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Multilevel thresholding 
with divergence measure 
and improved particle swarm 
optimization algorithm for crack 
image segmentation
Fangyan Nie 1*, Mengzhu Liu 1 & Pingfeng Zhang 2

Crack formation is a common phenomenon in engineering structures, which can cause serious damage 
to the safety and health of these structures. An important method of ensuring the safety and health 
of engineered structures is the prompt detection of cracks. Image threshold segmentation based 
on machine vision is a crucial technology for crack detection. Threshold segmentation can separate 
the crack area from the background, providing convenience for more accurate measurement and 
evaluation of the crack condition and location. The segmentation of cracks in complex scenes is a 
challenging task, and this goal can be achieved by means of multilevel thresholding. The arithmetic-
geometric divergence combines the advantages of the arithmetic mean and the geometric mean 
in probability measures, enabling a more precise capture of the local features of an image in image 
processing. In this paper, a multilevel thresholding method for crack image segmentation based on 
the minimum arithmetic-geometric divergence is proposed. To address the issue of time complexity 
in multilevel thresholding, an enhanced particle swarm optimization algorithm with local stochastic 
perturbation is proposed. In crack detection, the thresholding criterion function based on the 
minimum arithmetic-geometric divergence can adaptively determine the thresholds according to 
the distribution characteristics of pixel values in the image. The proposed enhanced particle swarm 
optimization algorithm can increase the diversity of candidate solutions and enhance the global 
convergence performance of the algorithm. The proposed method for crack image segmentation is 
compared with seven state-of-the-art multilevel thresholding methods based on several metrics, 
including RMSE, PSNR, SSIM, FSIM, and computation time. The experimental results show that the 
proposed method outperforms several competing methods in terms of these metrics.

Keywords Crack detection, Multilevel image thresholding, Minimum arithmetic-geometric divergenc, 
Particle swarm optimization, Local stochastic perturbation

Cracks pose a significant risk to the safety and health of structures such as bridges, dams, pavements, walls, and 
tunnels. If not detected promptly, they can cause irreversible and extensive  damage1. Therefore, in the construc-
tion and maintenance of modern buildings, crack detection plays a crucial  role2. Due to their efficiency and 
capability to operate in areas that are inaccessible (or extremely dangerous) to humans, machine vision-based 
methods (e.g., crack detection using unmanned aerial vehicles) have become one of the most commonly utilized 
techniques for crack  detection3,4. Among machine vision-based crack detection methods, image segmentation 
techniques based on image thresholding are widely used due to their ease of implementation and superior real-
time  performance5–7.

Image thresholding has numerous applications in contemporary social life and industrial  operations8–10. 
Because of its ease of implementation, high efficiency, and excellent real-time performance, it has caught the 
interest of many researchers and is widely utilized in engineering. However, there are also considerable obstacles 
in crack detection with thresholding in practical circumstances. For instance, when the image background is 
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complex or the lighting conditions are poor or uneven, crack detection based on image thresholding often fails 
to yield satisfactory results. Multilevel thresholding is an effective approach to improve the segmentation perfor-
mance of thresholding. In many cases, when a single threshold does not provide satisfactory segmentation results 
for certain scenarios, multiple thresholds can be set to achieve the segmentation goals. Therefore, numerous 
studies have developed various multilevel thresholding methods to enhance image segmentation performance 
and enable practical applications. For example, multilevel thresholding has been widely and successfully applied 
in areas such as medical  diagnosis11,12, power equipment fault  detection13, and crop image  segmentation14.

The segmentation performance is improved by multilevel thresholding. However, the time complexity of the 
algorithm has also increased sharply. As the number of thresholds increases, the computation time also increases 
exponentially. Many studies have incorporated swarm intelligence optimization algorithms into image multilevel 
thresholding problems to solve this  problem15–20. Segmentation is a multi-constraint optimization problem when 
using swarm intelligence optimization algorithms for multilevel thresholding. In general, multilevel thresholding 
is formulated as a maximum or minimum solution problem. Under constrained conditions, the problem will be 
solved through several rounds of iteration. In this scheme, the problem model is summarized as an extremum 
problem based on a specific criterion function. In practical applications, the acquisition of the final image seg-
mentation results is also strongly influenced by the choice of the criterion functions. The commonly used crite-
rion functions include the Otsu  criterion21,22 based on the maximum inter-class variance, the maximum Shannon 
entropy  criterion23,24, and the minimum cross entropy  criterion14,25, etc. For the Otsu criterion, the maximum 
Shannon entropy criterion, and the minimum cross entropy criterion, they have similar properties. Namely, 
when the gray level distribution of the image closely resembles a uniform distribution, these criteria yield the 
best results. In the real environment, there is a significant difference in the gray level distribution between image 
targets and backgrounds. This disparity highlights the limitations of these criteria in image segmentation. In many 
cases, the optimal segmentation threshold tends to be on the side where the gray level distribution dominates.

Based on the study of the traditional divergence theory of information theory, Taneja proposes a new informa-
tion theory measure, namely the arithmetic and geometric divergence  measure26, which addresses the limitations 
of the traditional information divergence in quantifying the similarity or dissimilarity between distinct prob-
ability distribution systems. As an information theory distance measure, arithmetic and geometric divergence 
measures can effectively quantify the differences between information systems. Image is a typical information 
system. Segmenting an image involves creating a segmented image that accurately represents the original image, 
effectively distinguishing between the background and the target of the original image. From the perspective 
of information theory, it is important to preserve as much of the original image information as possible when 
segmenting the image. Since the arithmetic and geometric divergence measure provides an information metric 
criterion that is superior to traditional information theory measures, this article develops a criterion function 
based on the minimum arithmetic and geometric divergence (MAGD) for image threshold segmentation.

In artificial settings like engineering buildings, the imaging conditions for cracks are very complex. It is often 
challenging to accurately distinguish between the background and the crack target in images using a simple 
threshold. Therefore, in this article, the proposed thresholding method is extended to multilevel to achieve the 
goal of distinguishing between the background and target in the crack image. For the issue of rapidly increas-
ing algorithm time complexity caused by multilevel thresholding, an improved particle swarm optimization 
(PSO) algorithm is utilized in the implementation to acquire the optimal thresholds. In this way, the program 
execution time is reduced, satisfying the requirements of practical applications. The major contributions of this 
paper are as follows:

• A multilevel thresholding criterion for image segmentation based on the MAGD is presented.
• An improved particle swarm optimization algorithm combined with local stochastic perturbation (LSPIPSO) 

is presented.
• The LSPIPSO+MAGD multilevel thresholding method for crack image segmentation is proposed.
• The performance of the proposed method is compared with seven well-known multilevel thresholding meth-

ods using metrics such as RMSE, PSNR, SSIM, FSIM, and computational time.

The remainder of this article is structured as follows. The “Related work” section reviews the concepts of arith-
metic-geometric divergence and the particle optimization algorithm. The image thresholding criteria and the 
multilevel thresholding method based on LSPIPSO are described in the “Proposed methodology” section. The 
“Experimental environment and evaluation metrics” section describes the experimental environment and per-
formance evaluation metrics. The performance comparison analysis and discussion of results are described in 
the “Experimental results and discussion” section. The “Conclusions and future works” section summarizes this 
paper and outlines future research directions.

Related work
In this section, we will review the concepts of arithmetic and geometric divergence measures, as well as the 
particle swarm optimization algorithm.

Arithmetic-Geometric divergence
Let � = {� = (θ1, θ2, . . . , θn)|θi ≥ 0, θ1 + θ2 + · · · + θn = 1, i = 1, 2, . . . , n; n ≥ 2} be a finite set of complete 
discrete probability distributions, A,B ∈ � . In the study of statistical distribution and information theory, 
Taneja proposed a new criterion for measuring the similarity (or dissimilarity) between different probability 
 distributions26, which is also known as the divergence measure of information theory distance, i.e.
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The divergence measure is referred to as Arithmetic-Geometric divergence, often abbreviated as AG divergence. 
The AG divergence compensates for the limitations of traditional divergences (such as the well-known Kullback-
Leibler divergence, χ2-Divergence, etc.) in quantifying distances in information theory. Based on Kullback-
Leibler divergence, Li and Lee proposed the well-known minimum cross entropy image thresholding  method27, 
which has been successfully applied in various fields. For complex scenarios, the effectiveness of this method 
was also confirmed through multilevel  expansion14,28.

In many scenarios, the proportion of the image area occupied by the target pixels in crack images is highly 
uneven. This non-uniform distribution often makes it impossible to extract the crack target using simple 
thresholding methods. Here, we will develop a new image segmentation method utilizing AG divergence and 
evaluate its effectiveness in segmenting crack images.

Particle swarm optimization
Particle swarm optimization (PSO) algorithm is an evolutionary computation  technique29,30. Inspired by the 
regularity of bird swarming activities, Eberhart and Kennedy constructed a simplified model based on swarm 
intelligence in 1995 and proposed the PSO algorithm after observing bird swarming  activities29. In the application 
of PSO algorithm to solve problems, information sharing among individuals in the group is utilized to facilitate an 
evolutionary process from disorder to order in the problem-solving space, aiming to achieve the optimal solution.

The basic flow of the PSO algorithm is illustrated in Figure 1. The most critical steps in the PSO algorithm 
involve updating the particle flight velocity and the particle position. For the classical particle swarm optimization 
algorithm, the following two equations describe how the particle velocity and position are updated.

Where vid is the velocity component of the ith particle in the dth dimension; xid is the position component of the 
ith particle in the dth dimension. c1 and c2 are learning factors, usually c1 + c2 > 4 . According to literature [], 
it is generally recommended to use c1 = 2.0 and c2 = 2.1 . In our work, the values of c1 and c2 are also set in this 
way. r1 and r2 are two random decimals in the interval [0, 1]; pBestid represents the dth dimensional component 
of the optimal position of the ith individual; gBestd represents the dth dimensional component of the optimal 
position of the population. κ is called the scaling factor, and the following definition is  suggested30.

Here, ϕ = c1 + c2 , and if we take c1 = 2.0 and c2 = 2.1 , then ϕ = 0.729.
In general, the steps of the PSO algorithm can be described as follows.

(1)D(A|B) =

n
∑

i=1

[(

ai + bi

2

)

log

(

ai + bi

2ai

)]

(2)vid =κ[vid + c1r1(pBestid − xid)+ c2r2(gBestd − xid)]

(3)xid =xid + vid

(4)κ =
1

|2− ϕ −
√

ϕ2 − 4ϕ|

Figure 1.  Flowchart of the basic PSO algorithm.
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(1) Initialize all particles, i.e. assign initial values to the velocity and position of each particle, set the historical 
individual optimal position pBest of an individual to the current value, and set the optimal individual position 
in the group as the current group optimal position gBest.

(2) Calculate the value of the fitness function for each particle.
(3) If the current value of the fitness function is better than the historical optimal value, the pBest value is 

updated.
(4) If the current value of the fitness function is better than the historical optimal value of the population, 

the gBest value is updated.
(5) Update the velocity and position of the particles according to Eqs. (2)-(3).
(6) Determine if the end condition is satisfied. If the condition is not met, go to step (2) to continue iterating 

the algorithm.

Proposed methodology
It is here that the details of the proposed method will be described in more detail in this section.

Image thresholding criteria
Let the image to be segmented be I = [Ir, Ig, Ib]m×n×c , where m× n denotes the size of the image, c is the 
number of channels (i.e., c = 3 in the case of RGB images), and Ir , Ig , and Ib denote the red, green, and blue-
channel component images of the image I . When performing image thresholding segmentation, the three 
channel components of the image are segmented separately, and then the three components are synthesized 
after segmentation. Here, the red-channel component image Ir of the image is used as an example to illustrate 
the thresholding criterion proposed in this paper.

Let the grayscale range of Ir be [0, 1, 2, · · · , L] , and the estimated probability of each grayscale appearing in the 
image Ir is hi(i = 0, 1, 2, · · · , L) , where L represents the maximum grayscale, hi = gi/(m× n) , gi represents the 
number of pixels in an image with a grayscale level of i. In addition, if the optimal threshold found in the two-
stage threshold segmentation of the image is t, then t divides the gray level of the image into two parts (i.e., two 
categories), assuming that these two parts are set as C0 = {0, 1, · · · , t} and C1 = {t + 1, t + 2, · · · , L} , respectively. 
For C0 and C1 , where the class probabilities and the class means are defined over them, respectively, we have

Based on the above assumptions, according to the definition of AG divergence, the AG divergence values of 
images before and after segmentation can be calculated as follows.

Since the AG divergence is asymmetric, i.e., D(A|B) �= D(B|A) , to consider the effectiveness of the AG divergence 
in image segmentation more comprehensively, we compute the divergence values before and after image 
segmentation in the form of D(A|B)+ D(B|A) , resulting in Eqs. (7) and (8).

According to the basic principle of divergence in information theory, the smaller the divergence value between 
two systems, the more similar they are. In image segmentation, the more information the segmented image can 
retain from the original image, the better it can represent the original image. From this, the criterion function 
for image segmentation can be defined as follows.

Where t∗ denotes the optimal threshold, and t∗ can divide [0, 1, · · · , L] into two categories. In the original image, 
the pixel values less than or equal to t∗ are set to x0 , and the pixel values greater than t∗ are set to x1 . Here, x0 
and x1 are two different integers between [0, 1, · · · , L] . The two-level thresholding can be described as follows.

Here, f(i, j) represents the pixel value located at the coordinate (i, j) within the original image, while s(i, j) denotes 
the pixel value at the coordinate (i, j) within the segmented image.

In complex scenes, two-level thresholding sometimes cannot effectively extract the target. To solve this 
problem, multilevel extension is often used in image thresholding techniques to enhance the method’s 
performance. The generation conditions of crack images are very complex. During the experimental process, 

(5)P0 =

t
∑

i=0

hi , P1 =

L
∑

i=t+1

hi

(6)m0 =
1

P0

t
∑

i=0

ihi , m1 =
1

P1

L
∑

i=t+1

ihi

(7)D0 =

t
∑

i=0

(

hi ×
i +m0

2

)

log

(

i +m0

2i

)

+

t
∑

i=0

(

hi ×
i +m0

2

)

log

(

i +m0

2m0

)

(8)D1 =

L
∑

i=t+1

(

hi ×
i +m1

2

)

log

(

i +m1

2i

)

+

L
∑

i=t+1

(

hi ×
i +m1

2

)

log

(

i +m1

2m1

)

(9)F(t∗) = arg min
t∈[0,1,··· ,L]

(D0 + D1)

(10)s(i, j) =

{

x0 f (i, j) ≤ t∗

x1 f (i, j) > t∗
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it was found that two-level thresholding sometimes fails to segment the crack target effectively. Therefore, 
the proposed thresholding method is extended here by multilevel thresholding to meet practical application 
requirements.

Suppose the thresholds obtained in multilevel thresholding of an image are (t1, t2, · · · , tk) , where 
0 ≤ t1 < t2 < · · · < tk < L . k thresholds can classify the image gray levels into k + 1 classes. By imitating Eqs. 
(5)-(9), class probability (P0, P1, · · · , Pk) , class mean (m0,m1, · · · ,mk) , and divergence (D0,D1, · · · ,Dk) can be 
constructed. The function for calculating the total image AD value can be defined as follows.

Eq. (11) is also used as the fitness function for swarm intelligence optimization algorithms in multilevel 
thresholding of images in the study of this paper. And so on, the criterion function of multilevel threshold 
segmentation can be obtained.

After obtaining k optimal thresholds, according to the two-level thresholding classification method, a segmented 
image can be obtained by selecting k + 1 different integers (x0, x1, · · · , xk) within the interval [0, 1, · · · , L] based 
on the original image. The multilevel thresholding can be described as follows.

Let FB = floor(Max_I/k) , Max_I represents the maximum pixel value in the image, and for an 8-bit digital 
image, Max_I = 255 . The function floor(A) represents a downward rounding function (the integer that is closest 
to A). Assuming that k thresholds are used to implement multilevel thresholding segmentation, the values of 
(x0, x1, · · · , xk) are set as follows in the algorithm implementation.

Local stochastic perturbation
In multilevel image thresholding, the computation time increases exponentially as the number of thresholds 
increases. To effectively reduce the computation time, many methods apply evolutionary computation algorithms 
to solve this problem in image multilevel  thresholding15–20,31,32. Since PSO has excellent performance in solving 
combinatorial optimization problems, it has been successfully applied to multilevel image  thresholding15,33. PSO 
is a self-parallel evolutionary algorithm that is powerful for solving many optimization problems. However, like 
most evolutionary algorithms, it has its own shortcomings. For example, if there are multiple local extrema in 
solving a problem, the solution obtained by applying the PSO algorithm may be a local optimal solution rather 
than a global optimal solution. In our work, to avoid this phenomenon as much as possible, a local stochastic 
perturbation is added to each particle at the end of the execution of the conventional PSO algorithm to increase 
the diversity of individuals in the population, thus avoiding premature convergence or falling into local extreme 
traps of the algorithm. For each particle in the population, the local stochastic perturbation process is shown 
as Algorithm 1.

(11)F(t1, t2, · · · , tk) = D0 + D1 + · · · + Dk

(12)F(t∗1 , t
∗
2 , · · · , t

∗
k ) = arg min

t1,t2,··· ,tk∈[0,1,··· ,L]
F(t1, t2, · · · , tk)

(13)s(i, j) =



















x0 f (i, j) ≤ t∗1
x1 t∗1 < f (i, j) ≤ t∗2
· · · · · ·

xk−1 t∗k−1 < f (i, j) ≤ t∗k
xk f (i, j) > t∗k

(14)(x0, x1, · · · , xk−1, xk) = (0, FB× 1, FB× 2, · · · , FB× (k − 1),Max_I)
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Algorithm 1.  Local stochastic perturbation algorithm.
In Algorithm 1, ‘swarm’ represents the population space of candidate solutions to the problem; ‘pop’ and 

‘dim’ denote the number of candidate solutions in the population space and the dimension of the solution, 
respectively; ‘len’ represents the size of the value interval for the candidate solution. ‘LSPR’ represents the Local 
Stochastic Perturbation Probability, which is a predetermined random decimal before the algorithm runs. ‘newS’ 
denotes a new population space. ‘rand(n)’ denotes the n-dimensional uniform random function for the interval 
[0,1]. ‘randint(1, n)’ is a function for generating uniform random integer from [1, n]. ‘p’ and ‘q’ are two integers 
chosen at random, and p  = q.

Image segmentation algorithm
Using the image thresholding criteria and the extended PSO algorithm designed above for the segmentation 
of crack images, the flow of the algorithm is designed as follows. First, multilevel thresholding segmentation is 
implemented for the red, green and blue channel image of the original image, and the segmentation results of each 
channel image are obtained. Then, based on the segmentation results, the final segmentation results are obtained. 
The description of Algorithm 2 shows the flow of the multilevel thresholding image segmentation algorithm.

In Algorithm 2, ‘img’ represents the image to be segmented; ‘maxit’ denotes the maximum number of 
iterations allowed by the algorithm, ‘it’ represents the current iteration number of the algorithm; for ‘pop’, ‘dim’, 
‘c1’, ‘c2’, ‘pBest’, and ‘gBest’, their meanings are the same as before.



7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:7642  | https://doi.org/10.1038/s41598-024-58456-2

www.nature.com/scientificreports/

Algorithm 2.  Multilevel thresholding algorithm for image segmentation.
In crack image segmentation, Algorithm 2 is applied to implement multilevel thresholding on the red, green, 

and blue channel images of the original image I , resulting in three segmented images: Sr , Sg , and Sb . The final 
multilevel thresholding segmented image S can be obtained by synthesizing these three images.

After multilevel thresholding, a significant amount of background information in the image is eliminated, which 
can enhance the visibility of the image target more effectively. This is very useful for extracting image targets. 
The extraction of image targets can be achieved through image binarization. In crack image segmentation, after 
multilevel thresholding, the crack is extracted by applying a binarization method. Assuming that the image 
obtained after binarization is B , the process of generating B is as follows.

Here, b(i, j) represents the pixel value at coordinates (i, j) in image B , sr(i, j) represents the pixel value at 
coordinates (i, j) in image Sr , sg (i, j) represents the pixel value at coordinates (i, j) in image Sg , sb(i, j) represents 
the pixel value at coordinates (i,  j) in image Sb . T is a threshold used for binarization. In this study, T is 
determined as follows.

Here, the definition of FB aligns with the definition of FB in Eq. (14). Figure 2 summarizes the entire process of 
crack image segmentation.

(15)S = [Sr, Sg, Sb]

(16)b(i, j) =

{

0 [sr(i, j) < T]and[sg (i, j) < T]and[sb(i, j) < T]
255 otherwise

(17)T = FB+ 1



8

Vol:.(1234567890)

Scientific Reports |         (2024) 14:7642  | https://doi.org/10.1038/s41598-024-58456-2

www.nature.com/scientificreports/

Experimental environment and evaluation metrics
To verify the effectiveness of the algorithm, we conducted experiments on the DeepCrack  dataset34. DeepCrack is 
a public benchmark dataset with cracks in multiple scales and scenes to evaluate the crack detection systems. In 
our work, we conducted multiple tests on this dataset to compare the performance of the proposed algorithm with 
other cutting-edge methods for image multilevel thresholding, including particle swarm optimization (PSO)15, 
butterfly optimization (BFO)16, gases Brownian motion optimization (GBMO)16, exchange market algorithm 
(EMA)17, modified whale optimization algorithm (MWOA)18, hybrid whale optimization algorithm (HWOA)19, 
and cuckoo search optimization (CSO)14.

In our experiments, all algorithms are implemented using Python 3.9.13 with Pytorch 2.1.1 and run on a 
laptop with configurations of 32GB RAM, and Intel(R) Core(TM) i9-12900H CPU @2.50 GHz. The operating 
system is Windows 11 Home Edition 23H2. When running the algorithm, the maximum number of iterations 
allowed is set to 100 and the population size is set to 30. For the other parameters of the proposed method, they 
are set as described above. For the other parameters of the comparison method, the settings are the same as 
those described in the literature.

To evaluate the performance of the comparative algorithms, we used four evaluation metrics that are widely 
used in image quality analysis, namely RMSE, PSNR,  SSIM35, and  FSIM36. The definitions of these four metrics 
are as follows.

RMSE (Root Mean Square Error): RMSE is used to measure the degree of difference between the estimated 
values and the true values. The smaller the RMSE value, the smaller the difference between the two images.

Here, m× n denotes the size of the image, s(i, j) and g(i, j) denote the pixel values at the coordinates (i, j) of the 
segmented image and the original image, respectively.

PSNR (Peak Signal to Noise Ratio): PSNR is used to measure the quality of an image. The higher the PSNR 
value, the greater the similarity between two images.

Where MAX_I is the maximum pixel value in image I. For an 8-bit digital image, MAX_I = 255.
SSIM (Structural Similarity Index): The Structural Similarity Index is used to measure the structural similarity 

between two images. The closer the SSIM value is to 1, the more similar the two images are.

Where, µx and µy denote the average pixel grayscale values of the segmented and original images; σx and 
σy are the standard deviations of the pixel grayscale values of the segmented image and the original image; 
σxy is the covariance of pixel grayscale values between the segmented image and the original image, and 
σxy =

1
N

∑N
i=1 (xi − µx)(yi − µy) ; C1 and C2 are two constants. For an 8-bit digital image, C1 = (0.01× 255)2 

and C2 = (0.03× 255)2 are often used.
FSIM (Feature Similarity Index): The Feature Similarity Index is used to measure the feature similarity 

between two images. The higher the FSIM value, the higher the feature similarity between two images.

(18)RMSE =

√

√

√

√

1

m× n

m
∑

i=1

n
∑

j=1

[

s(i, j)− g(i, j)
]2

(19)PSNR = 20 log10

(

MAX_I

RMSE

)

(20)SSIM =

(

2µxµy + C1

)(

2σxy + C2

)

(

µ2
x + µ2

y + C1

)(

σ 2
x + σ 2

y + C2

)

Figure 2.  The process of crack image segmentation.
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Where, SL(x) = SPC(x) · SG(x) , SPC(x) = 2PC1(x)·PC2(X)+T1
PC2

1 (x)+PC2
2 (x)+T1

 , SG(x) = 2G1(x)·G2(x)+T2
G2
1(x)+G2

2(x)+T2
 , Gx =

√

Gx(x)2 + Gx(y)2 , 

PC(x) =

∑

j Eθj (x)

ε+
∑

n

∑

j An,θj (x)
 , PCm(x) = max(PC1(x),PC2(x)) . PC(x) represents the phase congruency feature of 

image, G(x) represents the gradient features of image, SPC(x) represents the similarity of the phase congruence 
features, SG(x) represents the similarity of the gradient features, and SL(x) represents the fusion similarity between 
PC(x) and G(x). The detailed principle and calculation process of FSIM can be found in the original  reference36 
by Zhang et al.

We use the images in the DeepCrack dataset to validate the effectiveness of the proposed method. The Deep-
Crack dataset contains 537 images. It is not possible to list the results of all images in the paper. Therefore, we 
randomly selected 10 highly representative images of various types to demonstrate the different performance 
of these methods. The 10 images and the grayscale histograms of their red, green, and blue channel images are 
shown in Figure 3. These images are named ‘11220-1.jpg’, ‘11266-3.jpg’, ‘11295.jpg’, ‘11308-2.jpg’, ‘IMG24-1.jpg’, 
‘IMG109-1.jpg’, ‘7Q3A9060-9.jpg’, ‘11112.jpg’, ‘11134-2.jpg’, and ‘11190-2.jpg’ in DeepCrack dataset. For ease of 
reference, these images have been renamed as ‘img1’, ‘img2’, ‘img3’, ‘img4’, ‘img5’, ‘img6’, ‘img7’, ‘img8’, ‘img9’, 
and ‘img10’ in this paper. The size of ‘img1’ is 384× 544× 3 , the sizes of the other images are 544× 384× 3.

For cracked images, there may be single or multiple cracks present against simple or complex backgrounds 
(e.g., contaminated by foreign objects, etc.). Figure 3 contains various types of crack images in DeepCrack dataset 
and common scenarios. For example, images with a single crack (such as ‘img1’, ‘mg2’, ‘img3’, ‘img5’, ‘img6’, 
‘img10’) and images with multiple cracks (such as ‘img4’, ‘img7’, ‘img8’, ‘img9’). Images with simple backgrounds 
(such as ‘img6’, ‘img7’, ‘img8’, ‘im9’, ‘img10’), images with complex backgrounds (such as ‘img1’, ‘img2’, ‘img3’, 
‘img4’), and images with contaminated backgrounds (such as ‘img5’). In addition, Figure 3 also shows that the 
crack images have complex backgrounds, and the cracks occupy a relatively small area of the entire image. In 
terms of the pixel grayscale histogram distribution of the images, the histograms of these images often show a 
single-peak distribution due to the significant proportion of background pixels. It is difficult to identify crack 
targets by analyzing histograms.

Experimental results and discussion
In the description of the experimental results, the improved PSO method proposed in this paper is referred 
to as LSPIPSO. The proposed criterion for thresholding the image is called the MAGD criterion (Minimum 
Arithmetic-Geometric divergence criterion). In the experiments, LSPIPSO+MAGD, PSO+MAGD, BFO+MAGD, 
GBMO+MAGD, EMA+MAGD, MWOA+MAGD, HWOA+MAGD, and CSO+MAGD were utilized to conduct 
multilevel thresholding segmentation on the test images, and the performance of each method was compared.

Segmentation results and analysis
In this subsection, we use ‘img2’, ‘img5’, and ‘img8’ as representatives to describe the multilevel thresholding 
results of crack images. The reason for selecting these images is that in Figure 3, it is evident that the background 
of ‘img2’ is highly complex, whereas the background of ‘img5’ is contaminated, making it challenging to separate 
the cracks in these two images from the background. The image ‘img8’ contains multiple complex cracks, making 
it challenging to segment them. Figures 4, 5, 6 display the segmentation results of these three test images. The 
image segmentation results with a slightly simpler background can be seen in Figure 2. The results in Figure 4 
were obtained by different algorithms with 9 thresholds. Figure 2 contains the results of the algorithm presented 
in this paper for segmenting ‘img1’ and ‘img10’ using 9 and 5 thresholds, respectively.

From Figures 4, 5, 6, we can see that multilevel thresholding significantly reduces the background information 
of the original image and better highlights the crack target to be focused on. For crack images, selecting an 
appropriate number of thresholds can eliminate most of the background information in the image and segment 
the crack target. It is also found that for images with more complex cracks (such as ‘img2’ and ‘img5’), more 
thresholds are selected to segment the target through multilevel thresholding and binarization. For images with 
simple backgrounds (such as ‘img8’ and ‘img10’), a few thresholds can be selected to segment the target. From 
Figures 4, 5, 6, it can also be seen that the EMA, HWOA, and CSO algorithms exhibit under-segmentation in the 
binarization results, while the MWOA algorithm shows an over-segmentation phenomenon. The other methods 
achieved similar segmentation results by eliminating most of the background information and segmenting the 
target using multilevel thresholding and binarization.

Objective evaluation and analysis
In this subsection, to evaluate the performance of each algorithm more objectively, we selected 2, 3, 5, 7, 9, 11, 
15, and 20 thresholds to perform multilevel thresholding on the test images. Subsequently, the algorithms are 
assessed using the objective evaluation metrics, namely, the RMSE, PSNR, SSIM, and FSIM, mentioned earlier. 
Here, we calculate the averages obtained by each algorithm with 20 independent runs for each number of 
thresholds on these evaluation metrics and their mean rankings. These statistical results are recorded in 10 Tables. 
Due to the large amount of data, for the sake of clarity, we have included these data as supplementary materials 
in the “Additional information” section. For specific details about these data, please refer to the “Supplementary 
Information” in the “Additional information” section.

Based on these data, the average values of each metric obtained by different algorithms on all test images 
subjected to multilevel thresholding are shown in Figures 7, 8, 9, 10. This display is more intuitive. As can be 

(21)FSIM =

∑

x∈�[SL(x) · PCm(x)]
∑

x∈� PCm(x)
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seen from Figures 7, 8, 9, 10, the proposed algorithm achieves the smallest average on RMSE and the largest 
average on PSNR, SSIM, and FSIM.

The comprehensive ranking of each algorithm based on the evaluation metrics provides a thorough repre-
sentation of the algorithm’s performance. Figure 11 displays the comprehensive ranking of each algorithm based 
on evaluation metrics. The average ranking and overall ranking are displayed in Figure 11. As can be seen in 
Figure 11, the ranking order from low to high is LSIPSO, PSO, GBMO, CSO, HWOA, BFO, EMA, and MWOA.

Figure 3.  The test images and their histograms.
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To assess the practical usability of an algorithm, time performance is also a crucial indica-
tor. For the 8 algorithms, i.e., LSPIPSO, PSO, BFO, GBMO, EMA, MWOA, WHOA, and CSO, the 
time complexities are O(MAXIT × POP +MAXIT × POP) ,  O(MAXIT × POP) ,  O(MAXIT × POP) , 
O(MAXIT × POP +MAXIT × POP)  ,  O(MAXIT × POP +MAXIT × POP +MAXIT × POP)  , 
O(MAXIT × POP) , O(MAXIT × POP +MAXIT × POP) , and O(MAXIT × POP +MAXIT × POP) , respec-
tively. Here, MAXIT represents the maximum number of iterations allowed by the algorithm, and POP represents 
the population size (i.e., the number of candidate solutions to the problem). When the constant coefficients are 
removed, the time complexity of each algorithm is actually O(MAXIT × POP) . Figure 12 shows the average 
CPU time consumed by each algorithm for multilevel thresholding of the test images at different numbers of 
thresholds.

As depicted in Figure 12, the CPU time of each algorithm increases significantly as the number of thresholds 
increases. From Figure 12, we can observe that the CPU time of LSPIPSO, GBMO, EMA, HWOA, and CSO 
algorithms is higher than that of other algorithms in multilevel threshold segmentation on the test images. The 
CPU time of the proposed method LSPIPSO is higher than that of PSO, BFO, and MWOA algorithms, but in most 
cases, it is lower than that of GBMO and HWOA algorithms. The CPU time of the EMA and CSO algorithms is 
comparable to that of the proposed method. From this perspective, the proposed method remains competitive 
in terms of time performance.

Algorithm convergence analysis
Convergence analysis of algorithms is an important aspect of evaluating algorithm performance. For swarm intel-
ligence optimization algorithms, this performance can be analyzed from aspects such as algorithm convergence 
speed, stability, etc. The convergence speed and stability of swarm intelligence optimization algorithms can be 
influenced by factors such as algorithm iteration times and population size. To examine the convergence perfor-
mance of the algorithm proposed in this paper, experiments were conducted with the number of iterations of the 
algorithm set to 500 and the population size set to 30 and 60, respectively. Figure 13 illustrates the experimental 
results. Figure 13 shows the algorithm convergence curves for the test images ‘img2’ with 9 thresholds, ‘img5’ 
with 7 thresholds, and ‘img8’ with 5 thresholds. For each test image in this experiment, the convergence curves 

Figure 4.  The segmented results of ‘img2’ by different algorithms with 9 thresholds.
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of their red, green, and blue channel images are all shown in Figure 13. As can be seen from Figure 13, the fit-
ness function value decreases in a stepwise fashion, with a more significant decrease in the first 100 generations, 
irrespective of whether the population size is 30 or 60. Through experiments, it was found that as the popula-
tion size increases, the algorithm’s convergence speed becomes faster in the vast majority of cases. In addition, 
a shortcoming of the algorithm proposed in this paper is also evident from this experiment. In some cases, the 
algorithm does not converge to the extremes quickly, as illustrated in Figure 13c. This area also requires attention 
for enhancing algorithm performance in future research.

Conclusions and future works
Crack detection is of great importance in modern architecture and life. It can not only ensure the safety 
and stability of buildings, but also improve the life and performance of buildings. With the development of 
digitalization and intelligent technology, crack detection based on image thresholding segmentation technology 
has become an important means of intelligent management in buildings. By using image thresholding 
segmentation technology, we can separate the crack region from the background region in the image to more 
accurately measure and evaluate the condition and position of the crack. This can provide an important reference 
for the maintenance and reinforcement of buildings, and ensure the accuracy and effectiveness of maintenance 
work.

Arithmetic-geometric divergence is a measurement method that can be used to measure the uneven 
distribution of pixel values in images. It combines the advantages of arithmetic mean and geometric mean and can 
better capture the local characteristics of the image. Based on this divergence criterion, we propose a multilevel 
image thresholding method for crack detection. To reduce the computation time, the proposed method combines 
particle swarm optimization (PSO) algorithm to obtain optimal thresholds. In the meantime, the method 
combines a local stochastic perturbation to overcome the shortcomings of the PSO. In order to investigate 
the performance of the proposed method (LSPIPSO), a series of experiments have been performed on crack 
image dataset. Seven well-known competing methods for multilevel thresholding image segmentation, including 
Particle Swarm Optimization (PSO), Butterfly Optimization (BFO), Gas Brownian Motion Optimization 
(GBMO), Exchange Market Algorithm (EMA), Modified Whale Optimization Algorithm (MWOA), Hybrid 

Figure 5.  The segmented results of ‘img5’ by different algorithms with 7 thresholds.
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Whale Optimization Algorithm (HWOA), and Cuckoo Search Optimization (CSO) are selected for parallel 
comparison. A comprehensive evaluation was performed using subjective methods such as visual observation, 
as well as objective methods such as RMSE, PSNR, SSIM, FSIM and computation time. The experimental results 
show that the proposed method outperforms several competing methods with respect to these metrics in many 
cases.

For further studies, the proposed method can be applied to various real-world applications, such as 
agricultural, medical, and industrial image segmentation tasks. The proposed improved PSO algorithm can 
also be used to solve other optimization problems. The local stochastic perturbation can also be integrated into 
other population optimization algorithms to improve their performance.

Figure 6.  The segmented results of ‘img8’ by different algorithms with 5 thresholds.

Figure 7.  The average RMSE values obtained by different algorithms on all test images.
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Figure 8.  The average PSNR values obtained by different algorithms on all test images.

Figure 9.  The average SSIM values obtained by different algorithms on all test images.

Figure 10.  The average FSIM values obtained by different algorithms on all test images.
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Figure 11.  The average and overall ranking results of each algorithm for all metrics on all test images. (a) The 
average ranking. (b) The overall ranking.
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Figure 12.  The average CPU time (s) of each algorithm at different number of thresholds on all test images.
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Data availability
The datasets generated and/or analyzed during the current study are available in the DeepCrack repository, 
[https:// github. com/ yhlleo/ DeepC rack/].

Received: 12 December 2023; Accepted: 29 March 2024

References
 1. Weng, X., Huang, Y., Li, Y., Yang, H. & Yu, S. Unsupervised domain adaptation for crack detection. Autom. Constr. 153, 104939. 

https:// doi. org/ 10. 1016/j. autcon. 2023. 104939 (2023).

Figure 13.  The convergence curve of fitness function of the proposed algorithm under different population 
size. The population size of the left subgraph is 30, and the right one is 60. (a) The convergence curve of fitness 
function of img2 with 9 thersholds. (b) The convergence curve of fitness function of img5 with 7 thersholds. (c) 
The convergence curve of fitness function of img8 with 5 thersholds.

https://github.com/yhlleo/DeepCrack/
https://doi.org/10.1016/j.autcon.2023.104939


18

Vol:.(1234567890)

Scientific Reports |         (2024) 14:7642  | https://doi.org/10.1038/s41598-024-58456-2

www.nature.com/scientificreports/

 2. Song, Q. et al. A three-stage pavement image crack detection framework with positive sample augmentation. Eng. Appl. Artif. Intell. 
129, 107624. https:// doi. org/ 10. 1016/j. engap pai. 2023. 107624 (2024).

 3. Ding, W., Yang, H., Yu, K. & Shu, J. Crack detection and quantification for concrete structures using UAV and transformer. Autom. 
Constr. 152, 104929. https:// doi. org/ 10. 1016/j. autcon. 2023. 104929 (2023).

 4. He, X. et al. UAV-based road crack object-detection algorithm. Autom. Constr. 154, 105014. https:// doi. org/ 10. 1016/j. autcon. 2023. 
105014 (2023).

 5. Vivekananthan, V., Vignesh, R., Vasanthaseelan, S., Joel, E. & Kumar, K. Concrete bridge crack detection by image processing 
technique by using the improved otsu method. Materials Today: Proceedings 74, 1002–1007. https:// doi. org/ 10. 1016/j. matpr. 2022. 
11. 356 (2023). 3rd International Conference on Recent Advances in Mechanical Engineering Research and Development.

 6. Kheradmandi, N. & Mehranfar, V. A critical review and comparative study on image segmentation-based techniques for pavement 
crack detection. Constr. Build. Mater. 321, 126162. https:// doi. org/ 10. 1016/j. conbu ildmat. 2021. 126162 (2022).

 7. Chen, C., Seo, H., Jun, C. & Zhao, Y. A potential crack region method to detect crack using image processing of multiple threshold-
ing. Signal Image Video Process. 16, 1673–1681. https:// doi. org/ 10. 1007/ s11760- 021- 02123-w (2022).

 8. Abualigah, L., Almotairi, K. H. & Elaziz, M. A. Multilevel thresholding image segmentation using meta-heuristic optimization 
algorithms: Comparative analysis, open challenges and new trends. Appl. Intell. 53, 11654–11704. https:// doi. org/ 10. 1007/ s10489- 
022- 04064-4 (2022).

 9. Eisham, Z. K. et al. Chimp optimization algorithm in multilevel image thresholding and image clustering. Evolv. Syst. 14, 605–648. 
https:// doi. org/ 10. 1007/ s12530- 022- 09443-3 (2023).

 10. Chakraborty, S. & Mali, K. A multilevel biomedical image thresholding approach using the chaotic modified cuckoo search. Soft 
Comput.https:// doi. org/ 10. 1007/ s00500- 023- 09283-6 (2023).

 11. Shi, M. et al. A grade-based search adaptive random slime mould optimizer for lupus nephritis image segmentation. Comput. Biol. 
Med. 160, 106950. https:// doi. org/ 10. 1016/j. compb iomed. 2023. 106950 (2023).

 12. Yang, X. et al. Multi-level threshold segmentation framework for breast cancer images using enhanced differential evolution. 
Biomed. Signal Process. Control 80, 104373. https:// doi. org/ 10. 1016/j. bspc. 2022. 104373 (2023).

 13. Xing, Z. & He, Y. Many-objective multilevel thresholding image segmentation for infrared images of power equipment with boost 
marine predators algorithm. Appl. Soft Comput. 113, 107905. https:// doi. org/ 10. 1016/j. asoc. 2021. 107905 (2021).

 14. Kumar, A., Kumar, A., Vishwakarma, A. & Singh, G. K. Multilevel thresholding for crop image segmentation based on recursive 
minimum cross entropy using a swarm-based technique. Comput. Electron. Agric. 203, 107488. https:// doi. org/ 10. 1016/j. compag. 
2022. 107488 (2022).

 15. Yin, P.-Y. Multilevel minimum cross entropy threshold selection based on particle swarm optimization. Appl. Math. Comput. 184, 
503–513. https:// doi. org/ 10. 1016/j. amc. 2006. 06. 057 (2007).

 16. Sowjanya, K. & Injeti, S. K. Investigation of butterfly optimization and gases Brownian motion optimization algorithms for optimal 
multilevel image thresholding. Expert Syst. Appl. 182, 115286. https:// doi. org/ 10. 1016/j. eswa. 2021. 115286 (2021).

 17. Sathya, P., Kalyani, R. & Sakthivel, V. Color image segmentation using Kapur, Otsu and minimum cross entropy functions based 
on exchange market algorithm. Expert Syst. Appl. 172, 114636. https:// doi. org/ 10. 1016/j. eswa. 2021. 114636 (2021).

 18. Anitha, J., Immanuel Alex Pandian, S. & Akila Agnes, S. An efficient multilevel color image thresholding based on modified whale 
optimization algorithm. Expert Syst. Appl. 178, 115003. https:// doi. org/ 10. 1016/j. eswa. 2021. 115003 (2021).

 19. Abdel-Basset, M., Mohamed, R., AbdelAziz, N. M. & Abouhawwash, M. Hwoa: A hybrid whale optimization algorithm with a 
novel local minima avoidance method for multi-level thresholding color image segmentation. Expert Syst. Appl. 190, 116145. 
https:// doi. org/ 10. 1016/j. eswa. 2021. 116145 (2022).

 20. Mousavirad, S. J., Schaefer, G., Zhou, H. & Moghadam, M. H. How effective are current population-based metaheuristic algorithms 
for variance-based multi-level image thresholding?. Knowl. Based Syst. 272, 110587. https:// doi. org/ 10. 1016/j. knosys. 2023. 110587 
(2023).

 21. Ma, G. & Yue, X. An improved whale optimization algorithm based on multilevel threshold image segmentation using the Otsu 
method. Eng. Appl. Artif. Intell. 113, 104960. https:// doi. org/ 10. 1016/j. engap pai. 2022. 104960 (2022).

 22. Zhang, Y., Xie, H., Sun, J. & Zhang, H. An efficient multi-level encryption scheme for stereoscopic medical images based on coupled 
chaotic system and otsu threshold segmentation. Comput. Biol. Med. 146, 105542. https:// doi. org/ 10. 1016/j. compb iomed. 2022. 
105542 (2022).

 23. Wu, B., Zhou, J., Ji, X., Yin, Y. & Shen, X. An ameliorated teaching-learning-based optimization algorithm based study of image 
segmentation for multilevel thresholding using kapur’s entropy and otsu’s between class variance. Inf. Sci. 533, 72–107. https:// 
doi. org/ 10. 1016/j. ins. 2020. 05. 033 (2020).

 24. Wang, J., Bei, J., Song, H., Zhang, H. & Zhang, P. A whale optimization algorithm with combined mutation and removing similar-
ity for global optimization and multilevel thresholding image segmentation. Appl. Soft Comput. 137, 110130. https:// doi. org/ 10. 
1016/j. asoc. 2023. 110130 (2023).

 25. Lei, B. & Fan, J. Multilevel minimum cross entropy thresholding: A comparative study. Appl. Soft Comput. 96, 106588. https:// doi. 
org/ 10. 1016/j. asoc. 2020. 106588 (2020).

 26. Taneja, I. J. Relative divergence measures and information inequalities. Inequal. Theory Appl. 5, 145–168. https:// doi. org/ 10. 48550/ 
arXiv. math/ 05052 04 (2005).

 27. Li, C. & Lee, C. Minimum cross entropy thresholding. Pattern Recognit. 26, 617–625. https:// doi. org/ 10. 1016/ 0031- 3203(93) 
90115-D (1993).

 28. Sarkar, S., Das, S. & Chaudhuri, S. S. A multilevel color image thresholding scheme based on minimum cross entropy and dif-
ferential evolution. Pattern Recognit. Lett. 54, 27–35. https:// doi. org/ 10. 1016/j. patrec. 2014. 11. 009 (2015).

 29. Kennedy, J. & Eberhart, R. Particle swarm optimization. In Proceedings of ICNN’95 - International Conference on Neural Networks, 
vol. 4, 1942–1948, https:// doi. org/ 10. 1109/ ICNN. 1995. 488968 (1995).

 30. Clerc, M. & Kennedy, J. The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE 
Trans. Evolut. Comput. 6, 58–73. https:// doi. org/ 10. 1109/ 4235. 985692 (2002).

 31. Qiao, L., Liu, K., Xue, Y., Tang, W. & Salehnia, T. A multi-level thresholding image segmentation method using hybrid arithmetic 
optimization and Harris Hawks optimizer algorithms. Expert Syst. Appl. 241, 122316. https:// doi. org/ 10. 1016/j. eswa. 2023. 122316 
(2024).

 32. Houssein, E. H., Mohamed, G. M., Ibrahim, I. A. & Wazery, Y. M. An efficient multilevel image thresholding method based on 
improved heap-based optimizer. Sci. Rep. 13, 9094. https:// doi. org/ 10. 1038/ s41598- 023- 36066-8 (2023).

 33. Ahilan, A. et al. Segmentation by fractional order Darwinian particle swarm optimization based multilevel thresholding and 
improved lossless prediction based compression algorithm for medical images. IEEE Access 7, 89570–89580. https:// doi. org/ 10. 
1109/ ACCESS. 2019. 28916 32 (2019).

 34. Liu, Y., Yao, J., Lu, X., Xie, R. & Li, L. Deepcrack: A deep hierarchical feature learning architecture for crack segmentation. Neu-
rocomputing 338, 139–153. https:// doi. org/ 10. 1016/j. neucom. 2019. 01. 036 (2019).

 35. Wang, Z., Bovik, A., Sheikh, H. & Simoncelli, E. Image quality assessment: From error visibility to structural similarity. IEEE Trans. 
Image Process. 13, 600–612. https:// doi. org/ 10. 1109/ TIP. 2003. 819861 (2004).

 36. Zhang, L., Zhang, L., Mou, X. & Zhang, D. FSIM: A feature similarity index for image quality assessment. IEEE Trans. Image Process. 
20, 2378–2386. https:// doi. org/ 10. 1109/ TIP. 2011. 21097 30 (2011).

https://doi.org/10.1016/j.engappai.2023.107624
https://doi.org/10.1016/j.autcon.2023.104929
https://doi.org/10.1016/j.autcon.2023.105014
https://doi.org/10.1016/j.autcon.2023.105014
https://doi.org/10.1016/j.matpr.2022.11.356
https://doi.org/10.1016/j.matpr.2022.11.356
https://doi.org/10.1016/j.conbuildmat.2021.126162
https://doi.org/10.1007/s11760-021-02123-w
https://doi.org/10.1007/s10489-022-04064-4
https://doi.org/10.1007/s10489-022-04064-4
https://doi.org/10.1007/s12530-022-09443-3
https://doi.org/10.1007/s00500-023-09283-6
https://doi.org/10.1016/j.compbiomed.2023.106950
https://doi.org/10.1016/j.bspc.2022.104373
https://doi.org/10.1016/j.asoc.2021.107905
https://doi.org/10.1016/j.compag.2022.107488
https://doi.org/10.1016/j.compag.2022.107488
https://doi.org/10.1016/j.amc.2006.06.057
https://doi.org/10.1016/j.eswa.2021.115286
https://doi.org/10.1016/j.eswa.2021.114636
https://doi.org/10.1016/j.eswa.2021.115003
https://doi.org/10.1016/j.eswa.2021.116145
https://doi.org/10.1016/j.knosys.2023.110587
https://doi.org/10.1016/j.engappai.2022.104960
https://doi.org/10.1016/j.compbiomed.2022.105542
https://doi.org/10.1016/j.compbiomed.2022.105542
https://doi.org/10.1016/j.ins.2020.05.033
https://doi.org/10.1016/j.ins.2020.05.033
https://doi.org/10.1016/j.asoc.2023.110130
https://doi.org/10.1016/j.asoc.2023.110130
https://doi.org/10.1016/j.asoc.2020.106588
https://doi.org/10.1016/j.asoc.2020.106588
https://doi.org/10.48550/arXiv.math/0505204
https://doi.org/10.48550/arXiv.math/0505204
https://doi.org/10.1016/0031-3203(93)90115-D
https://doi.org/10.1016/0031-3203(93)90115-D
https://doi.org/10.1016/j.patrec.2014.11.009
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/4235.985692
https://doi.org/10.1016/j.eswa.2023.122316
https://doi.org/10.1038/s41598-023-36066-8
https://doi.org/10.1109/ACCESS.2019.2891632
https://doi.org/10.1109/ACCESS.2019.2891632
https://doi.org/10.1016/j.neucom.2019.01.036
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TIP.2011.2109730


19

Vol.:(0123456789)

Scientific Reports |         (2024) 14:7642  | https://doi.org/10.1038/s41598-024-58456-2

www.nature.com/scientificreports/

Author contributions
F.N. performed the conceptualization, data collection and organization, formal analysis, investigation, methodol-
ogy, resources, software, validation, visualization, software, supervision, and writing. M.L. performed the formal 
analysis, investigation, data collection and organization. P.Z. performed the formal analysis, investigation, data 
collection and organization. All authors discussed the results and reviewed the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 024- 58456-2.

Correspondence and requests for materials should be addressed to F.N.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2024

https://doi.org/10.1038/s41598-024-58456-2
https://doi.org/10.1038/s41598-024-58456-2
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Multilevel thresholding with divergence measure and improved particle swarm optimization algorithm for crack image segmentation
	Related work
	Arithmetic-Geometric divergence
	Particle swarm optimization

	Proposed methodology
	Image thresholding criteria
	Local stochastic perturbation
	Image segmentation algorithm

	Experimental environment and evaluation metrics
	Experimental results and discussion
	Segmentation results and analysis
	Objective evaluation and analysis
	Algorithm convergence analysis

	Conclusions and future works
	References


