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In this research paper, the intelligent learning abilities of the gray wolf optimization (GWO), multi‑
verse optimization (MVO), moth fly optimization, particle swarm optimization (PSO), and whale 
optimization algorithm (WOA) metaheuristic techniques and the response surface methodology 
(RSM) has been studied in the prediction of the mechanical properties of self‑healing concrete. Bio‑
concrete technology stimulated by the concentration of bacteria has been utilized as a sustainable 
structural concrete for the future of the built environment. This is due to the recovery tendency of the 
concrete structures after noticeable structural failures. However, it requires a somewhat expensive 
exercise and technology to create the medium for the growth of the bacteria needed for this self‑
healing ability. The method of data gathering, analysis and intelligent prediction has been adopted to 
propose parametric relationships between the bacteria usage and the concrete performance in terms 
of strength and durability. This makes is cheaper to design self‑healing concrete structures based on 
the optimized mathematical relationships and models proposed from this exercise. The performance 
of the models was tested by using the coefficient of determination  (R2), root mean squared errors, 
mean absolute errors, mean squared errors, variance accounted for and the coefficient of error. At 
the end of the prediction protocol and model performance evaluation, it was found that the classified 
metaheuristic techniques outclassed the RSM due their ability to mimic human and animal genetics 
of mutation. Furthermore, it can be finally remarked that the GWO outclassed the other methods in 
predicting the concrete slump (Sl) with  R2 of 0.998 and 0.989 for the train and test, respectively, the 
PSO outclassed the rest in predicting the flexural strength with  R2 of 0.989 and 0.937 for train and 
test, respectively and the MVO outclassed the others in predicting the compressive strength with  R2 of 
0.998 and 0.958 for train and test, respectively.
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Self-healing concrete is a type of concrete that has the ability to repair cracks and damage on its  own1, (see Fig. 1). 
One of the key components of self-healing concrete is the incorporation of bacteria, typically of the species Bacil-
lus or Sporosarcina, along with a calcium-based healing agent, such as calcium lactate or calcium  carbonate2. The 
bacteria in self-healing concrete remain dormant until cracks occur in the  concrete3,4. When water or moisture 
enters the cracks, it reactivates the  bacteria5. The bacteria then consume the calcium lactate or calcium carbon-
ate and produce limestone (calcium carbonate) as a  byproduct6. This limestone fills the cracks, effectively heal-
ing the  concrete7. The concentration of bacteria in self-healing concrete can have an influence on its strength 
and healing  efficiency8. Here are some points to consider: Healing capacity: Higher concentrations of bacteria 
generally result in greater healing  capacity9. This means that a higher number of bacteria can produce more 
limestone and effectively fill a larger number of cracks, improving the self-healing capability of the  concrete10. 
Crack width: The concentration of bacteria can also impact the ability to heal wider cracks. If the concentration 
is too low, the bacteria may not be able to produce enough limestone to effectively close wider  cracks11. In such 
cases, additional measures may be required to enhance the healing process, such as incorporating fibers or other 
materials to bridge wider  cracks12. Strength considerations: While higher concentrations of bacteria can improve 
the self-healing  capacity13, they may also have an impact on the strength of the  concrete14. Excessive bacterial 
concentrations can potentially interfere with the cement hydration process or affect the overall structural integrity 
of the  concrete15. Therefore, it is important to find the right balance between healing efficiency and maintain-
ing adequate concrete  strength16. Optimization: The optimal concentration of bacteria in self-healing concrete 
depends on various factors such as the specific bacteria used, the type of healing agent, the crack width expected, 
and the desired strength  requirements3,17. Extensive research and testing are necessary to determine the most 
suitable concentration for a particular  application18. It’s worth noting that the concentration of bacteria is just 
one factor in the overall design and performance of self-healing  concrete1,19. Other factors, such as the selection 
of healing agents, the mix design, and the curing conditions, also play crucial roles in achieving the desired self-
healing properties while maintaining the required strength and durability of the concrete  structure20. Overall, 
the concentration of bacteria in self-healing concrete can influence its healing capacity, ability to close cracks 
of different widths, and potentially impact its  strength21. The strength ranges can be either low (below 20 MPa), 
medium (20–40 MPa), high (40–80 MPa), or ultra-high (80–120 MPa and above)22. Careful consideration and 
optimization of bacterial concentrations are necessary to ensure effective self-healing while maintaining the 
structural integrity of the  concrete23.

Figure 1.  Structural benefits of bacillus subtilis in concrete.



3

Vol.:(0123456789)

Scientific Reports |         (2024) 14:8414  | https://doi.org/10.1038/s41598-024-58666-8

www.nature.com/scientificreports/

Medium-strength self-healing concrete is a type of concrete with a strength range of 20–40 MPa, that has the 
ability to repair cracks and damage autonomously without the need for human  intervention7,24. It incorporates 
various healing mechanisms to restore its structural integrity and  durability25. Here are some common techniques 
used in medium-strength self-healing concrete: Microencapsulated Healing Agents: This method involves incor-
porating tiny capsules filled with healing agents such as polymers, epoxy resins, or mineral-based materials into 
the concrete  mixture26. When cracks form, these capsules rupture, releasing the healing agents into the  cracks27. 
The agents then react with the surrounding environment to form a solid material that seals the  crack28. Vascular 
Systems: Inspired by the human circulatory system, vascular systems in concrete involve embedding a network 
of hollow tubes or channels within the  concrete6,29. These channels are filled with healing agents, such as chemical 
grouts or mineral  solutions30. When cracks occur, the channels rupture, releasing the healing agents into the 
 cracks31. The agents then harden and fill the voids, restoring the concrete’s  integrity11,32. Autogenous Healing: 
Autogenous healing is a natural self-healing process of  concrete33. It occurs when the unhydrated cement particles 
present in the concrete mix react with water in the presence of moisture, such as rainwater or  humidity4,19,34. This 
reaction results in the formation of calcium carbonate, which fills the cracks and improves the concrete’s strength. 
Shape Memory Polymers: Shape memory polymers have the ability to return to their original shape after being 
 deformed18. When used in self-healing concrete, embedded shape memory polymer fibers or particles can be 
activated by external stimuli, such as temperature or moisture  changes2. Once activated, these polymers expand, 
closing the cracks and restoring the concrete’s  integrity12. Medium-strength self-healing concrete offers several 
advantages, including enhanced durability, extended service life, and reduced maintenance  costs6. It can be used 
in various applications, such as building construction, infrastructure projects, and transportation systems, where 
crack formation and damage are  common33. However, it’s important to note that self-healing concrete is still a 
developing technology, and its widespread adoption and commercial availability may  vary34. The concentration 
of bacteria in self-healing concrete can have an influence on its rheology and  workability35. Rheology refers to 
the flow and deformation behavior of concrete, while workability refers to its ease of handling and placing during 
 construction34. Here’s how the bacteria concentration can affect these properties: Viscosity: The bacteria and 
their metabolic byproducts can affect the rheology of the self-healing  concrete31–35. Higher concentrations of 
bacteria can lead to increased viscosity, making the concrete more resistant to  flow35. This increased viscosity 
can affect the workability of the concrete, making it more difficult to handle and  place23. Water demand: Self-
healing concrete typically requires a specific water-to-cement ratio for proper hydration and bacterial  activity25. 
Higher bacterial concentrations may increase the water demand of the concrete mix, as bacteria require water 
for their metabolic  processes36. This increased water demand can impact the workability of the concrete by 
requiring additional water to maintain the desired  consistency23–26. Set time: Bacteria in self-healing concrete 
can influence the concrete’s setting time, which is the time it takes for the concrete to harden and gain  strength31. 
Higher concentrations of bacteria can potentially accelerate or delay the setting time, depending on the specific 
bacterial species used and the conditions of the concrete  mix15. Changes in setting time can affect the workability 
of the concrete by altering the available time for handling and  placing16. Segregation and bleeding: Excessive 
bacterial concentrations can cause segregation and bleeding in the concrete  mix12. Segregation refers to the sepa-
ration of coarse aggregates from the mortar, while bleeding refers to the upward movement of water to the surface 
of freshly placed  concrete9. Both segregation and bleeding can negatively impact the workability and homogeneity 
of the concrete, leading to potential structural  issues34. To mitigate the potential negative effects of higher bacte-
rial concentrations on rheology and workability, it is important to carefully optimize the mix design and con-
struction  practices36. The use of appropriate admixtures, such as superplasticizers, can help improve the flow 
and workability of self-healing concrete while maintaining the desired bacterial  concentration37. It’s worth noting 
that the influence of bacteria concentration on rheology and workability is just one aspect to consider in the 
design and performance of self-healing  concrete1. Other factors, such as the selection of bacteria, healing agents, 
aggregate gradation, and overall mix design, also play important  roles3. Proper testing and evaluation are neces-
sary to determine the optimal bacterial concentration that balances self-healing capabilities with acceptable 
rheology and workability  characteristics15–18. Bacteria used in self-healing concrete are typically of the genus 
Bacillus or  Sporosarcina36. These bacteria have the ability to produce a specific enzyme called urease, which plays 
a key role in the self-healing  process28. Incorporation: The bacteria are introduced into the concrete during the 
mixing  process21. They are usually in the form of spores, which remain dormant until conditions are favorable 
for  growth37. Activation: When cracks form in the concrete, water seeps in and comes into contact with the 
bacterial spores. This triggers the activation of the  bacteria4–9. Urease production: Once activated, the bacteria 
start to metabolize nutrients present in the  concrete38. As a byproduct of their metabolism, they produce the 
enzyme  urease7,38. Urease reaction: Urease catalyzes the hydrolysis of urea, which is commonly added to the 
concrete as a nutrient source for the  bacteria6. This hydrolysis reaction produces calcium carbonate and 
 ammonia11. Calcium carbonate formation: The calcium ions present in the concrete react with the produced-
carbonate ions to form calcium carbonate  crystals35–38. These crystals fill the cracks, effectively sealing them. 
Self-healing: As the calcium carbonate crystals form and grow, they gradually fill the cracks and restore the 
integrity of the  concrete7–9,29. This process can occur over a period of several weeks, depending on the extent of 
the  damage1. It’s important to note that self-healing concrete utilizing bacteria is still an emerging technology 
and not yet widely implemented in construction  projects14,27. Extensive research is ongoing to optimize the 
performance, durability, and practicality of this  approach31,39. In self-healing concrete, the concentration of 
bacteria and the activation reaction are important factors that influence the effectiveness of the self-healing 
 process31. Bacteria Concentration: The concentration of bacteria in self-healing concrete can vary depending on 
the specific application and desired  outcome26. Generally, a higher concentration of bacteria leads to a more 
efficient healing  process38. However, it’s important to strike a balance because an excessively high concentration 
may lead to competition for nutrients and limited space for bacterial  growth39. The typical range of bacteria 
concentration in self-healing concrete is between 10^6 and 10^8 colony-forming units (CFU) per gram of 
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 concrete40. This concentration is achieved by adding specific amounts of bacteria-containing solution or powder 
during the concrete mixing  process7,15. Activation Reaction: The activation of bacteria in self-healing concrete 
occurs when water enters the cracks and comes into contact with the dormant bacterial  spores19. The presence 
of water triggers the germination of spores and the subsequent growth of  bacteria2–4. Once activated, the bacteria 
start to consume nutrients present in the concrete, metabolize them, and produce the enzyme  urease6–11. This 
urease production is an essential part of the self-healing process. The reaction can be summarized as follows:

The bacteria use the nutrients, such as urea, as a food source for their growth and  metabolism8,40. As a byprod-
uct of their metabolism, they release urease enzyme, which initiates the hydrolysis of  urea6,9. It’s worth noting 
that the specific activation reaction can vary depending on the type of bacteria used and the formulation of the 
self-healing  concrete10,20–24. Different bacterial strains may have different nutrient requirements or metabolic 
pathways, but the general principle of bacterial growth and urease production remains  consistent7. Optimizing 
both the bacteria concentration and the activation reaction is crucial for achieving effective self-healing proper-
ties in  concrete8. Ongoing research aims to refine these parameters and develop standardized guidelines for incor-
porating bacteria into self-healing  concrete41–43. The use of bacteria in self-healing concrete has the potential to 
enhance the sustainability of concrete structures in several ways: Extended Lifespan: Self-healing concrete reduces 
the need for frequent repairs and maintenance, thus extending the lifespan of concrete  structures3,42. This leads 
to reduced resource consumption and waste generation associated with the construction and repair  processes44. 
Reduced Material Consumption: By autonomously repairing cracks, self-healing concrete minimizes the need 
for additional materials, such as repair mortars or epoxy  resins45. This can contribute to resource conservation 
and reduce the carbon footprint associated with the production and transportation of these  materials3. Energy 
Savings: The self-healing process eliminates or reduces the need for manual intervention and repair work, which 
can be energy-intensive35,42. It eliminates the energy required for repair activities, such as drilling, patching, or 
replacing damaged concrete  elements43. Improved Durability: Self-healing concrete can enhance the durability 
and resilience of  structures44. By sealing cracks promptly, it prevents the ingress of water, chemicals, and other 
harmful substances that can lead to further  deterioration45. This reduces the likelihood of structural failures 
and the need for major repairs or  replacements46. Reduced Environmental Impact: The self-healing process of 
bacteria in concrete relies on the use of natural  microorganisms47. Compared to traditional repair methods that 
may involve the use of synthetic materials or chemicals, self-healing concrete with bacteria has the potential for 
a lower environmental  impact48,49. However, it’s important to consider some potential sustainability challenges 
associated with bacteria use in self-healing concrete: Energy and Resource Requirements: The production and 
cultivation of bacteria and the incorporation of bacteria into concrete require energy and  resources42,49. The 
sustainability benefits of self-healing concrete need to be balanced against the environmental impacts associated 
with bacterial cultivation and incorporation  processes6,35. Bacterial Viability: Ensuring the long-term viability 
and performance of bacteria in concrete structures is a  challenge49. Factors such as harsh environmental condi-
tions, nutrient availability, and competition with other microorganisms can affect the survival and effective-
ness of bacteria over  time48. Ongoing research is focused on optimizing bacterial strains and formulations to 
enhance their viability and  longevity49. Regulatory Considerations: The use of bacteria in construction materials 
may involve regulatory considerations related to safety, health, and environmental  impacts2,17. It’s important to 
conduct thorough assessments to ensure that the use of bacteria in self-healing concrete aligns with applicable 
regulations and  standards43–45. Overall, while bacteria-based self-healing concrete offers potential sustainability 
benefits, further research and development are needed to optimize its performance, evaluate its life cycle impacts, 
and address any associated  challenges48. Hence, this research work is focused on applying the metaheuristic 
machine learning and the symbolic response surface methodology methods in the prediction of the strengths 
of the bacterial-based self-healing concrete for use in the design and production of optimized materials-based 
bio-concrete at optimal rate of bacteria concentration. The research on "Modeling the influence of bacteria con-
centration on the mechanical properties of self-healing concrete (SHC) for sustainable bio-concrete structures" 
holds significant importance in several ways: Advancing Sustainable Construction: Self-healing concrete (SHC) 
offers a promising solution to extend the service life of concrete structures, thereby reducing the need for frequent 
repairs and replacements. By incorporating bacteria into concrete mixes to facilitate self-healing, the research 
contributes to the development of sustainable construction practices that minimize resource consumption and 
environmental impact. Enhancing Structural Integrity: Understanding the influence of bacteria concentration 
on the mechanical properties of SHC is essential for ensuring the structural integrity and performance of bio-
concrete structures. By modeling these relationships, the research can provide valuable insights into optimizing 
the design and production of SHC to achieve desired mechanical properties and durability. Promoting Innovation 
in Concrete Technology: The incorporation of bacteria into concrete mixes represents an innovative approach 
to address common issues such as cracks and deterioration in concrete structures. By studying the effects of 
bacteria concentration on mechanical properties, the research contributes to the advancement of concrete tech-
nology and encourages the adoption of novel materials and methods in construction. Mitigating Maintenance 
Costs: Self-healing concrete has the potential to significantly reduce maintenance costs associated with concrete 
structures by autonomously repairing cracks and damage over time. By quantifying the relationship between 
bacteria concentration and mechanical properties, the research can help optimize SHC formulations to maximize 
healing efficiency and minimize maintenance requirements, leading to cost savings for infrastructure owners and 
operators. Improving Long-Term Durability: The durability of concrete structures is crucial for ensuring their 
long-term performance and resilience against environmental factors such as moisture, chemical exposure, and 
freeze–thaw cycles. By investigating how bacteria concentration influences mechanical properties, the research 
contributes to improving the long-term durability of bio-concrete structures, thereby extending their service life 

(1)Bacteria + Water + Nutrients → Growth + Urease Production
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and reducing life-cycle costs. Addressing Infrastructure Challenges: Cracking and deterioration are common 
challenges faced by concrete infrastructure worldwide, leading to safety concerns, service disruptions, and costly 
repairs. By developing self-healing concrete technologies, the research addresses these challenges proactively, 
offering a sustainable and cost-effective solution to enhance the resilience and longevity of infrastructure systems. 
In summary, the research on modeling the influence of bacteria concentration on the mechanical properties of 
self-healing concrete for sustainable bio-concrete structures has significant implications for advancing sustainable 
construction practices, improving structural integrity, promoting innovation in concrete technology, mitigat-
ing maintenance costs, enhancing long-term durability, and addressing critical infrastructure challenges. More 
important to consider is the deployment of machine learning to forecast the behavior of the SHC for sustainable 
design of its properties.

Methodology
Data collection and preliminary analysis
The database has been collected from a previous research  paper49, prepared, shuffled and used in the various 
models presented in this research paper. Table 1 presents the descriptive statistics of the outputs (compressive 
strength, slump and flexural strength) and the influential factors. This shows the minimum, maximum, mean, 
standard deviation, and variance of the collected entries of the SHC. Moreover, for the purpose of visually illus-
trating the statistical representation of the data, Fig. 2 exhibits a violin plot. This particular graphical depiction 
comprises both a boxplot and a density plot. The upper and lower boundary lines effectively demonstrate the 
span between the lower quartile (Q1) and the upper quartile (Q3). Meanwhile, the central line corresponds to 
the 95% confidence interval. The relationship between the independent variables known as the regressors (C, 
FA, w/c, B, and CA) and the studied mechanical properties of the bacterial-inspired self-healing concrete is 
also illustrated through the vibratory nodes of the violin. The width of the violin plots at any given point, which 
represents the probability density of the data at that value is more robust with FA, w/c, B, and CA showing the 
contributory strength they possessed in the studied mix. This shows that wider sections indicate higher density, 
while narrower sections such as in C, indicate lower density. It gives a visual representation of the distribution of 
the data. Figure 3 shows the correlation matrix between the input and the output parameters. It also presents the 
internal consistency between the inputs and the outputs. This further shows that it was w/c and B that showed 
good effects to only CS and SI, with degrees of 0.59 and 0.6, respectively. This further strengthened the need for 
machine learning predictions to achieve optimized mechanical properties of the bacterial-inspired self-healing 
concrete, regardless of the lack of internal consistency between the regressors and the targets.

Research plan
Linear multivariate Regression Model (LMR), Response Surface Methodology (RSM), Gray Wolf Optimization 
(GWO), Multi-Verse Optimization (MVO), Moth-Flame Optimization (MFO), Particle Swarm Optimization 
(PSO) and Whale Optimization Algorithm (WOA) were deployed to forecast the effect of bacteria concentra-
tion on the mechanical properties of medium-strength self-healing concrete (MSSHC) for the production of 
bio-concrete for the design and construction of green and sustainable structures. GWO, MVO, MFO, PSO, and 
WOA are advanced metaheuristic techniques in machine learning known for their precision, robustness and 
speed in model execution.

LMR
Linear multivariate regression (LMR) is a statistical technique used to model the relationship between multiple 
independent variables and a dependent variable. The flowchart is illustrated in Fig. 4. In LMR, the goal is to find 
a linear equation that best predicts the value of the dependent variable based on the values of the independent 
variables. This technique is commonly used in various fields, including economics, finance, social sciences, and 
more, to analyze and predict the relationship between multiple variables. Linear multivariate regression is an 
extension of simple linear regression to multiple independent variables. In simple linear regression, we have one 
dependent variable and one independent variable, whereas in multivariate regression, we have one dependent 
variable and multiple independent variables. The goal of multivariate linear regression is to estimate the coeffi-
cients that best fit the observed data. This is typically done by minimizing the sum of squared differences between 
the observed and predicted values of the dependent variable. The estimation of coefficients is often done using 

Table 1.  Descriptive statistics of outputs and influential factors.

Parameters Unit Sign Min Max Mean SD Variance

Input

kg/m3 C 350.000 456.000 401.320 36.666 1344.418

kg/m3 FA 555.000 861.000 713.268 91.209 8319.014

kg/m3 CA 900.000 1227.500 1055.409 91.372 8348.753

% w/c 0.400 0.500 0.453 0.035 0.001

Cells/ml B 103.000 109.000 105.410 1.436 2.063

Output

MPa CS 18.670 61.790 37.874 13.518 182.744

MPa FS 4.120 8.600 5.427 1.174 1.378

mm Sl 57.000 96.000 69.180 9.570 91.584
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methods like Ordinary Least Squares (OLS), where the coefficients are chosen to minimize the sum of squared 
residuals. Multivariate regression analysis allows us to understand the relationship between the dependent vari-
able and multiple independent variables simultaneously. It’s widely used in various fields, including economics, 
social sciences, engineering, and many others, for predictive modeling, hypothesis testing, and understanding 
the impact of independent variables on the dependent variable.
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Figure 2.  Violin plot of outputs and effective parameters.
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RSM
Response Surface Methodology (RSM) is a collection of statistical and mathematical techniques used to model 
and analyze the relationship between a set of controlled independent variables and the observed response of a 
system. The flowchart is illustrated in Fig. 5. RSM is often used in the field of engineering, chemistry, and other 
physical sciences to optimize processes, improve product quality, and understand the interactions between input 
variables. One of the key features of RSM is its ability to construct and analyze mathematical models that describe 
the relationship between the input variables and the system response. These models can help in predicting opti-
mal process conditions and understanding the behavior of complex systems. RSM typically involves conducting 
a series of experiments to systematically vary the input variables and observe the corresponding changes in the 
system response. The data gathered from these experiments is then analyzed to develop a predictive model that 
can be used to optimize the system’s performance. Overall, RSM provides a systematic and efficient approach 
for optimizing processes and understanding the relationships between input variables and system responses.

GWO
Gray Wolf Optimization (GWO) is a nature-inspired optimization algorithm that is based on the social hierarchy 
and hunting behavior of gray wolves. The flowchart is illustrated in Fig. 6. It is a metaheuristic algorithm used 
to solve optimization problems and is inspired by the hunting and leadership hierarchy of gray wolf packs. In 
GWO, the population of candidate solutions is divided into four types of wolves: alpha, beta, delta, and omega. 
These wolves represent the best solution, the second-best solution, the third-best solution, and the worst solu-
tion, respectively. The positions of the wolves are updated iteratively based on the hunting and social behavior 
of the gray wolves. The algorithm involves simulating the way that a pack of wolves collaborates to hunt and 
track down prey, with the goal of converging towards an optimal solution. The concept of alpha, beta, delta, and 
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omega wolves is used to guide the search process towards the best solution. GWO has been applied to various 
optimization problems in fields such as engineering, computer science, and finance. Its effectiveness and efficiency 
have made it a popular choice for solving complex optimization problems.

MVO
The Multiverse Optimization Algorithm (MOA) is a relatively new metaheuristic optimization algorithm inspired 
by the concept of the multiverse from theoretical physics. The flowchart is illustrated in Fig. 7. It’s a population-
based algorithm that draws inspiration from the idea of multiple universes coexisting simultaneously, each 
representing a potential solution to the optimization problem. In MOA, a population of candidate solutions is 
represented as a collection of universes. Each universe corresponds to a potential solution to the optimization 
problem. These universes evolve over iterations through various operators, including expansion, contraction, and 

Figure 5.  RSM flowchart.

Figure 6.  GWO flowchart.
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merging, which are inspired by physical phenomena such as expansion and contraction of the universe. MOA 
aims to explore the solution space efficiently by allowing universes to explore different regions and exchange 
information with each other. This exploration–exploitation balance helps in finding high-quality solutions to 
optimization problems across a wide range of domains. The algorithm’s key components include: Initializa-
tion: Generating an initial population of universes (candidate solutions) randomly or using some heuristic. 
Evaluation: Assessing the fitness of each universe (solution) in the population based on the objective function 
of the optimization problem. Evolutionary Operators: Applying operators inspired by physical phenomena to 
evolve the universes over generations. These operations include expansion, contraction, and merging. Selection: 
Selecting universes for the next generation based on their fitness. This could involve strategies like elitism or 
stochastic selection. Termination Criteria: Determining when to stop the algorithm, usually based on reach-
ing a maximum number of iterations, finding a satisfactory solution, or exhausting computational resources. 
MOA has been applied to various optimization problems, including continuous, discrete, and combinatorial 
optimization tasks. Its effectiveness depends on parameter settings, problem characteristics, and tuning strate-
gies. While it’s not guaranteed to find the global optimum, MOA often provides competitive results compared 
to other metaheuristic algorithms.

MFO
Moth Flame Optimization (MFO) is a nature-inspired metaheuristic optimization algorithm inspired by the 
behavior of moths in the presence of a flame. The flowchart is illustrated in Fig. 8. It was proposed as a population-
based optimization algorithm by Xin-She Yang in 2018. The basic idea of MFO lies in mimicking the behavior 
of moths when they are attracted to a flame. Moths exhibit a behavior of moving towards the light source while 
keeping a certain distance to avoid being burned. This behavior forms the basis of the algorithm’s exploration 
and exploitation strategy. Here’s a simplified overview of how MFO works: Initialization: Randomly initialize a 
population of moths (solutions) in the search space. Attraction to Light: Moths are attracted to the brightest light 
source, representing a high-quality solution in the search space. The brightness of the light source is determined 
by the fitness of the solutions. Flight towards the Light: Each moth adjusts its position based on the position 
of the brightest light source (i.e., the best solution found so far) while maintaining a certain distance to avoid 
being too close to the light source (to prevent convergence to local optima). Moth Encirclement: Some moths 
may move too close to the light source. To prevent premature convergence, a fraction of the moths are selected 
for encirclement, where they are forced to move randomly to explore new regions of the search space. Updating 
Light Intensity: The intensity of the light source (fitness of the best solution) may decrease over iterations to 
simulate the diminishing attractiveness of the light source as moths gather around it. Termination Criteria: The 
algorithm stops when a termination condition is met, such as reaching a maximum number of iterations or find-
ing a satisfactory solution. MFO has been applied to various optimization problems, including both continuous 
and discrete optimization tasks. Like other metaheuristic algorithms, its performance depends on parameter 
settings, problem characteristics, and tuning strategies. While it may not guarantee finding the global optimum, 
MFO often provides competitive results and can be particularly effective for certain types of problems.

Figure 7.  MVO flowchart.
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PSO
Particle Swarm Optimization (PSO) is a population-based stochastic optimization algorithm inspired by the 
social behavior of birds flocking or fish schooling. The flowchart is illustrated in Fig. 9. It was originally devel-
oped by Dr. Eberhart and Dr. Kennedy in 1995 and has since become a popular optimization technique used 
to solve a wide range of problems in various fields. In PSO, the potential solutions to an optimization problem, 
called particles, are treated as a swarm. Each particle adjusts its position in the search space according to its own 
flying experience as well as the flying experiences of other particles in the swarm. The movement of particles is 
influenced by their own best-known position and the best-known position in the entire swarm. The algorithm 
iteratively improves the candidate solutions by adjusting the velocity and position of each particle based on its 
own experience and the experience of its neighbors. As the iterations progress, the particles move through the 
search space, gradually converging towards the optimal solutions. PSO has been widely applied in fields such as 
engineering, computer science, finance, and many others, to solve optimization problems, including function 
optimization, neural network training, and feature selection, among others. Its simplicity, ease of implementa-
tion, and effectiveness in finding near-optimal solutions have contributed to its popularity.

WOA
The Whale Optimization Algorithm (WOA) is a nature-inspired optimization algorithm proposed by Seyedali 
Mirjalili in 2016. The flowchart is illustrated in Fig. 10. It is inspired by the social behavior of humpback whales 
during hunting. In the Whale Optimization Algorithm, the search process is modeled after the bubble-net feeding 
behavior of humpback whales. The algorithm mimics the hunting behavior of whales and their communication to 
encircle and catch prey. WOA operates by iteratively updating the position of a population of candidate solutions, 

Figure 8.  MFO flowchart.

Figure 9.  PSO flowchart.
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representing potential prey, based on the behavior of virtual whales. The key features of the WOA include the 
utilization of exploration and exploitation phases to balance global and local search, and the use of mathematical 
equations that imitate the encircling behavior of whales. WOA has been applied to solve optimization problems 
in various domains, including engineering, data science, and other fields. Its effectiveness and ability to quickly 
converge to near-optimal solutions have made it a subject of interest for researchers and practitioners in the 
field of optimization. WOA is one of several nature-inspired optimization algorithms that draw inspiration from 
natural phenomena to develop efficient optimization techniques.

Performance evaluation
The models are further tested for run efficiency by using selected error metrics as follows; the coefficient of 
determination  (R2), root mean squared errors (RMSE), mean absolute errors (MAE), mean squared errors (MSE), 
variance accounted for (VAF) and the coefficient of error (CE). The mathematical expressions of the validation 
indices are presented in Eqs. (2–7).

(2)R2 = 1−

∑N
i=1

(

Xi−Pr edicted − Xi−Measured

)2

∑N
i=1

(

XMean−Measured − Xi−Measured

)2

(3)RMSE =

√

∑N
i=1

(

Xi−Pr edicted − Xi−Measured

)2

N

(4)MAE =

∑N
i=1

∣

∣Xi−Pr edicted − Xi−Measured

∣

∣

N

(5)MSE =
1

N

N
∑

i=1

(

Xi−Pr edicted − Xi−Measured

)2
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(
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Figure 10.  WOA flowchart.
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Results and analysis
Response surface methodology analysis for the compressive strength
Factor coding is actual. Sum of squares is Type III—Partial. The Model F-value of 59.90 implies the model is sig-
nificant. There is only a 0.01% chance that an F-value this large could occur due to noise. P-values less than 0.0500 
indicate model terms are significant. In this case A, B, C, D, AB are significant model terms. Values greater than 
0.1000 indicate the model terms are not significant. If there are many insignificant model terms (not counting 
those required to support hierarchy), model reduction may improve your model. The Lack of Fit F-value of 0.25 
implies the Lack of Fit is not significant relative to the pure error. There is an 89.82% chance that a Lack of Fit 
F-value this large could occur due to noise. Non-significant lack of fit is good – we want the model to fit. Adeq 
Precision measures the signal to noise ratio. A ratio greater than 4 is desirable. Your ratio of 22.320 indicates an 
adequate signal. This model can be used to navigate the design space. These can be read out from Tables 2 and 3, 
and Figs. 11, 12, 13 and 14. The constraints of the RSM model and the selected solution from the 100 iterations 
are presented in Tables 4 and 5. The desirability of the optimized compressive strength, color contour configura-
tions and the response surface optimized configuration are presented in Figs. 15, 16, 17, 18 and 19.

(7)CE = 1−

∑N
k=1

(

Xpredicted − XMeasured

)2

∑N
k=1

(

Xpredicted − Xpredicted

)2

Table 2.  CS ANOVA for Quadratic model (Aliased).

Source Sum of Squares df Mean Square F-value p-value

Model 3790.18 12 315.85 59.90  < 0.0001 Significant

 A-C 265.72 1 265.72 50.39  < 0.0001

 B-FA 601.96 1 601.96 114.16  < 0.0001

 C-CA 47.23 1 47.23 8.96 0.0151

 D-w/c 83.99 1 83.99 15.93 0.0032

 E-B 12.17 1 12.17 2.31 0.1631

 AB 827.32 1 827.32 156.90  < 0.0001

 AC 24.30 1 24.30 4.61 0.0604

 AD 0.0000 0

 AE 15.20 1 15.20 2.88 0.1238

 BC 0.0000 0

 BD 0.0000 0

 BE 14.31 1 14.31 2.71 0.1339

 CD 0.0000 0

 CE 3.41 1 3.41 0.6474 0.4418

 DE 10.35 1 10.35 1.96 0.1946

  A2 0.0000 0

  B2 0.0000 0

  C2 0.0000 0

  D2 0.0000 0

  E2 20.35 1 20.35 3.86 0.0810

Residual 47.46 9 5.27

 Lack of fit 7.90 4 1.98 0.2498 0.8982 Not significant

 Pure error 39.55 5 7.91

Cor total 3837.63 21

Table 3.  Fit Statistics for the compressive strength model.

SD 2.30 R2 0.9876

Mean 37.87 Adjusted  R2 0.9711

C.V. % 6.06 Predicted  R2 NA

Adeq Precision 22.3200
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Response surface methodology analysis for the flexural strength
Factor coding is actual. Sum of squares is type III—partial. The model F-value of 7.83 implies the model is 
significant. There is only a 0.22% chance that an F-value this large could occur due to noise. P-values less than 
0.0500 indicate model terms are significant. In this case A, B, C, D, AB, AC are significant model terms. Values 
greater than 0.1000 indicate the model terms are not significant. If there are many insignificant model terms (not 
counting those required to support hierarchy), model reduction may improve your model. The lack of fit F-value 
of 1.43 implies the Lack of Fit is not significant relative to the pure error. There is a 34.68% chance that a Lack 
of Fit F-value this large could occur due to noise. Non-significant lack of fit is good—we want the model to fit. 

Figure 11.  Compressive strength box-cox model plot.

Figure 12.  Compressive strength predicted versus actual scatter plot.
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Adeq precision measures the signal to noise ratio. A ratio greater than 4 is desirable. Your ratio of 8.440 indicates 
an adequate signal. This model can be used to navigate the design space. The coefficient estimate represents the 
expected change in response per unit change in factor value when all remaining factors are held constant. The 
intercept in an orthogonal design is the overall average response of all the runs. The coefficients are adjustments 
around that average based on the factor settings. When the factors are orthogonal the VIFs are 1; VIFs greater 
than 1 indicate multi-colinearity, the higher the VIF the more severe the correlation of factors. As a rough rule, 
VIFs less than 10 are tolerable. The equation in terms of actual factors can be used to make predictions about 
the response for given levels of each factor. Here, the levels should be specified in the original units for each 
factor. This equation should not be used to determine the relative impact of each factor because the coefficients 

Figure 13.  Compressive strength model cook’s distance.

Figure 14.  Compressive strength model DFFITS versus run plot.
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are scaled to accommodate the units of each factor and the intercept is not at the center of the design space. The 
above analyses are presented in Tables 6 and 7, Figs. 20, 21, 22 and 23, and Tables 8 and 9, while the desirability 
of the optimized flexural strength, color contour configurations and the response surface optimized configura-
tion are presented in Figs. 24, 25, 26, 27 and 28.

Response surface methodology analysis for the slump
Factor coding is actual. Sum of squares is Type III—Partial. The Model F-value of 5.90 implies the model is 
significant. There is only a 0.61% chance that an F-value this large could occur due to noise. P-values less than 
0.0500 indicate model terms are significant. In this case B, C, D, AC are significant model terms. Values greater 
than 0.1000 indicate the model terms are not significant. If there are many insignificant model terms (not count-
ing those required to support hierarchy), model reduction may improve your model. The Lack of Fit F-value of 
1.31 implies the Lack of Fit is not significant relative to the pure error. There is a 38.00% chance that a Lack of Fit 

(8)

FS = −1.95291E− 16B2 + C2 + FA2 + CA2 + w/c2 + 7.26887E− 08 w/c ∗ B

+ 1.05033E− 09 CA ∗ B + CA ∗ w/c + 3.17661E− 09 FA ∗ B

+ FA ∗ w/c + FA ∗ CA + 9.44029E− 09 C ∗ B + C ∗ w/c

+ 0.000513 C ∗ CA + 0.000372 C ∗ FA − 7.17166E− 06B

− 26.51730w/c − 0.240598CA − 0.193985FA − 0.912754C + 453.62549

Table 4.  Constraints of compressive strength model.

Name Goal Lower Limit Upper Limit Lower Weight Upper Weight Importance

A:C Is in range 350 456 1 1 3

B:FA Is in range 555 861 1 1 3

C:CA Is in range 900 1227.5 1 1 3

D:w/c Is in range 0.4 0.5 1 1 3

E:B Is in range 1000 1E+09 1 1 3

CS Maximize 18.67 61.79 1 1 3

StdErr(CS) None 1.17346 2.29627 1 1 3

Table 5.  Selected solution out of the 100 solutions found.

Number C FA CA w/c B CS StdErr (CS) Desirability

1 412.592 748.220 1054.878 0.403 518,953,024.749 1729.526 1554.133 1.000 Selected

Figure 15.  Desirability level of the selected optimized solution.
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Figure 16.  Compressive strength model perturbation.

Figure 17.  Compressive strength model interaction between the parameters.
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F-value this large could occur due to noise. Non-significant lack of fit is good—we want the model to fit. Adeq 
Precision measures the signal to noise ratio. A ratio greater than 4 is desirable. Your ratio of 8.902 indicates an 
adequate signal. This model can be used to navigate the design space. The coefficient estimate represents the 
expected change in response per unit change in factor value when all remaining factors are held constant. The 

Figure 18.  Compressive strength model contour for the concrete mixtures.

Figure 19.  3D configuration of the compressive strength model.
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Table 6.  FS ANOVA for Quadratic model (Aliased).

Source Sum of Squares df Mean Square F-value p-value

Model 26.41 12 2.20 7.83 0.0022 Significant

 A-C 14.99 1 14.99 53.38  < 0.0001

 B-FA 11.29 1 11.29 40.19 0.0001

 C-CA 7.59 1 7.59 27.01 0.0006

 D-w/c 3.69 1 3.69 13.13 0.0055

 E-B 0.0297 1 0.0297 0.1056 0.7527

 AB 16.01 1 16.01 57.00  < 0.0001

 AC 4.72 1 4.72 16.79 0.0027

 AD 0.0000 0

 AE 0.0304 1 0.0304 0.1082 0.7497

 BC 0.0000 0

 BD 0.0000 0

 BE 0.0279 1 0.0279 0.0994 0.7597

 CD 0.0000 0

 CE 0.0114 1 0.0114 0.0406 0.8448

 DE 0.0001 1 0.0001 0.0004 0.9840

  A2 0.0000 0

  B2 0.0000 0

  C2 0.0000 0

  D2 0.0000 0

  E2 0.0250 1 0.0250 0.0888 0.7724

Residual 2.53 9 0.2809

 Lack of fit 1.35 4 0.3373 1.43 0.3468 Not significant

 Pure error 1.18 5 0.2359

Cor total 28.94 21

Table 7.  Fit Statistics for the flexural strength model.

SD 0.5300 R2 0.9126

Mean 5.43 Adjusted  R2 0.7961

C.V. % 9.77 Predicted  R2 NA

Adeq Precision 8.4396

Figure 20.  Flexural strength model predicted versus actual scatter plot.



19

Vol.:(0123456789)

Scientific Reports |         (2024) 14:8414  | https://doi.org/10.1038/s41598-024-58666-8

www.nature.com/scientificreports/

intercept in an orthogonal design is the overall average response of all the runs. The coefficients are adjustments 
around that average based on the factor settings. When the factors are orthogonal the VIFs are 1; VIFs greater 
than 1 indicate multi-colinearity, the higher the VIF the more severe the correlation of factors. As a rough rule, 
VIFs less than 10 are tolerable. The equation in terms of actual factors can be used to make predictions about 
the response for given levels of each factor. Here, the levels should be specified in the original units for each 
factor. This equation should not be used to determine the relative impact of each factor because the coefficients 

Figure 21.  Flexural strength model cook’s distance scatter plot.

Figure 22.  Flexural strength model leverage versus run scatter plot.
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are scaled to accommodate the units of each factor and the intercept is not at the center of the design space. 
The above analyses are presented in Tables 10 and 11, Figs. 29, 30, 31 and 32, and Tables 12 and 13, while the 
desirability of the optimized flexural strength, color contour configurations and the response surface optimized 
configuration are presented in Figs. 33, 34, 35 and 36.

(9)

Sl = 2.27139E− 15B2C2 + FA2 + CA2 + w/c2 − 0.000018w/c ∗ B

+ 2.69508E− 08CA ∗ B + CA ∗ w/c + 3.33628E− 09FA ∗ B

+ FA ∗ CA + FA ∗ w/c + 6.34117E− 09C ∗ B + C ∗ w/c

+ 0.005207C ∗ CA − 0.000114C ∗ FA − 0.000024B + 303.68534w/c

− 1.68360CA + 0.992273FA − 2.56849C − 136.53734

Figure 23.  Flexural strength model DFFITS versus run scatter plot.

Table 8.  Constraints for the flexural strength model.

Name Goal Lower Limit Upper Limit Lower Weight Upper Weight Importance

A:C Is in range 350 456 1 1 3

B:FA Is in range 555 861 1 1 3

C:CA Is in range 900 1227.5 1 1 3

D:w/c Is in range 0.4 0.5 1 1 3

E:B Is in range 1000 1E+09 1 1 3

CS Maximize 18.67 61.79 1 1 3

StdErr (CS) None 1.17346 2.29627 1 1 3

STS Maximize 1.8 3.2 1 1 3

StdErr (STS) None 0.111229 0.217656 1 1 3

FS Maximize 4.12 8.6 1 1 3

StdErr (FS) None 0.270859 0.530025 1 1 3

Table 9.  Selected optimized solution from the 100 solutions found.

Number C FA CA w/c B CS StdErr (CS) STS StdErr (STS) FS StdErr (FS) Desirability

1 420.548 819.613 905.112 0.413 710,039,868.320 4353.398 2491.575 172.706 236.168 179.097 575.106 1.000 Selected
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Response surface methodology analysis for the splitting tensile strength
Factor coding is actual. Sum of squares is Type III—Partial. The Model F-value of 3.40 implies the model is 
significant. There is only a 3.73% chance that an F-value this large could occur due to noise. P-values less than 
0.0500 indicate model terms are significant. In this case B, AB are significant model terms. Values greater than 
0.1000 indicate the model terms are not significant. If there are many insignificant model terms (not counting 
those required to support hierarchy), model reduction may improve your model. The Lack of Fit F-value of 0.96 
implies the Lack of Fit is not significant relative to the pure error. There is a 50.20% chance that a Lack of Fit 
F-value this large could occur due to noise. Non-significant lack of fit is good—we want the model to fit. Adeq 
Precision measures the signal to noise ratio. A ratio greater than 4 is desirable. Your ratio of 6.406 indicates an 
adequate signal. This model can be used to navigate the design space. The coefficient estimate represents the 
expected change in response per unit change in factor value when all remaining factors are held constant. The 

Figure 24.  Flexural strength model desirability optimized plot.

Figure 25.  Flexural strength model contour configuration plot.
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Figure 26.  Flexural strength model 3D configuration plot.

Figure 27.  Flexural strength model perturbation configuration plot.
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Figure 28.  Flexural strength model interaction configuration plot.

Table 10.  Sl ANOVA for Quadratic model (Aliased).

Source Sum of Squares df Mean Square F-value p-value

Model 1706.27 12 142.19 5.90 0.0061 Significant

 A-C 118.74 1 118.74 4.92 0.0536

 B-FA 295.45 1 295.45 12.25 0.0067

 C-CA 371.50 1 371.50 15.41 0.0035

 D-w/c 483.74 1 483.74 20.06 0.0015

 E-B 0.3321 1 0.3321 0.0138 0.9092

 AB 1.49 1 1.49 0.0619 0.8091

 AC 485.37 1 485.37 20.13 0.0015

 AD 0.0000 0

 AE 0.0137 1 0.0137 0.0006 0.9815

 BC 0.0000 0

 BD 0.0000 0

 BE 0.0308 1 0.0308 0.0013 0.9723

 CD 0.0000 0

 CE 7.51 1 7.51 0.3116 0.5903

 DE 7.41 1 7.41 0.3074 0.5928

  A2 0.0000 0

  B2 0.0000 0

  C2 0.0000 0

  D2 0.0000 0

  E2 3.38 1 3.38 0.1400 0.7169

Residual 217.00 9 24.11

 Lack of fit 111.00 4 27.75 1.31 0.3800 Not significant

 Pure error 106.00 5 21.20

Cor total 1923.27 21
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Table 11.  Fit statistics for the concrete slump (Sl).

SD 4.91 R2 0.8872

Mean 69.18 Adjusted  R2 0.7367

C.V. % 7.10 Predicted  R2 NA

Adeq Precision 8.9021

Figure 29.  Slump model predicted versus actual values scatter plot.

Figure 30.  Slump model cook’s distance scatter plot.
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intercept in an orthogonal design is the overall average response of all the runs. The coefficients are adjustments 
around that average based on the factor settings. When the factors are orthogonal the VIFs are 1; VIFs greater 
than 1 indicate multi-colinearity, the higher the VIF the more severe the correlation of factors. As a rough rule, 
VIFs less than 10 are tolerable. The equation in terms of actual factors can be used to make predictions about 
the response for given levels of each factor. Here, the levels should be specified in the original units for each 
factor. This equation should not be used to determine the relative impact of each factor because the coefficients 
are scaled to accommodate the units of each factor and the intercept is not at the center of the design space. The 
above analyses are presented in Tables 14 and 15, Figs. 37, 38, 39, 40, 41 and 42, and Tables 16 and 17, while the 
desirability of the optimized flexural strength, color contour configurations and the response surface optimized 
configuration are presented in Figs. 43, 44, 45, 46 and 47.

Figure 31.  Slump model DFFITS versus run values scatter plot.

Figure 32.  Slump model desirability optimized plot.
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(10)

STS = −3.11420E− 16B2 + C2 + FA2 + CA2 + w/c2 − 2.50180E− 07w/c ∗ B

− 2.33168E− 10CA ∗ B + CA ∗ w/c + 2.59949E− 09FA ∗ B

+ FA ∗ CA + FA ∗ w/c + 7.80711E− 09C ∗ B + C ∗ w/c

+ 0.000074C ∗ CA − 0.000058C ∗ FA − 4.64045E− 06B

+ 5.38201w/c − 0.016963CA + 0.047001FA + 0.029667C − 42.16944

Table 13.  Constraints for the slump model.

Name Goal Lower Limit Upper Limit Lower Weight Upper Weight Importance

A:C Is in range 350 456 1 1 3

B:FA Is in range 555 861 1 1 3

C:CA Is in range 900 1227.5 1 1 3

D:w/c Is in range 0.4 0.5 1 1 3

E:B Is in range 1000 1E+09 1 1 3

CS Maximize 18.67 61.79 1 1 3

StdErr(CS) None 1.17346 2.29627 1 1 3

STS Maximize 1.8 3.2 1 1 3

StdErr(STS) None 0.111229 0.217656 1 1 3

FS Maximize 4.12 8.6 1 1 3

StdErr(FS) None 0.270859 0.530025 1 1 3

Sl Maximize 57 96 1 1 3

StdErr(Sl) None 2.50932 4.91032 1 1 3

Figure 33.  Slump model perturbation optimized plot.
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Figure 34.  Slump model interaction optimized plot.

Figure 35.  Slump model contour optimized plot.
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Figure 36.  Slump model 3D surface configuration optimized plot.

Table 14.  STS ANOVA for Quadratic model (Aliased).

Source Sum of Squares df Mean Square F-value p-value

Model 1.93 12 0.1609 3.40 0.0373 Significant

 A-C 0.0158 1 0.0158 0.3344 0.5773

 B-FA 0.6629 1 0.6629 13.99 0.0046

 C-CA 0.0377 1 0.0377 0.7960 0.3955

 D-w/c 0.1519 1 0.1519 3.21 0.1069

 E-B 0.0124 1 0.0124 0.2621 0.6210

 AB 0.3868 1 0.3868 8.16 0.0189

 AC 0.0971 1 0.0971 2.05 0.1861

 AD 0.0000 0

 AE 0.0208 1 0.0208 0.4389 0.5242

 BC 0.0000 0

 BD 0.0000 0

 BE 0.0187 1 0.0187 0.3948 0.5454

 CD 0.0000 0

 CE 0.0006 1 0.0006 0.0119 0.9156

 DE 0.0014 1 0.0014 0.0297 0.8670

  A2 0.0000 0

  B2 0.0000 0

  C2 0.0000 0

  D2 0.0000 0

  E2 0.0635 1 0.0635 1.34 0.2769

Residual 0.4264 9 0.0474

 Lack of fit 0.1852 4 0.0463 0.9596 0.5020 Not significant

 Pure error 0.2412 5 0.0482

Cor total 2.36 21
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Table 15.  Fit statistics for the concrete splitting tensile strength.

SD 0.2177 R2 0.8191

Mean 2.53 Adjusted  R2 0.5780

C.V. % 8.59 Predicted  R2 NA

Adeq Precision 6.4058

Figure 37.  Splitting tensile strength model residual versus predicted optimized plot.

Figure 38.  Splitting tensile strength model residual versus run optimized plot.
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Metaheuristic models and sensitivity analysis
The GWO, MVO, MFO, PSO, and WOA are the metaheuristic techniques applied in the optimization of the 
compressive strength, flexural strength, and slump of the SHC and these results are compared with the baseline 
regression; multilinear regression (MLR). Table 18 shows the detailed prediction performance evaluation of the 
metaheuristic models alongside the MLR. The performance indices used as shown in Table 18 are the VAF, MSE, 
RMSE, MAE, CE, and  R2. In Table 19, the performance indices are ranked in a score analysis with respect to the 
outputs modeled in this extensive exercise. The score analysis was conducted to identify the most suitable model 
for each output of the dataset, both during the training and testing phases. To achieve this, a score of "n" was 
assigned to each model, where "n" represents the total number of proposed models (6 in this case). This score 
was used to determine the optimal value for each performance indicator. The models were subsequently ranked 
based on their individual performance indices, which are elaborated in Table 19 and Fig. 48. By aggregating the 
training and testing scores, an overall score was calculated for each model, providing a comprehensive evalua-
tion of its performance. It can be shown that MVO is ranked  1st in the prediction of the CS and FS of the SHC, 
while GWO is ranked  1st in the prediction of the Sl of the SHC. Comparatively, it can be deduced from previous 
 literature49, that the presented metaheuristic techniques present models, which have performed better than the 
novel ANN used previously.

Figure 39.  Splitting tensile strength model residual versus cement optimized plot.

Figure 40.  Splitting tensile strength model actual versus predicted optimized scatter plot.
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Figure 41.  Splitting tensile strength model cook’s distance optimized scatter plot.

Figure 42.  Splitting tensile strength model DFFITS versus run optimized scatter plot.

Table 16.  Constraints for the concrete splitting tensile strength model.

Name Goal Lower Limit Upper Limit Lower Weight Upper Weight Importance

A:C Is in range 350 456 1 1 3

B:FA Is in range 555 861 1 1 3

C:CA Is in range 900 1227.5 1 1 3

D:w/c Is in range 0.4 0.5 1 1 3

E:B Is in range 1000 1E+09 1 1 3

CS Maximize 18.67 61.79 1 1 3

StdErr(CS) None 1.17346 2.29627 1 1 3

STS Maximize 1.8 3.2 1 1 3

StdErr(STS) None 0.111229 0.217656 1 1 3
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Sensitivity analysis
The study employed sensitivity analysis to determine the relative influence of each parameter on the output 
within the model, utilizing the cosine domain method as proposed by Yang and  Zang50. In order to implement 
this method, all data pairs were transformed into a shared X-space. To facilitate this technique, it was necessary 
to construct a data array X by incorporating all available data pairs according to the following  procedure51,52:

(11)X = {x1, x2, x3, . . . , xi , . . . , xn}

Table 17.  Selected optimized STS solution from 100 solutions found.

Number C FA CA w/c B CS StdErr(CS) STS StdErr(STS) Desirability

1 455.634 651.038 965.600 0.419 595,963,905.366 1804.376 1083.670 58.817 102.717 1.000 Selected

Figure 43.  Splitting tensile strength model desirability optimized plot.

Figure 44.  Splitting tensile strength model perturbation optimized plot.
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Each of the elements, xi, in the data array X is a vector of lengths of m, that is:

The strength of the relation between the dataset, xi and xj, is presented as follows:

(12)X = {x11, x22, x33, . . . , xim}

Figure 45.  Splitting tensile strength model interaction optimized plot.

Figure 46.  Splitting tensile strength model contour optimized plot.
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The results as presented in Fig. 49 show that the FA is more sensitive than B, which followed closely to the 
behavior of the compressive strength (CS) of the SHC with an insignificant difference. For the flexural strength 
(FS), the cement shows to be more influential and again followed by the bacterial concentration (B). For the 

(13)rij =

∑m
k=1 xikxjk

√

∑m
k=1 x

2
ik

∑m
k=1 x

2
ik

Figure 47.  Splitting tensile strength model 3D optimized plot.

Table 18.  The models’ prediction performance evaluation.

Methods

Train Test

VAF MSE RMSE MAE CE R2 VAF MSE RMSE MAE CE R2

CS

GWO 98.421 2.926 1.710 1.142 0.984 0.984 94.464 7.878 2.807 2.196 0.956 0.966

MVO 99.770 0.427 0.653 0.447 0.998 0.998 95.498 7.016 2.649 2.040 0.952 0.958

MFO 98.754 2.426 1.558 1.132 0.986 0.988 83.511 31.888 5.647 4.730 0.863 0.941

PSO 98.790 2.245 1.498 1.100 0.988 0.988 91.438 12.246 3.499 2.764 0.936 0.954

WOA 97.896 3.901 1.975 1.407 0.978 0.979 89.733 17.667 4.203 3.297 0.884 0.906

MLR 82.438 32.548 5.705 3.964 0.787 0.824 44.906 91.672 9.575 7.446 0.386 0.540

FS

GWO 98.603 0.011 0.103 0.075 0.986 0.986 81.242 0.469 0.685 0.535 0.488 0.910

MVO 98.890 0.008 0.092 0.066 0.989 0.989 85.312 0.340 0.583 0.426 0.738 0.885

MFO 98.437 0.012 0.109 0.091 0.984 0.984 74.184 0.617 0.786 0.646 0.207 0.852

PSO 98.905 0.008 0.091 0.075 0.989 0.989 78.545 0.568 0.754 0.523 0.240 0.937

WOA 98.382 0.012 0.111 0.093 0.983 0.984 82.107 0.416 0.645 0.490 0.531 0.934

MLR 47.646 0.495 0.704 0.428 -0.300 0.477 27.508 2.024 1.423 0.949 -14.439 0.474

Sl

GWO 99.751 0.179 0.423 0.330 0.997 0.998 92.987 8.770 2.961 1.809 0.952 0.989

MVO 99.608 0.282 0.531 0.395 0.996 0.996 83.921 19.348 4.399 3.749 0.900 0.932

MFO 98.427 1.215 1.102 0.880 0.981 0.986 96.591 6.471 2.544 1.953 0.950 0.969

PSO 99.574 0.307 0.554 0.445 0.996 0.996 95.177 5.897 2.428 1.768 0.964 0.982

WOA 96.112 2.816 1.678 1.263 0.955 0.963 94.340 6.867 2.621 2.337 0.947 0.948

MLR 59.030 29.710 5.451 4.023 0.299 0.590 77.903 32.955 5.741 5.028 0.669 0.780
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SHC slump, the most influential are the water/cement content again the bacterial concentration (B), which is at 
par with the w/c. These results for the CS, FS, and Sl model sensitivity analysis, the bacterial concentration (B) 
showed to be the second most influential parameter in the production design and behavior of the SHC and should 
be taken as one of the major decisive constituents needed to produce a reliable healing potential in concrete. 
Further these outcomes agree with the results of a previous research  work49 which had utilized the same data 
entry capacity. It is understandable to note that w/c ratio is one of the most influential variables in the model as 
workability relies mostly on water content, water to cement or water to binder relationship.

Overall, the studies into the self-healing technology in concrete has been conducted previously by research-
ers, which had used capsules, microfibres, glass capsules, epoxy amines, etc. to trigger self-healing processes in 
 concrete29,30,42. Subsequently, extensive reviews have been  conducted6,7 on the self-healing processes in concrete 
enhancing durability index in concrete structures. Mentioned also was made of the utilization of both microen-
capsulated-based and bio-based6,7. Many research papers on the other hand mentioned the application bacterial-
inspired self-healing processes in  concrete35,36,38,43–45, but hardly apply intelligent predictions in the estimation of 
the concrete strengths. It was one closely related research  work49, which applied the genetic programming (GP), 
evolutionary polynomial regression (EPR), and the artificial neural networks (ANN) to study the strengths of 
the bacterial-based self-healing concrete. The models compared well with the models of the present work but 
were outperformed due to the ability of the metaheuristic techniques used in this work to overcome overfitting. 
Finally, comparing the metaheuristic techniques and the symbolic regression method (RSM), the metaheuristics 
showed their superiority over the RSM, even though the RSM did not produce any predicted R-squared values 
rather it used adequate precision to judge its ability to predict the mechanical properties of the studied concrete. 
The RSM show adequate precisions, which are above the standard value (˃ 7.0). However, the RSM outperformed 
the LMR. The metaheuristic techniques are superior in their prediction capabilities due to the nature-based 
technology and ability to predict without being affected by overfitting.

Conclusions
In this research work, the influence of bacteria concentration on the mechanical properties of self-healing con-
crete (SHC) for sustainable bio-concrete structures has been studied with the intelligent metaheuristic techniques, 
which include Gray Wolf Optimization (GWO), Multi-Verse Optimization (MVO), Moth-Flame Optimization 
(MFO), Particle Swarm Optimization (PSO) and Whale Optimization Algorithm (WOA) and the Response 

Table 19.  Score analysis for the developed all models. The ranking color scale of the 6 techniques and the 
corresponding performance indices with rank 1 having the deepest of the color scales and rank 6 showing the 
lightest scale of the color ranks.

CS 

Rank  

  Train     Test  
Total 

Rate  

Final 

Rank  

MSE RMSE  MAE CE R2 VAF   MSE RMSE  MAE CE R2 VAF   
  

C
S

 
GWO  3 3 3 3 3 3 

 
5 5 5 6 6 5 

 50 3 

MVO 6 6 6 6 6 6 
 

5 6 6 5 5 6 
 69 1 

MFO  4 4 4 4 4 4 5 2 2 2 3 2 40 4 

PSO 5 5 5 5 4 5 
 

5 4 4 4 4 4 
 54 2 

WOA 2 2 2 2 2 2 
 

5 3 3 3 2 3 
 31 5 

MLR  1 1 1 1 1 1   5 1 1 1 1 1   16 6 

F
S

 

GWO  4 4 4 4 4 4 4 4 3 4 4 4 47 3 

MVO 5 5 6 6 5 5 6 6 6 6 3 6 65 1 

MFO  3 3 3 3 2 3 
 

2 2 2 2 2 2 
 29 5 

PSO 6 6 5 5 5 6 3 3 4 3 6 3 55 2 

WOA 2 2 2 2 2 2 
 

5 5 5 5 5 5 
 42 4 

MLR  1 1 1 1 1 1   1 1 1 1 1 1   12 6 

S
l 

GWO  6 6 6 6 6 6 
 

3 3 5 5 6 3 
 61 1 

MVO 5 5 5 5 4 5 
 

2 2 2 2 2 2 
 41 4 

MFO  3 3 3 3 3 3 
 

5 5 4 4 4 6 
 46 3 

PSO 4 4 4 4 4 4 6 6 6 6 5 5 58 2 

WOA 2 2 2 2 2 2 
 

4 4 3 3 3 4 
 33 5 

MLR  1 1 1 1 1 1   1 1 1 1 1 1   12 6 
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Surface Methodology (RSM). The concrete parameters considered in addition to the bacteria concentration 
in this model exercise include cement, fine aggregate, coarse aggregate, and water-cement ratio and these were 
utilized as input variables to predict the outputs; compressive strength, flexural strength and the slump. The 
performance of the models was also tested by using the coefficient of determination  (R2), root mean squared 
errors (RMSE), mean absolute errors (MAE), mean squared errors (MSE), variance accounted for (VAF) and 
the coefficient of error (CE). The following can be concluded;

• The classified metaheuristic techniques outclassed the RSM due their ability to mimic human and animal 
genetics of mutation providing highly acceptable values of  R2 and error metrics.

• The GWO outclassed the other methods in predicting the concrete slump (Sl) with  R2 of 0.998 and 0.989 for 
the train and test, respectively.

• The PSO outclassed the rest in predicting the flexural strength (FS) with  R2 of 0.989 and 0.937 for train and 
test, respectively.

• The MVO outclassed the others in predicting the compressive strength (CS) with  R2 of 0.998 and 0.958 for 
train and test, respectively.

• The CS, FS, and Sl model sensitivity analysis shows that the bacterial concentration (B) showed to be the 
second most influential parameter in the production design and behavior of the SHC and should be taken 
as one of the major decisive constituents needed to produce a reliable healing potential in concrete.

• Overall, the GWO, PSO, and MVO having performed within acceptable limits are considered superior to the 
other models.

• The RSM did not generate  R2 value rather the adequate precision in computation has been used to judge its 
ability to predict the mechanical properties of the bacterial-inspired self-healing concrete, which is considered 
adequate above 7.0. It further proposed closed-form polynomial relationships between the regressors and 
the outputs, which can be applied manually in the prediction of the SHC mechanical properties.
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Figure 48.  Comparing the results based on their rank.
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Data availability
The data supporting the outcome of this research work is available on reasonable request from the correspond-
ing author.
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