Number of inhabitants in 2003

Population II:  Source23

Y: The leaf area for the newly 
developed strain of wheat X: Weight 
of leaves

Population III:  Source27 
Y: weekly expenditure of food
X: size of persons

Population IV: 
Source28

Y: Total amount of recyclable-
waste collection in Italy (2003) X: 
Total amount of recyclable-waste 
collection in Italy (2002)

Y 51.82 26.84 27.49091 62.62

X 11.26 106.20 3.7272 556.55

N 80 39 33 103

n 20 14 9 40

Sy 18.35 6.24 9.976094 91.35

Sx 8.45 11.14 1.500198 610.16

φ40 2.26 2.26 5.72 37.12

φ04 2.86 2.99 2.380 17.87

φ22 2.22 2.40 1.43 17.22

ρyx 0.94 0.93 0.4237 0.72
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The condition mentioned above always hold true for all type of real data where the correlation is positive 
between the main study variable and supplementary variable.

Empirical analysis
This section aims to investigate the performance of the proposed estimators against the competing estimators 
using data from some real-life situations. Table 1 consists of summary statistics of various datasets.

The percentage relative efficiency (PRE) of all estimators discussed in the literature against τ1 has been used 
as performance index. The formula of PRE is given below

where, i = 2, 3, · · · , 10 . J = 1,2,3. and k = 1,2 · · ·,6. are denoted by existing estimators and proposed estimators.
It is obvious from the Table 2 that the newly transformed estimators always perform well than existing esti-

mators for all real data sets. The transformation introduced results high gain in efficiency. The first proposed 
estimator given by (25) is more efficient than the parent estimator suggested  by24, moreover it also outperforms 
all the competing estimators discussed in the literature. The second proposed estimator given by (26) is more 
efficient even than our first proposed estimators and all other competing estimators. Further, incorporating the 
transformed auxiliary variable in the second proposed estimator generates the third proposed estimators given 
by (27) which are more efficient than all other estimators.

Simulation study
The simulation study of the suggested and existing estimators is conducted to assess the performance of both sug-
gested and existing estimators. Three different populations of size 10,000 have been generated using positive cor-
relation between main study and auxiliary variables. The intensity of correlation between the main study and the 
supplementary variable is high, moderate, and low in the first, the second and the third population respectively.

(67)PRE =
Var(τ1)

MSE(τi) or MSE
(

τPj,k
) × 100

Table 2.  PRE of proposed and competing estimators against the usual estimator τ1.

Estimator

Population no.

1 2 3 4

Conventional estimators

τ1 100.000 100.000 100.000 100.000

τ2 185.2941 280.000 102.4253 175.7390

τ3 249.5049 352.4475 101.1806 149.7570

τ4 274.0411 458.0562 102.9216 175.9545

τ5 195.2023 290.7025 124.2060 183.5658

τ6 289.34199 473.2631 153.7084 257.5825

τ7 336.50648 663.02559 159.1806 178.7570

τ8 302.428041 584.1095 169.9411 196.2725

τ9 236.64728 203.75595 102.7552 115.8661

τ10 269.8926 430.5612 101.5689 171.9047

Proposed estimators

τP11 339.83799 671.81178 171.4423 278.0721

τP13 339.60901 664.96302 174.8473 279.5321

τP16 341.674241 674.76219 169.2539 296.2645

τP2 455.9280 1312.5474 218.2653 4059.0256

τP32 456.2014 1421.83896 220.6593 4066.6241

τP34 457.8603 1340.99191 216.2530 4080.5010

τP35 278.8679 1314.1116 245.8746 4075.9032
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Population 1 µ =
[

5.0 10.0
]

 
∑

=

[

9.0 2.9
2.9 1.0

]

ρ = 0.9665.

Population 2 µ =
[

5.0 10.0
]

 
∑

=

[

10.0 3.0
3.0 1.5

]

ρ = 0.7559.

Population 3 µ =
[

5.0 10.0
]

 
∑

=

[

10.0 1.5
1.5 1.5

]

ρ = 0.3983.

We consider sample of sizes n = 50, 150, 300 are consider for each population, using simple random sampling 
without replacement approach. The steps below summarize the whole simulation procedure in R-Studio.

Step 1: Population is generated using Bivariate normal distribution with mean vector µ = c
(

5.0 10.0
)

 and 
∑

=

[

9.0 2.9
2.9 1.0

]

 and calculated all parameters of auxiliary variable and constant from the data.

Step 2: From each of the target population, samples of n =  50, 150, 300 have been drawn using SRSWOR 
method respectively, allow the loop to 100,000 times, select the sample, and calculated the estimates in each 
iteration.

Step 3: Utilizing samples generated in step 2, the 100,000 values of τi , i = 1, 2, ..10. and 
τPjk , j = 1, 2, 3 and k = 1, 2, .., 6. , are obtained separately, using (4–20) and (23), (34) and (35), respectively.

Step 4: The estimates obtained from each iteration are store in a matrix and calculate the percent PRE averag-
ing over all iteration of each estimates by using the formula (67), and report the results in Table 3.

The simulation results indicate that the newly developed estimators are highly efficient as compared to the 
conventional estimators in all situations. It is obvious that for the high correlation ρ ≥ 0.96 , the estimators are 
tend to be more efficient than moderate ρ ≥ 0.75 and low ρ ≥ 0.39 correlation. Thus, the intensity of relation-
ship between the study and supplementary variable plays a vital role in increasing the efficiency. The newly 
developed estimator retains its efficiency in all three cases. Further, the transformation also plays a remarkable 
role in enhancing efficiency. As it can be seen from the simulation in the Table 3, the first transformed proposed 
estimator is efficient than its parent estimator τ7 for different choices of γ1 and γ2 . Similarly, the third proposed 
estimator is also efficient not only from the conventional estimators but also from the second proposed estimator 
for different choices of γ1 and γ2.

Conclusion
The empirical and simulation findings highlight the remarkable efficiency of the newly developed estimators 
in comparison to conventional counterparts across diverse scenarios. Particularly noteworthy is the enhanced 
efficiency of these estimators in situations with higher correlation, emphasizing the pivotal role of the strength of 
the relationship between the study and supplementary variable. This aligns with the expectation that a stronger 
correlation contributes to increased estimator efficiency.

Table 3.  Simulation results for the percent relative efficiencies of the newly developed estimators and 
conventional estimators with respect to the usual estimator considering different sample sizes and correlation 
coefficients.

Estimators

Population

1 2 3

n = 50 n = 150 n = 300 n = 50 n = 150 n = 300 n = 50 n = 150 n = 300

τ1 100.00 100.000 100.00 100.00 100.00 100.00 100.00 100.00 100.00

τ2 195.36 198.9839 201.47 101.55 102.46 100.37 104.84 102.95 103.30

τ3 93.38 97.6381 101.63 110.53 104.32 102.56 103.45 101.36 102.49

τ4 212.54 209.3710 218.63 115.63 108.37 111.35 105.25 108.54 106.26

τ5 223.58 201.2898 219.35 123.92 119.73 113.27 110.47 107.16 108.57

τ6 235.64 208.7391 202.63 120.46 123.18 115.27 115.65 107.16 110.75

τ7 238.29 230.4728 224.38 139.47 130.36 128.38 112.59 110.47 108.73

τ8 235.73 202.3729 223.24 130.28 121.46 119.37 110.45 108.38 106.39

τ9 232.27 228.4732 214.73 137.47 128.56 126.18 107.38 106.75 106.95

τ9 198.76 203.2417 215.76 119.78 108.45 110.56 104.24 107.96 104.22

τP1,1 241.47 241.66 240.63 141.46 138.86 131.25 119.27 111.45 112.45

τP1,4 242.45 240.25 238.58 140.48 132.45 131.57 115.26 110.47 110.46

τP1,6 241.35 235.76 226.65 139.73 131.46 129.45 112.46 11.52 108.98

τP2 260.85 262.37 275.46 185.36 189.83 190.89 135.85 136.86 141.86

τP3,1 262.46 265.77 275.85 191.92 195.53 197.04 136.95 139.18 140.47

τP3,3 265.66 266.75 276.85 195.84 195.95 198.90 140.43 142.65 145.96

τP3,5 262.65 263.75 275.75 186.53 189.54 190.66 136.06 136.93 142.47

τP3,6 271.46 270.01 276.66 197.59 197.49 198.45 140.94 142.95 147.88
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Furthermore, the robustness of the newly developed estimator is evident across all correlation levels—high, 
moderate, and low. This consistent performance underscores the versatility and reliability of the proposed esti-
mators, making them applicable in a broad spectrum of scenarios.

The introduced transformation in the estimators emerges as a key contributor to enhanced efficiency. As 
depicted in Table 3, simulation results affirm that the first transformed proposed estimator consistently out-
performs its parent estimator across various choices. Similarly, the third proposed estimator not only demon-
strates efficiency over conventional estimators but also surpasses the second proposed estimator for different 
choices. This emphasizes the significant role played by transformations in elevating the overall performance of 
the estimators.

Additionally, the proposed estimators exhibit flexibility and effectiveness in various sampling designs, such as 
stratified random sampling, non-response sampling, and adaptive cluster sampling. The extension of these esti-
mators to non-conventional sampling designs, including adaptive cluster sampling and stratified adaptive cluster 
sampling, is also under consideration for variance estimation. These estimators display flexibility in exploring 
potential improvements in formulating estimates of population parameter utilizing two auxiliary variables.

In conclusion, the proposed estimators shows remarkable efficiency in finite population variance estima-
tion under the simple random sampling scheme without replacement. The encouraging findings suggest their 
applicability in diverse survey scenarios, and future research avenues could further enhance their adaptability, 
extending their utility to more intricate sampling designs.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.

Received: 7 April 2023; Accepted: 3 April 2024

References
 1. Sankhya, L. T. A general unbiased estimator for the variance of a finite population. Sankhya C 36, 23–32 (1974).
 2. Isaki, C. T. Variance estimation using auxiliary information. J. Am. Stat. Assoc. 78, 117–123 (1983).
 3. Al-Jararha, J. & Ahmed, M. S. The class of chain estimators for a finite population variance using double sampling. Int. J. Inf. Man-

age. Sci. 13, 13–18 (2002).
 4. Shabbir, J. & Gupta, S. On improvement in variance estimation using auxiliary information. Commun. Stat. Theory Methods 36, 

2177–2185 (2007).
 5. Singh, R. & Malik, S. Improved estimation of population variance using information on auxiliary attribute in simple random 

sampling. Appl. Math. Comput. 235, 43–49 (2014).
 6. Subramani, J. Generalized modified ratio type estimator for estimation of population variance. Sri Lankan J. Appl. Stat. 16, 69 

(2015).
 7. Yadav, S. K., Kadilar, C., Shabbir, J. & Gupta, S. Improved family of estimators of population variance in simple random sampling. 

J. Stat. Theory Pract. 9, 219–226 (2015).
 8. Adichwal, N. K., Sharma, P. & Singh, R. Generalized class of estimators for population variance using information on two auxiliary 

variables. Int. J. Appl. Comput. Math. 3, 651–661 (2017).
 9. Sanaullah, A., Asghar, A. & Hanif, M. General class of exponential estimator for estimating finite population variance. J. Reliab. 

Stat. Stud. 2017, 1–16 (2017).
 10. Yadav, S. K., Misra, S., Mishra, S. S. & Khanal, S. P. Variance estimator using tri-mean and inter quartile range of auxiliary variable. 

Nepal. J. Stat. 1, 83–91 (2017).
 11. Lone, H. A. & Tailor, R. Estimation of population variance in simple random sampling. J. Stat. Manag. Syst. 20, 17–38 (2017).
 12. Singh, H. P., Pal, S. K. & Yadav, A. A study on the chain ratio-ratio-type exponential estimator for finite population variance. 

Commun. Stat. Theory Methods 47, 1442–1458 (2018).
 13. Singh, G. N. & Khalid, M. Effective estimation strategy of population variance in two-phase successive sampling under random 

non-response. J. Stat. Theory Pract. 13, 4 (2018).
 14. Shahzad, U., Hanif, M., Koyuncu, N. & Sanaullah, A. On the estimation of population variance using auxiliary attribute in absence 

and presence of non-response. Electron. J. Appl. Stat. Anal. 11, 608–621 (2018).
 15. Yadav, S. K., Sharma, D. K. & Mishra, S. S. Searching efficient estimator of population variance using tri-mean and third quartile 

of auxiliary variable. Int. J. Business Data Anal. 1, 30–40 (2019).
 16. Gulzar, M. A., Abid, M., Nazir, H. Z., Zahid, F. M. & Riaz, M. On enhanced estimation of population variance using unconventional 

measures of an auxiliary variable. J. Stat. Comput. Simul. 90, 2180–2197 (2020).
 17. Harrison Oghenekevwe, E., Cecilia Njideka, E. & Chizoba Sylvia, O. Distribution effect on the efficiency of some classes of popula-

tion variance estimators using information of an auxiliary variable under simple random sampling. SJAMS 8, 27 (2020).
 18. Sharma, D. K., Yadav, S. K. & Sharma, H. Improvement in estimation of population variance utilising known auxiliary parameters 

for a decision-making model. Int. J Math. Model. Numer. Optim. 12, 15–28 (2022).
 19. Niaz, I., Sanaullah, A., Saleem, I. & Shabbir, J. An improved efficient class of estimators for the population variance. Concurr. 

Comput. 34, e6620 (2022).
 20. Kumar-Adichwal, N. et al. Estimation of general parameters using auxiliary information in simple random sampling without 

replacement. J. King Saud Univ. Sci. 34, 101754 (2022).
 21. Zaman, T. & Bulut, H. An efficient family of robust-type estimators for the population variance in simple and stratified random 

sampling. Commun. Stat. Theory Methods 52, 2610–2624 (2023).
 22. Singh, M. P. On the estimation of ratio and product of the population parameters. Sankhyā Indian J. Stat. Ser. B (1960-2002) 27, 

321–328 (1965).
 23. Yadav, S. K. & Kadilar, C. A two parameter variance estimator using auxiliary information. Appl. Math. Comput. 226, 117–122 

(2014).
 24. Muneer, S., Khalil, A., Shabbir, J. & Narjis, G. A new improved ratio-product type exponential estimator of finite population vari-

ance using auxiliary information. J. Stat. Comput. Simul. 88, 3179–3192 (2018).
 25. Sanaullah, A., Niaz, I., Shabbir, J. & Ehsan, I. A class of hybrid type estimators for variance of a finite population in simple random 

sampling. Commun. Stat. Simul. Comput. 51, 5609–5619 (2022).
 26. Murthy, M. N. Sampling theory and methods. Sampling Theory Methods 1967, 145 (1967).
 27. Cochran, W. G. Sampling theory when the sampling-units are of unequal sizes. J. Am. Stat. Assoc. 37, 199–212 (1942).



18

Vol:.(1234567890)

Scientific Reports |         (2024) 14:8117  | https://doi.org/10.1038/s41598-024-58841-x

www.nature.com/scientificreports/

 28. Subramani, J. & Gnanasegaran, K. Variance estimation using quartiles and their functions of an auxiliary variable. Int. J. Stat. Appl. 
2(5), 67–72 (2012).

Author contributions
Hameed Ali: conceptualization, validation, investigation, data curation, methodology, writing, review & editing, 
formal analysis, visualization, original draft preparation. Syed Muhammad Asim: supervision, methodology, 
conceptualization, validation, review & editing, data curation. Muhammad Ijaz: supervision, validation, review 
& editing. Tolga Zaman: supervision, validation, review & editing. Soofia Iftikhar: supervision, validation, review 
& editing.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to T.Z.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2024

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Improvement in variance estimation using transformed auxiliary variable under simple random sampling
	Novelty and significance
	Methodology
	Proposed estimators
	The first proposed estimator
	The second proposed estimator
	The third proposed estimator

	Theoretical properties of the proposed estimators
	Special Cases of  in response to the transformation introduced
	Efficiency comparisons

	Empirical analysis
	Simulation study
	Conclusion
	References


