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Existence of common fuzzy fixed 
points via fuzzy F‑contractions 
in b‑metric spaces
Shazia Kanwal 1, Sana Waheed 1, Ariana Abdul Rahimzai 2* & Ilyas Khan 3,4*

The main goal of this study is to establish common fuzzy fixed points in the context of complete 
b-metric spaces for a pair of fuzzy mappings that satisfy F-contractions. To strengthen the validity of 
the derived results, non-trivial examples are provided to substantiate the conclusions. Moreover, prior 
discoveries have been drawn as logical extensions from pertinent literature. Our findings are further 
reinforced and integrated by the numerous implications that this technique has in the literature. 
Using fixed point techniques to approximate the solutions of differential and integral equations is very 
useful. Specifically, in order to enhance the validity of our findings, the existence result of the system 
of non-linear Fredholm integral equations of second-kind is incorporated as an application.
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Initiation of fuzzy set theory in 1965 by Zadeh1 helps us to make possible the description of vague notions and 
handling with them. Basically, a fuzzy set is a function whose domain is a non-empty set and range is the interval 
[0,1]. At first, Weiss2 and Butnariu3 studied fixed points of fuzzy mappings. The concept of fuzzy contraction 
mappings was introduced by Heilpern4 (see also5,6). Afterwards, existence of fixed points of mappings involving 
certain contractive type conditions were derived and calculated by several authors, for example fuzzy common 
fixed points of fuzzy mappings for integral type contractions were obtained by Kanwal et al.7, fuzzy fixed points 
and common fixed points were established by Azam et al.8,9. Further, fuzzy fixed point results involving Nadler’s 
type contractions were established by Kanwal et al.10,11. With the aim of generalization of the Banach contraction 
principle, instead of the triangle inequality, a weaker condition was used in this metric space, and these spaces 
are known as b-metric spaces. The idea of a b-metric space was first presented by Backhtin12 in 1989. Czerwik13 
extracted the b-metric space results in 1993. Many scholars generalized the Banach contractive principle in 
b-metric spaces by embracing this theory. The existence of fixed points and common fixed points of fuzzy 
mappings satisfying the contractive type criterion is deduced and estimated by several authors. Fixed point 
theorems in b-metric spaces were obtained by Boriceanu14, Czerwik13, Kir and Kiziltunc15, Kumam et al.16, 
Kanwal et al.17 and Pacurar18. Fuzzy fixed point theorems for multivalued fuzzy contractions in b-metric spaces 
were proved by Phiangsungnoen and Kumam19. In past few decades, a noteworthy interest in fixed point theory 
has been directed to interchanging recent metric fixed point results from usual metric spaces to some other 
metric spaces, like quasi-metric spaces, partially ordered metric spaces, psuedo metric spaces, F-metric spaces, 
rectangular metric spaces, fuzzy metric spaces, etc. Nadler20 extended the Banach contraction principle21 and 
obtained the fundamental fixed point result for set valued mappings using the Hausdroff metric. These non-linear 
diversity Problems open the door to develop more original and innovative tools, which are currently receiving 
more attention in literature. Wardowski22 used one of these tools, which is thought to be a novel tool, in which the 
author introduced a new type of contractions, called F-contractions and proved a new related fixed point theorem.

Some fuzzy fixed point theorems for fuzzy mappings via F-contractions were shown by Ahmad et al.23. Several 
other authors have studied and obtained fixed point theorems for F-contractions (see24,25 and references therein). 
A survey on F-contraction can be obtained from26. Recently, Kanwal et al.17 obtained common fixed points 
of L-fuzzy mappings satisfying F-contractions in complete b-metric spaces. Dhanraj et al.27, Gopal et al.28,29, 
Lakzian et al.30, Mani et al.31,32 and Nallaselli et al.33 have established many wonderful results in b-metric spaces 
and its generalizations for F- contractions and some other contractive conditions. Moreover, they have offered 
the applications of the obtained results, see references therein for details.
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The purpose of this study is to obtain common fuzzy fixed points of two fuzzy mappings in the setting of 
complete b-metric spaces via fuzzy F-contractions in connection with Housdorff metric. The structure of the 
paper is as follows: “Preliminaries” section deals with basic concepts regarding definitions, examples and lemmas 
which are necessary to understand our results. Common fuzzy fixed point results via F-contractions in complete 
b-metric spaces with consequences and interesting examples have been given in “Common fuzzy fixed points 
via F-contraction” section. In “Applications” section, we have established common fixed points for multivalued 
mappings and solve a non-linear system of Fredhlem integral equations of 2nd kind by our findings. A conclusion 
is incorporated in “Conclusion” section.

Preliminaries
In this section some pertinent concepts are presented from the existing literature. These concepts will be helpful 
to understand the results which are established in the present research.

Definition 2.1  Let (S, d) be a metric space and SCB denotes the collection of all nonempty closed and bounded 
subsets of S. Consider a map H : SCB × SCB → R. For θ ,ϑ ∈ SCB defined by

where d(c,ϑ) = {inf d(c, e) : e ∈ ϑ} is the distance of c to ϑ . H is a metric on SCB and is known as the Hausdorff 
metric induced by the metric d.

Definition 2.2  Let (W, d) be a metric space. A mapping Ŵ : W → W is Banach contraction on W if there exists 
a positive real number 0 < γ < 1 such that ∀z1, z2 ∈ W,

Definition 2.3  A mapping Ŵ defined on metric space (W, d) satisfying

where γ ∈ [0, 12 ) is called Kannan contraction.

Definition 2.4  1 Let S be any arbitrary set. A function µ : S → [0, 1] is called a fuzzy set in S. The functional value 
µ(s) is called the grade of membership of s in µ. The α-level set of µ is denoted by [µ]α and is defined as follows:

Note: Throughout the article, we denote S∗ as the family of fuzzy sets in S, SCB denotes the collection of all 
closed and bounded subsets of S and C(S) denotes the collection of all compact sets.

Example 2.5  Consider functions A1, A2 on [0, 70] defined by: A1(x) =







1, when x ≤ 20;
7
3 − x

15 , when 20 < x < 35;
0, when x ≥ 35.

A2(x) =















0, when either x ≤ 20 or ≥ 60;
(x−20)

15 , when 20 < x < 35;
(60−x)

15 , when 45 < x < 60;
1, when 35 ≤ x ≤ 45.

Both A1, A2 are fuzzy sets. Graphical representation of A1 and A2 can be seen in Figs. 1 and 2, respectively.

Definition 2.6  4 Let (S, d) be any metric space and P be an arbitrary set. T is termed as a fuzzy mapping if 
T : P → S∗ is a function i.e T(p) ∈ S∗ for each p ∈ P.

Example 2.7  Let P = [−9, 9] and S = [−4, 4] . Define T1 : P −→ S∗ by

Then T1 is a fuzzy mapping. Notice that T1(x)(y) ∈ [0, 1] , for all x ∈ P and y ∈ S . The graphical representation 
T1(x)(y) showing the possible membership values of y in T1(x) is given in Fig. 3.

Example 2.8  Let P = [0, 15] and S = [0, 10] . Define T2 : P −→ S∗ by

Then T2 is a fuzzy mapping. Notice that T2(x)(y) ∈ [0, 1] , for all x ∈ P and y ∈ S . The graphical representation 
T2(x)(y) showing the possible membership values of y in T2(x) is given in Fig. 4.

H(θ ,ϑ) = max{sup
c∈θ

d(c,ϑ), sup
e∈ϑ

d(e, θ)},

d(Ŵz1,Ŵz2) ≤ γ d(z1, z2).

d(Ŵv,Ŵw) ≤ γ [d(v,Ŵv)+ d(w,Ŵw)] ∀v,w ∈ W ,

[µ]α = {s;µ(s) ≥ α if α ∈ (0, 1]}.

T1(x)(y) =
x2 + y2

100
.

T2(x)(y) =
x + y + xy

180
.
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Definition 2.9  Let G,T : S −→ S∗ be fuzzy mappings. An element u ∈ S is called a fuzzy fixed point of G if 
u ∈ [Gu]α . The point u is called a common fuzzy fixed point of G and T if u ∈ [Gu]α ∩ [Tu]α.

Definition 2.10  12 Consider S to be a non-empty set and y ≥ 1 . Assume the function d∗ : S × S → R satisfies 
the following conditions for all ξ1, ξ2, ξ3 ∈ S:

•	 d∗(ξ1, ξ2) = 0, ⇒ ξ1 = ξ2;

•	 d∗(ξ1, ξ2) > 0 for all ξ1  = ξ2
•	 d∗(ξ1, ξ2) = d∗(ξ2, ξ1);
•	 d∗(ξ1, ξ2) ≤ y(d∗(ξ1, ξ3)+ d∗(ξ3, ξ2)).

Then d∗ is a b-metric on S and the pair (S, d∗, y) is referred as a b-metric space.
Example 2.11  14 The space lζ (0 < ζ < 1),

together with a function d∗ : lζ × lζ → R

where µ = (µn), ν = (νn) ∈ lζ is a b-metric space. By an elementry calculation we obtain that

lζ = {(µn) ⊂ R :

∞
∑

n=1

|µn|
ζ < ∞},

d∗(µ, ν) =
(

∞
∑

n=1

|µn − νn|
ζ
)

1
ζ ,

Figure 1.   Graph of fuzzy set A1.

Figure 2.   Graph of fuzzy set A2.
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Here s = 2
1
ζ > 1.

Example 2.12  14 The space Lζ (0 < ζ < 1) , of all real functions µ(t), t ∈ [0, 1] such that 
∫ 1
0 |µ(t)|ζ dt < ∞, is 

b-metric space if we take

for each µ, ν ∈ Lζ.

Remark: Note that a (usual) metric space is evidently a b-metric space. However Czerwik13 has shown that 
a b-metric on X need not be a metric on X.

Definition 2.13  Let (S, d∗, y) be a b-metric space with y ≥ 1. Assume {sn} is a sequence in S and s ∈ S . s is termed 
as the limit of the sequence {sn} if

Then {sn} is said to be convergent in S.

d∗(µ, z) ≤ 2
1
ζ
[

d∗(µ, ν)+ d∗(ν, z)
]

.

d∗(µ, ν) =
[

∫ 1

0
|µ(t)− ν(t)|ζ dt

]
1
ζ ,

lim
n→∞

d∗(sn, s) = 0.

Figure 3.   Graph of fuzzy mapping T1.

Figure 4.   Graph of fuzzy mapping T2.
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Definition 2.14  The sequence {sn} in the b-metric space (S, d∗, y) is said to be Cauchy if for each ǫ > 0 , there is 
n0 a positive integer such that d∗(sn, sm) < ǫ for all n,m > n0.

Definition 2.15  If every Cauchy sequence in (S, d∗, y) is convergent in S, thenthe b-metric space (S, d∗, y) is 
said to be complete.

Definition 2.16  34 Let y ≥ 1 be a real number. Suppose that F∗ is the family of all functions F : R+ → R 
satisfying the conditions given below: 

(F1)	� F is strictly increasing;
(F2)	� for each positive sequence {sn} , limn→∞ sn = 0 ⇔ limn→∞ F(sn) = −∞;

(F3)	� There is k ∈ (0, 1) so that limn→∞(sn)
k
F(sn) = 0 for each {sn} ⊂ R

+;

(F4)	� σ + F(ynsn) ≤ F(yn−1sn−1) if for {sn} ⊂ R
+ and σ ∈ R

+, σ + F(ysn) ≤ F(sn−1) ∀ n ∈ N.

Definition 2.17  Let (S, d∗, y) be a b-metric space, where y ≥ 1. A multivalued mapping T : S → SCB is called 
an F -contraction of Nadler type if there exists F ∈ F

∗ such that for a ∈ R
+ and s, u ∈ S,

where 0 < β < 1,

Now, we give some definitions and lemmas about multivalued mappings.

Lemma 2.18  35,36 Suppose that (S, d∗, y) is a b-metric space. Assume C1,C2,C3 ∈ SCB and s, u ∈ S , then the 
following axioms hold: 

1.	 d∗(s,C2) ≤ d∗(s, c2) for any c2 ∈ C2;
2.	 d∗(C1,C2) ≤ H(C1,C2) , where d∗(C1,C2) = inf {d∗(c1, c2) : c1 ∈ C1 and c2 ∈ C2};
3.	 d∗(c1,C2) ≤ H(C1,C2) for any c1 ∈ C1;
4.	 H(C1,C1) = 0;
5.	 H(C1,C2) = H(C2,C1);
6.	 H(C1,C3) ≤ y[H(C1,C2)+H(C2,C3)];
7.	 H(c1,C1) ≤ y[d∗(c1, c2)+ d∗(c2,C1)].

Lemma 2.19  20 Suppose (S, d∗) is a metric space and C1,C2 ∈ SCB , then for β > 1 and each c1 ∈ C1 , there exists 
c2(c1) ∈ C2 such that d∗(c1, c2) ≤ βH(C1,C2).

Lemma 2.20  20 Suppose (S, d∗) is a metric space and C1,C2 ∈ SCB , then for β ≥ 1 , for each c1 ∈ C1 there exists 
c2(c1) ∈ C2 such that d∗(c1, c2) ≤ βH(C1,C2).

Lemma 2.20 has the following implications.

Lemma 2.21  20 Suppose C1 and C2 are two arbitrary non-empty compact subsets of a metric space (S, d∗) and 
let ̟ : C1 → SCB be a multivalued map. Then for β ≥ 1 , for each c1, c2 ∈ C1 and s ∈ ̟ c1 there exists u ∈ ̟ c2 
such that d∗(s, u) ≤ βH(̟ c1,̟ c2).

Lemma 2.22  35,36 Suppose (S, d∗, y) is a b-metric space and C1,C2 ∈ SCB then for β > 1 , for each c1 ∈ C1 there 
exists c2(c1) ∈ C2 such that d∗(c1, c2) ≤ βH(C1,C2).

Lemma 2.23  37 Let {Cn} be a sequence in SCB and limn→∞ H(Cn,C1) = 0 for C1 ∈ SCB if cn ∈ Cn and 
limn→∞ d∗(cn, c1) = 0 , then c1 ∈ C1.

Theorem 2.24  22 Let(̟ ,m) be a complete metric space and β : ̟ → ̟ be an F-contraction. Then, β admits a 
unique fixed point in ̟  and for each x ∈ ̟ , the sequence {βn(x0)} converges to x.

Theorem 2.25  Assume a b-metric space (S, d∗, y) , where y ≥ 1. Let T : S → SCB be an F-contraction of Nadler 
type, that is, there is F ∈ F

∗ , so that for a ∈ R
+,

for all s1, s2 ∈ S and Ts1  = Ts2 . Then T admits a fixed point in S.

(1)2a+ F(yH(Ts, Lu)) ≤ F(βψ(s, u)),

(2)ψ(u, s) = max{d∗(u, s), d∗(u,Tu), d∗(s, Ls),
d∗(u, Ls)+ d∗(s,Tu)

2y
}.

(3)2a+ F(yH(Ts1, Ls2)) ≤ F(d∗(s1, s2)
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Common fuzzy fixed points via F‑contraction
In this section, we have established Nadler’s type common fixed points of a pair of fuzzy-mappings satisfying 
F- contractions in the context of complete b-metric space. Examples furnish legitimacy for the conclusions. As 
corollaries from the pertinent literature, there are also previous conclusions that have been stated.

Definition 3.1  Consider a b-metric space (S, d∗, y) , where y ≥ 1. Two fuzzy mappings T , L : S → S∗ is termed 
as an F-contraction of Nadler type if there is F ∈ F

∗ so that for a ∈ R
+ and for all s, u ∈ S,

where y ≥ 1, 0 < β < 1 , αLu, αTs ∈ (0, 1] with

Theorem 3.2  Let (S, d∗, y) be a b-metric space where y ≥ 1. Suppose there exists a continuous function F ∈ F
∗ 

from the right. Let L,T : S → S∗ be two fuzzy mappings satisfying F-contraction of Nadler type such that for all 
s, u ∈ S [Lu]αLu , [Ts]αTs ∈ SCB . Then L, T have a common fuzzy fixed point. If [Lu]αLu and [Ts]αTs are singleton 
subsets of S for all s, u ∈ S , then the common fuzzy fixed point of T and L is unique.

Proof  Fix any s ∈ S. Define s0 = s and suppose s1 ∈ [Ts0]αTs0 . By Lemma 2.22, there is s2 ∈ [Ls1]αLs1 and there 
exists g > 1 , so that

By multiplying both sides by y, we get

⇒

The continuity from the right of F ∈ F
∗ yields that there is g > 1 so that

From (6) and (7) we have

By Adding a on both sides and using Eq. (4), we get

By using this iterating procedure, we build a sequence {sn} in S so that s2n+1 ∈ [Ts2n]αTs2n , s2n+2 ∈ [Ls2n+1]αLs2n+1
 

and

The function F is strictly increasing. We obtain

That is,

Now, by using Lemma 2.18, we have

(4)2a+ F(yH([Ts]αTs , [Lu]αLu )) ≤ F(βψ(s, u)),

(5)ψ(u, s) = max{d∗(u, s), d∗(u, [Tu]αTu ), d
∗(s, [Ls]αLs ),

d∗(u, [Ls]αLs )+ d∗(s, [Tu]αTu )

2y
}.

d∗(s1, s2) ≤ gH([Ts0]αTs0 , [Ls1]αLs1 ).

yd∗(s1, s2) ≤ ygH([Ts0]αTs0 , [Ls1]αLs1 ),

(6)F(yd∗(s1, s2)) ≤ F(ygH([Ts0]αTs0 , [Ls1]αLs1 )).

(7)F(gyH([Ts0]αTs0 , [Ls1]αLs1 )) ≤ F(yH([Ts0]αTs0 , [Ls1]αLs1 ))+ a.

F(yd∗(s1, s2)) ≤ F(ygH([Ts0]αTs0 , [Ls1]αLs1 )) ≤ F(yH([Ts0]αTs0 , [Ls1]αLs1 ))+ a.

a+ F(yd∗(s1, s2)) ≤ F(βψ(s1, s2)).

(8)a+ F(yd∗(s2n+1, s2n+2)) ≤ F(βψ(s2n, s2n+1)).

(yd∗(s2n+1, s2n+2)) ≤ (βψ(s2n, s2n+1)).

(9)d∗(s2n+1, s2n+2)) ≤ ψ(s2n, s2n+1).

ψ(s2n, s2n+1) =max{d∗(s2n, s2n+1), d
∗(s2n, [Ts2n]αTs2n ), d

∗(s2n+1, [Ls2n+1]αLs2n+1
),

d∗(s2n, [Ls2n+1]αLs2n+1
)+ d∗(s2n+1, [Ts2n]αTs2n )

2y
}

≤max{d∗(s2n, s2n+1), d
∗(s2n, s2n+1), d

∗(s2n+1, s2n+2),
d∗(s2n, s2n+2)

2y
}

=max{d∗(s2n, s2n+1), d
∗(s2n+1, s2n+2),

d∗(s2n, s2n+2)

2y
}

≤max{d∗(s2n, s2n+1), d
∗(s2n+1, s2n+2),

y(d∗(s2n, s2n+1)+ d∗(s2n+1, s2n+2))

2y
}

=max{d∗(s2n, s2n+1), d
∗(s2n+1, s2n+2)}.
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Suppose d∗(s2n, s2n+1) < d∗(s2n+1, s2n+2) then

It contradicts (9). Therefore, Eq. (8) implies that

Let Pn = d∗(s2n+1, s2n+2) > 0 for all n ∈ N. It follow from (10) that

Using Eq. (11), we write

It yields

Using F2 property, we have

Using F3 property, there is 0k < 1 such that

By inequality (12), we find that

By multiplying (13) by (ynPn)k , we obtain

That is,

Now, applying lim n → ∞ , we get

From (14), there is n1 ∈ N with n(ynPn)k < 1 such that

We claim that {sn} is a Cauchy sequence. Suppose m, n ∈ N are so that m > n > n1 . The triangularinequality and 
Eq. (15) both implies that

At the limit, we have d∗(sn, sm) → 0. Hence, {sn} is a Cauchy sequence. The completeness of the b-metric space 
(S, d∗, y) ensures the existence of s ∈ S so that sn → s as n → ∞. Now, we show that s is a common fuzzy fixed 
point of the mappings T and L. Consider

ψ(s2n, s2n+1) < d∗(s2n+1, s2n+2).

(10)a+ F(yd∗(s2n+1, s2n+2)) ≤ F(d∗(s2n, s2n+1)).

(11)a+ F(ynd∗(s2n+1, s2n+2)) ≤ F(yn−1d∗(s2n, s2n+1)) ∀ n ∈ N.

(12)

F(ynPn) ≤F(yn−1Pn−1)− a,

F(yn−1Pn−1) ≤F(yn−2Pn−2)− 2a,

.

.

.

F(ynPn) ≤F(y0P0)− na.

lim
n→∞

F(ynPn) = −∞.

lim
n→∞

(ynPn) = 0.

lim
n→∞

(ynPn)
k
F(ynPn) = 0.

(13)F(ynPn) ≤ F(y0P0)− na.

(ynPn)
k
F(ynPn) ≤ (ynPn)

k
F(P0)− na(ynPn)

k .

(ynPn)
k
F(ynPn)− (ynPn)

k
F(P0) ≤ −na(ynPn)

k ≤ 0.

(14)lim
n→∞

n(ynPn)
k = 0.

(15)ynPn ≤
1

n
1
k

∀ n ≥ n1.

d∗(s2n, s2m) ≤yd∗(s2n, s2n+1)+ y2d∗(s2n−1, s2n+2)+ ...+ ym−nd∗(s2m−1, s2m)

=yPn−1 + y2Pn + ...+ ym−nPm−2

=�m−2
i=n−1y

i−n+2Pi

≤�∞
i=n−1y

i−n+2Pi

≤y2−n 1

i
1
k

.

d∗(s2n+2, [Ls]αLs ) ≤ H([Ts2n+1]αTs2n+1
, [Ls]αLs ) ≤ yH([Ts2n+1]αTs2n+1

, [Ls]αLs ).
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It implies

Since F is strictly increasing, we get

By adding 2a on both sides and by using Eq. (4), we get

Since a ∈ R
+ , we get

Since F is strictly increasing, one writes

By applying limit n → ∞, we obtain

That is, d∗(s, [Ls]αLs ) = 0. Hence s ∈ [Ls]αLs . Similarly, we can show that s ∈ [Ts]αTs . Hence, s is a common fuzzy 
fixed point of T and L. Suppose that [Ts]αTs and [Lu]αu are singleton subsets of S for all s, u ∈ S . Let r and s be two 
common fuzzy fixed points of the mappings T and L,  then

It yields that d∗(r, s) ≤ βd∗(r, s) < d∗(r, s). Hence, d∗(r, s) = 0 , and so r = s. 	�  �

To validate and furnish our result, we provide a non-trivial example below:

Example 3.3  Let S = [0, 1]. Define d∗ : S × S → R
+ by d∗(s, u) = |s − u|2. Then (S, d∗, y) is a b-metric space. 

Consider a ∈ R
+ and L,T : S → S∗, such that Ts : S → [0, 1] and Lu : S → [0, 1] are given as

There is αTs = 1
4 such that [Ts]αTs = [0, s6 e

−a] . Also,

There is αLu = 1
2 such that [Lu]αLu = { u6 e

−a} . We have

d∗(s2n+2, [Ls]αLs ) ≤ yH([Ts2n+1]αTs2n+1
, [Ls]αLs ).

F(d∗(s2n+2, [Ls]αLs )) ≤ F(yH([Ts2n+1]αTs2n+1
, [Ls]αLs )).

2a+ F(d∗(s2n+2, [Ls]αLs )) ≤ 2a+ F(yH([Ts2n+1]αTs2n+1
, [Ls]αLs )) ≤ F(βψ(s2n+1, s)).

F(d∗(s2n+2, [Ls]αLs )) ≤ F(βψ(s2n+1, s)).

d∗(s2n+2, [Ls]αLs ) ≤ βψ(s2n+1, s).

d∗(s, [Ls]αLs3) ≤ βψ(s, s).

F(d∗(r, s)) ≤F(yH(r, [Ls]αLs ))+ 2a

=F(yH([Tr]αTr , [Ls]αLs ))+ 2a

≤F(βψ(r, s))

=F(βmax{d∗(r, s), d∗(r, [Tr]αTr ), d
∗(s, [Ts]αTs ),

d∗(r, [Ls]αLs )+ d∗(s, [Tr]αTr )

2y
})

≤F(βmax{d∗(r, s), 0, 0,
d∗(r, [Ls]αLs )+ d∗(s, [Tr]αTr )

2y
})

≤F(β{d∗(r, s).

T(s)(t) =















1
4 , 0 ≤ t ≤ se−a

6 ;
1
6 ,

se−a

6 < t ≤ s
3 ;

1
5 ,

s
3 < t < s

2 ;

0, s
2 ≤ t ≤ 1.

L(u)(t) =















1
4 , 0 ≤ t < ue−a

6 ;
1
2 , t =

ue−a

6 ;
1
6 ,

ue−a

6 < t < u
2 ;

0, u
2 ≤ t ≤ 1.
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This implies that

By taking natural logarithm on both sides and then by considering y = 3, β = 1
12 and F(r) = ln(r), all axioms 

of Theorem 3.2 hold, therefore T and L have a common fuzzy fixed point, which is, s = 0.

Corollary 3.1  Assume a metric space (S, d∗) . Suppose there exists a continuous function F ∈ F
∗ from the 

right. Let L,T : S → S∗ be two fuzzy mappings satisfying F-contraction of Nadler type such that for all s, u ∈ S 
[Lu]αLu , [Ts]αTs ∈ SCB . Then L, T have a common fuzzy fixed point. If [Lu]αLu and [Ts]αTs are singleton subsets of 
S for all s, u ∈ S , then the common fuzzy fixed point of T and L is unique.

Corollary 3.2  Assume a b-metric space (S, d∗, y) , where y ≥ 1. Suppose there is a continuous function F ∈ F
∗ 

from the right. Let T : S → S∗ be a fuzzy mapping satisfying F-contraction of Nadler type such that for all s ∈ S , 
[Ts]αTs ∈ SCB . Then T has a fixed point. If [Ts]αTs are singleton subsets of S for all s ∈ S , then the fixed point of 
T is unique.

Applications
Finding common fixed points of multi‑valued mappings
Here, we find common fixed points for multi-valued mappings with the help of our obtained result.

Theorem 4.1  Assume a b-metric space (S, d∗, y) , where y ≥ 1. Suppose there exists a continuous function F ∈ F
∗ 

from the right. If A,B : S → SCB are two multi-valued mappings satisfying F-contraction of Nadler type, then A 
and B have a common fixed point. Moreover, if A and B are singleton mappings, then the common fixed point 
is unique.

Proof  Consider two arbitrary mappings P,Q : S → (0, 1] . Define two fuzzy mappings T , L : S → S∗ as follows:

and

Then for s, u ∈ S,

and

Now, since H([Ts]αTs , [Lu]αLu ) = H(A(s),B(u)) , Theorem 3.2 can be applied to obtain a common fixed point of 
A and B. That is, there is r ∈ S such that r ∈ T(r) ∩ L(r) 	�  �

Corollary 4.1  Assume a metric space (S, d∗) . Suppose there exists a continues function F ∈ F
∗ from the right. 

If A,B : S → SCB are two multi-valued mappings satisfying F-contraction of Nadler type, then A and B have 
a common fixed point. Moreover, if A and B are singleton mappings, then the common fixed point is unique.

Corollary 4.2  Assume a b-metric space (S, d∗, y) , where y ≥ 1. Suppose there exists a continues function F ∈ F
∗ 

from the right. If A : S → SCB is a multi-valued mapping satisfying F-contraction of Nadler type, then A has a 
fixed point. Moreover, if A is a singleton mapping, then fixed point of A is unique.

H([Ts]αTs , [Lu]αLu ) =max{ sup
s∈[Ts]αTs

(d∗(s, [Lu]αLu )), sup
u∈[Lu]αLu

(d∗([Ts]αTs , u))}

H([Ts]αTs , [Lu]αLu ) =max{|
s

6
e−a −

u

6
e−a|2, |0−

u

6
e−a|2}

≤
1

36
e−2a max{|s − u|2, |u−

u

6
|2}

≤
1

36
e−2a max{|s − u|2, |u−

u

6
e−a|2}

=
1

36
e−2a max{d∗(s, u), d∗(u, [Lu]αLu )}

≤
1

36
e−2aψ(s, u).

3H([Ts]αTs , [Lu]αLu ) ≤
1

12
e−2aψ(s, u).

T(s)(g) =

{

P(s), if g ∈ A(s)
0, if g /∈ As,

L(u)(g) =

{

Q(u), if g ∈ B(u)
0, if g /∈ B(u).

[Ts]αTs =
{

g ∈ S : T(s)(g) = P(s)
}

= A(s),

[Lu]αLu =
{

g ∈ S : L(u)(g) = Q(u)
}

= B(u).



10

Vol:.(1234567890)

Scientific Reports |         (2024) 14:7807  | https://doi.org/10.1038/s41598-024-58451-7

www.nature.com/scientificreports/

Existence solution of a system of non‑linear Fredholm integral equations of 2nd kind
In this section, we apply our obtained results to establish some hypothesis which guarantee the existence of 
solution of system of non-linear Fredholm integral equations of 2nd kind.

Consider the following system of Fredholm integral equations of 2nd kind:

We will present sufficient conditions to ensure the existence of solutions to such a system. Let S = C[a, b] be the 
set of all continuous functions defined on [a, b]. Define d∗ : S × S → R

+ by

Then (S, d∗, y) is a complete b-metric space on S.

Theorem 4.2  Assume the assumptions given below hold: (A1) Bi : [a, b] × [a, b] × R
+ → R

+ (for i = 1, 2 ) and 
φ : [a, b] → R

+ are continuous;
(A2) There exists a continuous function J : [a, b] × [a, b] → [0,∞) such that

for each t1, y1 ∈ [a, b]; (A3) supt1,y1∈[a,b]
∫ b
a |J(t1, y1)|d

∗y1 ≤
√

β
y .e

−a , where 0 < β < 1. Then the system of inte-
gral equations (16) has a common solution in C([a, b]).

Proof  Let ω and θ be two self-mappings ω, θ : C([a, b]) → C([a, b]) defined by

Consider two arbitrary mappings A,B : S → (0, 1].
Define two fuzzy mappings T , L : S → S∗ as follows:

Take αTs = A(s) and αLu = B(u) , then

and

We have

That is,

(16)

{

u(t1) = φ(t1)+
∫ b
a B1(t1, y1, u(y1))d

∗y1, , t1 ∈ [a, b],

s(t1) = φ(t1)+
∫ b
a B2(t1, y1, s(y1))d

∗y1, , t1 ∈ [a, b].

d∗(s, u) = sup
t1∈[a,b]

|s(t1)− u(t1)|
2.

|Bi(t1, y1, v)| − |Bj(t1, y1,w)| ≤ J(t1, y1)|v − w|

ω(u(t1)) = φ(t1)+

∫ b

a
B1(t1, y1, u(y1))d

∗y1, t1 ∈ [a, b],

θ(s(t1)) = φ(t1)+

∫ b

a
B2(t1, y1, s(y1))d

∗y1, t1 ∈ [a, b].

T(s)(g) =

{

A(s), if g(t1) = θ(s(t1)); ∀t1 ∈ [a, b]
0, otherwise.

L(u)(g) =

{

B(u), if g(t1) = ω(u(t1)); ∀t1 ∈ [a, b]
0, otherwise.

[Ts]αTs =
{

g ∈ S : T(s)(g) = A(s)
}

= θ(s),

[Lu]αLu =
{

g ∈ S : L(u)(g) = B(u)
}

= ω(u).

H([Lu]αLu , [Ts]αTs ) =d∗(ω(u), θ(s))

= sup
t1∈[a,b]

|ω(u)(t1)− θ(s)(t1)|
2

≤ sup
t1∈[a,b]

(

∫ b

a
|B1(t1, y1, v)| − |B2(t1, y1,w)|)

2

≤ sup
t1∈[a,b]

(

∫ b

a
J(t1, y1)|u(t1)− s(t1)|d

∗y1)
2

≤ sup
t1∈[a,b]

(

∫ b

a
|u(t1)− s(t1)|d

∗y1)
2 sup
t1∈[a,b]

(

∫ b

a
J(t1, y1)d

∗y1)
2

≤( sup
t1∈[a,b]

|u(t1)− s(t1)|)
2 βe

−2a

y

=
βe−2a

y
d∗(u, s).
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By taking F(r) = ln(r) in Theorem 3.2, the system of integral equations (16) has a common solution. � �

Conclusion
Fixed point theory is a useful theoretical tool in diverse fields, such as logic programming, functional analysis 
and artificial intelligence. In the framework of b-metric spaces, a novel fuzzy fixed point result of two fuzzy map-
pings satisfying F-contraction is established in connection with Housdorff metric. Obtained result is furnished 
with an interesting and non-trivial example. Some results for fuzzy mappings and multi-valued mappings are 
incorporated as corollaries. Moreover, other direct consequences are obtained as well. Moreover, a system of 
non-linear Fredholm integral equations is solved by our established result. We hope this existence result will 
provide an appropriate environment to approximate further operator equations in applied science. We conclude 
our work with some open questions:

1.	 Whether this type of contraction can be applied on more than two mappings?
2.	  If answer to 1 is yes then is this give the surety of existence of coincidence points or common fixed points?
3.	  Whether these results can be obtained in other generalizations of metric spaces?

Data availability
The database used and analysed during the current study are available from the corresponding author on 
reasonable request.
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