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An enhanced real‑time human 
pose estimation method based 
on modified YOLOv8 framework
Chengang Dong  & Guodong Du *

The objective of human pose estimation (HPE) derived from deep learning aims to accurately estimate 
and predict the human body posture in images or videos via the utilization of deep neural networks. 
However, the accuracy of real‑time HPE tasks is still to be improved due to factors such as partial 
occlusion of body parts and limited receptive field of the model. To alleviate the accuracy loss caused 
by these issues, this paper proposes a real‑time HPE model called CCAM− Person based on the 
YOLOv8 framework. Specifically, we have improved the backbone and neck of the YOLOv8x‑pose real‑
time HPE model to alleviate the feature loss and receptive field constraints. Secondly, we introduce 
the context coordinate attention module (CCAM) to augment the model’s focus on salient features, 
reduce background noise interference, alleviate key point regression failure caused by limb occlusion, 
and improve the accuracy of pose estimation. Our approach attains competitive results on multiple 
metrics of two open‑source datasets, MS COCO 2017 and CrowdPose. Compared with the baseline 
model YOLOv8x‑pose, CCAM‑Person improves the average precision by 2.8% and 3.5% on the two 
datasets, respectively.

Keywords Deep learning, Human pose estimation, Attention mechanisms, YOLOv8, Feature pyramid 
network

Real-time 2D Human Pose Estimation (HPE) constitutes a pivotal undertaking in the realm of computer vision, 
aiming to quickly infer the spatiotemporal arrangement of human keypoints, such as the head, shoulders, arms, 
and legs, from images or video frames and subsequently deduce their poses, such as bending, stretching, or rotat-
ing. Real-time 2D HPE plays a crucial role in various applications, including pose tracking, action recognition, 
virtual reality, and surveillance systems. By achieving accurate 2D HPE, we can obtain detailed information 
about human poses and actions, which can support computers in performing more complex human-computer 
interaction tasks.

HPE tasks mainly consist of two types: Single-person Pose Estimation (SPE) and Multi-person Pose Estima-
tion (MPE). SPE focuses on mining the pose features of individual persons, and thus the model only needs to 
identify and regress the keypoints and skeleton information of the target person. These information typically 
include the category, relative positions, and confidences of the keypoints. In contrast, MPE involves detecting 
and estimating the poses of multiple individuals from an image. It aims to simultaneously locate and recognize 
the keypoints of multiple people and the posture connections between them. MPE tasks require addressing chal-
lenges such as occlusions, occluded body parts, and scale variations to obtain accurate and robust multi-person 
pose estimation results. MPE tasks have broader applications and deal with more complex scenarios, which are 
the main focus of this study.

In recent years, a plethora of real-time 2D MPE models based on deep learning have emerged successively. 
These  models1–4 employ deep neural networks as the basic architecture and further improve the regression 
capability of the models towards human keypoints through network structure modifications and post-processing 
 optimizations5,6. To enhance the real-time pose estimation performance, researchers have adopted various strate-
gies to reduce the inference cost of the network, such as lightweight network  architectures7,8, weight  sharing9, 
and spatial pyramid  pooling10. Furthermore, certain approaches have endeavored to integrate MPE with other 
objectives, including but not limited to object detection and image segmentation, so as to cater to a broader 
spectrum of practical  situations11,12. Despite the remarkable achievements made by deep learning-based real-
time 2D HPE methods, some challenges and technical difficulties still exist, as shown in Fig. 1. First, a consider-
able multitude of stacked convolution or pooling modules in traditional network structures are prone to losing 
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information from low-level features and limited receptive fields. Therefore, establishing more effective feature 
fusion mechanisms to improve the real-time keypoint regression capability of the model remains a challenging 
task. Second, the occurrence of entangled or occluded body parts can lead to the failure of regressing the cor-
responding keypoints. This phenomenon is also a current issue worthy of exploration.

The YOLO series  techniques11,13–15 have served as popular models for visual comprehension and have 
assumed a significant role across diverse applications in real-time computer vision in recent years. Compared 
to its previous  generations14–16, the latest  YOLOv817 demonstrates more powerful performance in terms of 
accuracy and speed and introduces the best-performing model, YOLOv8x-pose, specifically for the HPE task. 
The YOLOv8x-pose model utilizes the Path Aggregation Network (PANet)18 to construct a feature pyramid 
for comprehensive feature fusion across different receptive fields. Additionally, inspired by the Efficient Layer 
Aggregation Network (ELAN)19, YOLOv8x-pose further increases the receptive field of the backbone network 
at different levels. Furthermore, YOLOv8x-pose adopts the Task-Aligned  Assigner20 proposed in  YOLOX21 to 
replace the complex non-maximum suppression (NMS) process, thereby further improving the computational 
efficiency of the model’s inference.

However, due to the feature loss and receptive field limitations caused by the numerous convolution and 
pooling operations in YOLOv8, YOLOv8x-pose often struggles to adapt to the variations in keypoint features 
at different scales in the image. Moreover, when the body parts of individuals are occluded, there is still scope 
for enhancing the precision of YOLOv8x-pose. Therefore, this paper proposes a human pose estimation model 
called  CCAM-Person. Based on YOLOv8x-pose and referencing the implementation framework of YOLO-
pose22, our method simultaneously detects individuals and regress their keypoints in the image. Furthermore, we 
enhance the pose estimation performance by introducing additional receptive field expansion modules and visual 
attention mechanisms. We compare the optimized model with other state-of-the-art real-time HPE methods on 
the MS COCO 2017  dataset23 and the CrowdPose  dataset24 to validate the efficacy of CCAM-Person in terms of 
real-time capability and regression accuracy.

Specifically, our contributions can be stated as:

• Firstly, CCAM-Person improves the backbone of the YOLOv8x-pose baseline. We replace the top-level C2F 
feature extraction block with a Multi-scale Receptive Field ( MRF ) Module to alleviate the limitations of the 
model’s effective receptive region.

• Secondly, we enhance the feature fusion approach of YOLOv8 by introducing the Multi-path Feature Pyramid 
Network ( MFPN ) instead of the original PANet. This further optimizes the interaction of information 
between different feature levels.

• Lastly, CCAM-Person incorporates the concept of Coordinate Attention (CA)25 and designs a novel Context 
Coordinate Attention Module ( CCAM ) to enhance the precision of pose estimation through addressing issues 
caused by environmental noise or occluded body parts.

Currently, mainstream strategies for MPE can be classified into two categories: single-stage and two-stage, as 
shown in Fig. 2. The two-stage approach initially employs object detectors or pedestrian detectors to detect 
human instances in the image. Then, for each detected human instance, a single-person pose estimation model is 
utilized for pose estimation. On the other hand, the single-stage approach identifies and connects the keypoints 
of human bodies through keypoint detection and association analysis. The single-stage strategy does not rely on 
the detection of human instances, allowing for simultaneous estimation of multiple people’s poses in a crowd. 
Each strategy has its advantages and disadvantages, with the single-stage strategy being widely adopted in real-
time scenarios due to its high efficiency.

Figure 1.  Current issues in multi-person pose estimation task. In the left image, attributable to the limited 
receptive field of the model, some keypoints of less prominent individuals in the image are not fully detected. In 
the right image, occlusions between individuals’ limbs lead to inaccurate regression of some keypoints, resulting 
in a decrease in pose estimation accuracy.
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Literature review
Two‑stage approach
To address issues related to inaccurate bounding box localization and redundant poses,  Alphapose26 proposes 
a Region Multi-person Pose Estimation (RMPE) framework. Alphapose introduces a Symmetric Spatial 
Transformation Network (SSTN) to extract high-quality single-person regions and utilizes Parametric Pose Non-
Maximum Suppression (Parametric Pose NMS) to eliminate redundant poses. However, it requires significant 
computational resources and algorithm optimization due to its high computational complexity.  HRNet27 designs 
an efficient network architecture. Unlike previous methods that predict high-resolution heatmaps from low-
resolution features, HRNet incorporates multiple parallel pathways with varying resolutions. High-resolution 
features are preserved, and features of various scales can be integrated with each other. This design integrates fine-
grained low-level features with high-level semantic information, achieving more accurate regression. However, 
the network is relatively complex, and it presents challenges in terms of hyperparameter settings and adjustments.

Different from traditional CNN models,  ViTPose28 adopts a novel Transformer architecture to map the 
input image to a fixed-length sequence and perform detection and recognition of human pose keypoints, 
achieving high-precision multi-person pose estimation. However, ViTPose has limited capability in handling 
local information and is not sensitive to the precise location of keypoints. Qiu et al.29 propose a new solution 
called DiffusionPose, which defines the 2D HPE problem as generating keypoint heatmaps from noisy heatmaps. 
Further improvement in the performance of DiffusionPose is achieved by introducing human structural prior 
information, making it one of the current cutting-edge techniques in terms of precision. However, the workflow 
of DiffusionPose is relatively complex, and it does not effectively address the overfitting issue of the Transformer 
architecture.

Single‑stage approach
OpenPose30 utilizes a convolutional neural network (CNN) to extract features from the image and regress all 
keypoints. It then connects these keypoints using graph algorithms and other post-processing operations to 
estimate the human pose. However, OpenPose is sensitive to image quality and lighting conditions, and it may be 
affected by background noise and interference. To address the challenge of significant pose estimation difficulty 
caused by scale variations,  HigherHRNet2 employs a high-resolution feature pyramid to learn scale-aware 
representations. By incorporating multi-scale feature extraction and multi-level feature fusion, HigherHRNet 
augments the model’s resilience and precision in complex scenes and environments with significant variations. 
However, HigherHRNet requires a high-quality dataset with an extensive corpus of training data to fully learn 
pose patterns and relationships.

DEKR3 adopts a decoupled approach to regress the positions of human keypoints, transforming the pose 
estimation task into multiple independent keypoint regression problems. However, the decoupled regression 
method may face challenges in handling global consistency. Luo et al.5 propose the Self-Adaptive Heatmap 
Regression (SAHR) method and the Weighted Adaptive Heatmap Regression (WAHR) method to address 
challenges related to changes in human size and ambiguous human keypoint labels. Nevertheless, the 
implementation of these approaches is comparatively intricate and may not be optimal for exigencies that require 
real-time processing.  LitePose4 achieves better performance and lower latency in edge device pose estimation 
tasks by utilizing a single-branch framework with large kernel convolutions. The inclusion of the Scale-Awareness 
module improves estimation accuracy, promoting advancements in real-time MPE. Nevertheless, there is still 
potential for enhancing the precision of regression.

Figure 2.  Overview of the development of HPE models.
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Broadening object detectors for keypoint estimation
In recent years, some models have employed the fundamental idea of object detection to build unified pose 
estimation regression frameworks, enabling simultaneous detection of human regions and regression of 
keypoints. Yang et al.31 propose Point-Set Anchors, which uses a set of anchor points for HPE. The method 
represents human pose as a set of point-set anchors and uses a neural network to detect and regress these anchors, 
thereby obtaining the human pose. However, this method relies on the selection of initial anchors, and different 
initial anchors may have an impact on the results.  FCPose32 presents a fully convolutional multi-person pose 
estimation framework based on dynamic instance-aware convolutions. The keypoint estimation method with 
instance awareness eliminates ROI and post-processing operations, further enhancing the efficiency of multi-
person pose estimation. However, when overlapping or occlusion occurs, it may lead to the failure of detecting 
certain keypoints, influencing the accuracy of pose estimation.  DeepDarts33 formulates the HPE problem as a 
constrained optimization problem and incorporates contextual intelligence to enhance the precision of pose 
estimation. However, the constrained optimization method might converge to local optima in certain cases, 
affecting the overall accuracy of pose estimation. YOLO-Pose22 and  KAPAO34 are the latest models in this field. 
They extend the latest real-time object detection methods by introducing additional human keypoint similarity 
loss (OKS)35, enabling the models to simultaneously detect human regions and keypoint positions.

Research methodology
Overview
To address the issues of inaccurate keypoint localization caused by limited receptive fields or loss of original 
features in existing real-time HPE methods, as well as the failure of pose estimation due to occlusion of body 
parts, we propose a real-time HPE model called CCAM-Person. Specifically, our method draws inspiration 
from the basic architecture of YOLOv8x-pose22. Building upon real-time object detection with YOLOv8, we 
additionally perform real-time regression of all human keypoints in the image, achieving simultaneous real-time 
region detection and pose estimation of individuals in the image.

We propose a real-time HPE model called CCAM-Person to address the limitations of existing methods, such 
as inaccurate keypoint localization due to limited receptive field or loss of original features, and pose estimation 
failure caused by occlusion. Specifically, our approach is inspired by the YOLOv8x-pose36 and extends the basic 
architecture of YOLOv8 for real-time object detection to simultaneously perform real-time regression on all 
human keypoints in the image, achieving both real-time region detection and pose estimation for people in the 
image.

The CCAM-Person model utilizes the YOLOv8 detection algorithm to perform real-time localization and 
recognition of human targets in the image. At the same time, it applies a binary classification-like approach to 
detect all possible human keypoints in the image. Finally, a post-processing operation is used to match and group 
the keypoints with different ground-truth human bodies. The overall workflow of the model is illustrated in Fig. 3.

Our model borrows the architecture of YOLOv8x-pose and adopts a single-stage object detection approach 
to unify the modeling of human contours and keypoints, thereby achieving real-time pose estimation for people 
in the image. CCAM-Person mainly optimizes three aspects of the baseline: the feature representation of the 
backbone, the interaction and fusion of features in the neck part, and the learning of important feature cues, 
further improving the effectiveness of pose estimation.

In the end, the model generates a vector of length 6+3*n for each predicted bounding box. The first six values 
describe the position, type, and confidence of the human region, while the subsequent 3*n values represent the 
position and confidence of each keypoint. This process can be summarized as follows:

In the aforementioned equation, S represents the set of elements that we obtain as the final prediction of our task. 
The first six elements in the set describe the relevant information about the bounding box of the person in the 
image. Specifically, Bx and By denote the coordinates of the bounding box’s center point, while W and H depict 
its width and height, respectively. Together, these four elements encompass the positional characteristics of the 
individual. Furthermore, boxconf  and classconf  respectively represent the confidence parameters of the bounding 
box and the probability of it containing an individual. As for P1x , P1y , P1conf ,..., P

n
x , Pny , and Pnconf  , they individually 

represent the horizontal and vertical coordinates, as well as the corresponding confidence levels, of the total n 
key points associated with the individual.

Multi‑scale receptive field module
To better help the model understand the various sizes of people in the image and improve the accuracy of 
subsequent regression and classification tasks, we have integrated the MRF module into the Backbone part of 
the model.

Generally, shallow feature layers in the network contain more detailed or textural features, while deep feature 
layers contain more global or semantic features. For multi-scale HPE tasks, receptive field and resolution are 
key factors. Deep feature layers have smaller feature map resolutions and cover larger receptive fields per 
unit. However, they often lack detailed texture information from lower layers, which can lead to a decrease in 
prediction accuracy. To alleviate this issue, we use the MRF module to replace the original final C2f convolution 
block in the Backbone to aggregate more low-level features.

Specifically, we roughly describe the hierarchy of the model’s Backbone as {C1, C2, C3, C4, C5}, with C1 
defined as the initial layer and C2 defined as the detail layer. We can adopt the idea from  TridentNet37 to fuse 
the information from C1 and C2 with C5 using dilated  convolutions38, as shown in Fig. 4.

(1)S =

{

Bx ,By ,W ,H , boxconf , classconf , P
1
x , P

1
y , P

1
conf , . . . , P

n
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Differences in receptive fields often indicate different abilities to capture long-range dependencies. Simply 
fusing low-level information may lead to a decrease in detection accuracy for large and medium-sized people 
in the image. Our MRF module draws inspiration from the concept of  DeepLab39 and achieves downsampling 
of shallow features (C1, C2) by dynamically adjusting the dilation rate (d). Subsequently, we fuse the features 
from three branches with different dilation rates (C1, C2, C5) to facilitate information interaction across dif-
ferent receptive fields. Each branch is trained with its own weights to adapt to different image samples and fully 
utilize information at different resolutions. Weighted operations are also utilized to balance the contribution of 
different branches. The internal structure of MRF is illustrated in Fig. 5.

Multi‑path feature pyramid network
To better leverage the important feature information extracted by the Backbone network in the previous stage, we 
have designed the MFPN based on the ideas of UNet3+40 and  AFPN41 for more efficient information interaction 
between different feature levels, aiming to enhance the accuracy of pose estimation in the CCAM-Person model.

The YOLOv8x-pose human pose estimation model inherits the basic idea of feature fusion module from 
 YOLOv5x42 in the neck part and uses the Path Aggregation Network (PANet)18 as the processing module for 
the Backbone features. PANet employs both top-down and bottom-up information propagation paths: the top-
down path transfers high-level semantic features to low-level features through upsampling, and the bottom-up 
path extracts detailed information from low-level features to enrich high-level features. However, the pyramid 
structure based on PANet still has some limitations. Firstly, the scaling operations on the feature maps inevitably 
result in feature loss, leading to the lack of semantic or detailed information in the final output feature map. 
Secondly, for the HPE task, the useful features must contain detailed or semantic information about human 
keypoints. The high-level or low-level features in PANet need to interact with features at different scales through 
multiple intermediate scales before being fused with bottom-level or top-level features. In this propagation and 
interaction process, the high-level semantics or low-level details may be lost or degraded.

Figure 3.  Holistic framework architecture of CCAM-Person. The backbone of the model, denoted as (a), 
adopts the design structure of CSPDarkNet-53 and introduces the CSPLayer_2Conv (C2F) convolution block. 
To improve the model’s receptive field, we introduce the MRF module in the deep feature block. The neck part, 
denoted as (b), replaces the original PANet feature fusion network with the MFPN to retain more original 
features at different resolutions. In addition, the CCAM is introduced to enhance the attention to important 
features. The head part, denoted as (c), follows the design of the decoupled heads in YOLOv8 and performs 
separate regression for both the human region and its keypoints to obtain the final human pose estimation 
results.
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To address this, we introduce the MFPN structure in the Neck part to replace the PANet structure in the 
original YOLOv8x-pose, further optimizing the multi-scale feature fusion. The comparison of information inter-
action between the two feature pyramids is shown in Fig. 6.

Compared with PANet, our MFPN allows the feature maps to incorporate more feature information from 
different receptive fields. Specifically, PANet only uses progressive top-down or bottom-up feature fusion paths, 
while we add some cross-layer feature fusion pathways on top of that. The advantage of this approach is that deep-
level features can better receive detailed information from shallow-level features, while shallow-level features 
can more directly receive semantic information from deep-level features, reducing information loss during 
propagation. To better illustrate the processing of features between different levels, we take the example of the 
information flow in the P3 feature layer. Under the feature fusion mode of PANet, the calculation of information 
can be represented as:

where Pin3  represents the input feature map of the third stage with a depth of the feature layer, and Pout3  represents 
the output feature map of the third stage. Based on our MFPN information fusion mode, the composition of the 
P3 layer feature can be approximated as:

(2)Pout3 = Conv(Pin3 + Resize(Pin4 )+ Resize(Pout2 ))

Figure 4.  Fusion of deep-level features in the backbone using dilated convolutions.

Figure 5.  Internal structure of the MRF module. We replace the top-level C2F feature layer in the original 
backbone with MRF. MRF consists of 1 × 1 convolution, 3 × 3 convolution with different dilation rates, and a 
multi-branch fusion pooling layer.
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where �i represents the weight ratio of different information flows, which will be adaptively adjusted during model 
training, and Pmid

3  represents the intermediate temporary feature map generated by the P2 layer.
The weight parameters ( �1,..., �6 ) in the MFPN represent different aspects of features. Benefiting from the 

ability of the YOLO algorithm to process the entire image in one pass, keypoint regression tends to be more 
accurate when dealing with larger-sized individuals. However, it often performs poorly in scenarios with dense 
crowds or smaller-sized individuals. Therefore, our MFPN effectively combines features from different depths 
through multi-path connections. MFPN enables the organic integration of high-level semantic information with 
low-level detailed texture information, further improving the effectiveness of pose estimation.

Our MFPN Neck module, through the use of cross-layer multi-path feature fusion mode, achieves a more 
comprehensive combination of features at different levels. Meanwhile, the Head can receive more detailed texture 
information from lower layers and semantic information from higher layers, preserving a greater variety of 
original features. This has a positive effect on keypoint regression for people of different scales in the image.

Context coordinate attention module
The visual attention mechanism refers to the ability to focus on specific parts of an object while ignoring 
irrelevant surrounding information, enhancing object recognition and understanding. This mechanism plays a 
crucial role in the task of HPE, especially when occlusion occurs on certain keypoints of the human body. Visual 
attention helps concentrate attention on the key areas of the human body, enabling more accurate regression of 
the keypoints.

Common visual attention  mechanisms43–46, such as channel attention and spatial attention, typically model 
feature information from either channel or spatial dimensions. Channel  attention43,44 assigns weights to different 
feature channels and allocates adaptive weights to each channel. However, it models spatial information poorly 
and lacks sensitivity to the positions of the human keypoints. On the other hand, spatial  attention45,46 helps 
improve the regression of spatial information related to human pose. However, relying solely on spatial attention 
can be prone to image noise and increase errors. Based on the work of  CA25, we propose a novel CCAM to model 
the channel-spatial mixed domain of image features.

CCAM models different positions in the feature space along the width and height dimensions of the image. 
Additionally, we design additional context-aware pathways to propagate spatial feature response signals with 
different receptive fields for each position. This signal can be used to approximate the rough location of all 
human keypoints in the module’s image. This approach enables more accurate regression of the human key-
points, addressing the loss of pose regression accuracy caused by partial occlusion. The internal implementation 
structure of CCAM is illustrated in Fig. 7.

Specifically, the implementation process of CCAM can be summarized as follows:
The first stage of attention modeling primarily focuses on different positions in the feature space. Firstly, 

the feature block X extracted by the backbone network is subjected to global max-pooling operations along the 
W and H dimensions to compress information in different dimensions. Global max-pooling along the W and 
H directions generates feature maps of size H × 1× C and 1 ×W × C , respectively. This operation avoids 
compressing all feature information into a single dimension. Simultaneously, a large kernel convolution ( 7 × 7 ) 

(3)
Pout3 =Conv

(

�1P
in
3 + �2P

in
2 + �3Resize(P

in
5 )

+�4Resize(P
out
2 )+ �5Resize(P

in
1 )+ �6P

mid
2

)

Figure 6.  Difference in feature exchange Pyramid between PANet and MFPN.
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is applied to preserve more semantic information from a larger receptive field. The mathematical representation 
of this process is shown in the equation below:

Here zwc (H) and zwc (W) represent the global max-pooling operations along the W and H dimensions on the 
grouped feature maps. Afterwards, the processed features are concatenated and passed through a shared 1 × 1 
convolutional transformation function T1 , followed by an activation operation, resulting in a feature map of size 
1 × (W +H)× C . The specific operation is as follows:

In the equation, σ represents the non-linear activation operation, and leaky ReLU is used in this case. f represents 
the feature map obtained after the previous stage processing. Next, the feature map f is split along the W 
dimension into two independent tensors, fw ∈ R

1×W×C and fh ∈ R
H×1×C , which are aligned in dimension 

using a 1× 1 convolution. In the next stage, we normalize (sigmoid) the feature tensors to obtain two attention 
vectors: gh ∈ R

H×1×C and gw ∈ R
W×1×C . The attention distribution based on different positions is calculated 

using matrix multiplication. The specific operation is as follows:

The second stage of attention modeling mainly integrates spatial information from different receptive fields. 
Firstly, we compress the attention obtained in the previous stage along the channel dimension using average 
pooling to obtain S1 ∈ R

H×W×1 . Similarly, we compress the feature X’ processed by the large kernel convolution 
along the channel dimension using max pooling to obtain S2 ∈ R

H×W×1 . Next, we combine the attention 
distributions from different receptive fields using the matmul operation:

Finally, we aggregate the pairwise results to form the final attention weights and propagate them to the original 
feature space:

In summary, compared to the traditional coordinate attention mechanism, our CCAM preserves more spatial 
features from different receptive fields by incorporating secondary spatial modeling on the feature block. 
Moreover, by simulating the distribution of human keypoints in the image through spatial modeling, we provide 
spatial strength signals to the coordinate attention mechanism, further enhancing the regression of human 
keypoints. We provide the implementation of CCAM in pseudocode form, as shown in Algorithm. 1.

(4)zhc (H) =
1

W

∑

0≤i≤W

Xc(h, i)

(5)zwc (W) =
1

H

∑

0≤j≤H

Xc(j,w)

(6)X ′
= Batch_Normalization[Conv7×7(X)]

(7)f = δ

(

T1

(

zh, zw
))

(8)gh = σ

(

Fh

(

f h
))

(9)gw = σ
(

Fw
(

f w
))

(10)Attentioncoordinate = gw ⊗ gh

(11)U1 = S2 ⊗ Attentioncoordinate

(12)U2 = X ′
⊗ S1

(13)Output(i, j) = X(i, j)⊗ (U1 ⊕ U2)

Figure 7.  Internal implementation structure of the context coordinate attention module.
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 Our CCAM attention mechanism bears resemblance to certain attention structures previously proposed in 
the field of image semantic  segmentation47,48. However, there are inherent differences to be noted. Semantic Aware 
Channel Selection (SACS)47 incorporates a semantic encoding process on top of the original channel attention 
mechanism, enhancing the model’s response to crucial semantic feature signals in the channel dimension. 
Similarly, the Squeeze-and-Attention (SA)  module48 optimizes the  SENet43 with a deeper level of refinement. 
Unlike SENet, SA employs average pooling to downscale the feature maps without fully squeezing them to 
1 × 1× C . This allows SA to retain certain spatial features, enabling the aggregation of non-local features and 
improving the effectiveness of semantic segmentation.

 Both of the aforementioned attention mechanisms primarily focus on deep-level modeling of feature 
channels. In contrast, our CCAM attention mechanism takes a channel-spatial hybrid modeling approach. 
CCAM utilizes a dual-branch framework: the first branch, inspired by the concept of  CA25, performs weight 
modeling on each position within the feature block. As human keypoints are often distributed unevenly in 
images, in the second branch, we employ the notion of spatial attention to model the weights of different positions 
in the image. The final attention response is obtained by merging the weights from both branches.

 The CCAM attention mechanism provides a more comprehensive modeling of both channel and spatial 
domains. This enhances the ability of our model to capture important semantic information and spatial 
relationships, thereby improving the accuracy of human pose estimation.

Algorithm 1.  PyTorch-like Code for Context Coordinate Attention Module

Experiments and analyses
In this section, we conducted a fair comparison between our proposed CCAM-Person model and recent real-
time HPE methods on the MS COCO 2017 keypoint challenge dataset and the CrowdPose multi-person pose 
estimation dataset. Additionally, we conducted corresponding ablation experiments to validate the rationality 
of our module design.

Experimental setting
The training process of our model was performed using NVIDIA GeForce RTX 3080 Ti GPUs on the Ubuntu 
18.04 LTS operating system. We utilized the PyTorch deep learning framework with GPU acceleration using 
NVIDIA CUDA.

Datasets

(1) The MS COCO 2017 dataset is extensively employed for evaluating and comparing the performance 
and accuracy of various pose estimation algorithms in the field of HPE. This dataset consists of over 
20,000 images, each annotated with keypoints corresponding to 17 body joints, including the head, neck, 
shoulders, elbows, wrists, hips, knees, and ankles. Each keypoint is represented by its pixel coordinates. The 
dataset also provides bounding box annotations for each person instance to locate the human regions. The 
images in the dataset are captured from real-world scenarios, covering various environments and activities, 
including indoor and outdoor settings, as well as single and multiple individuals.

(2) (2) The CrowdPose dataset is a large-scale dataset for crowd pose estimation. It comprises thousands of 
crowd images captured in real-world scenes, covering various common crowd activities and scenarios. The 
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dataset is characterized by diversity, scale, and density. In terms of diversity, the dataset includes a variety of 
crowd activities and scenes, captured at different angles and distances. The dataset is large in scale, providing 
rich training and testing samples with thousands of crowd images. Moreover, the CrowdPose dataset 
exhibits high crowd density, with some images containing a large number of people and complex occlusions 
and overlaps. The dataset provides annotations for the keypoints of each person in the crowd, including 
keypoints for the head, arms, legs, and other body parts. The keypoint annotations have undergone careful 
manual verification to ensure accuracy and precision.

Evaluation metrics
In the task of HPE, the Average Precision (AP) metric based on OKS is widely used to evaluate algorithm 
performance. The AP metric calculates the average precision based on different thresholds and object sizes. For 
example, AP50 represents the average precision at an OKS threshold of 50, while AP75 represents the average 
precision at an OKS threshold of 75.

To assess the performance of pose estimation for persons of different scales, the COCO dataset provides 
additional metrics. A PM (AP for medium objects: 3 22 < area < 962 ) represents the average precision for 
medium-sized objects, and A PL (AP for large objects: a rea > 962 ) represents the average precision for larger 
objects. These metrics consider the different object sizes comprehensively, enabling a more comprehensive 
evaluation of algorithm performance.

To better measure the model’s performance in different application scenarios, CrowdPose introduces the 
concept of the crowd index and divides the images into three categories based on the range of crowd index values: 
easy (0–0.1), medium [0.1–0.8), and hard [0.8–1), corresponding to A PE , A PM , and A PH , respectively. This 
graded evaluation takes into account the challenges posed by crowd density in pose estimation and provides a 
more accurate performance evaluation.

In addition, the Average Recall (AR) metric is used to measure the recall performance of the algorithm, 
evaluating the coverage range of pose estimation. The recall rate reflects the model’s ability to recognize each 
keypoint and can assess overall performance.

Finally, the Latency (ms) metric reflects the inference time of the model, including the time required for 
model forward propagation and post-processing. This metric facilitates the evaluation of the algorithm’s real-
time performance and applicability.

Training
In the preparation stage, we employed data augmentation strategies including  Mosaic49 and  Cutout50. The input 
images were resized to 1280× 1280 and necessary padding was applied. Instead of traditional Adam, we used 
the recently released  Lion51 optimizer. The maximum number of training epochs was set to 300, with an initial 
learning rate of 5 e−4 , which was decreased to 5 e−5 at the 200th epoch. At the 240th epoch, the learning rate 
was further reduced to e−5 . To ensure training stability and efficiency, the minimum batch size was set to 20.

The loss function of the model primarily comprises three constituents: classification loss ( Lcls ), bounding 
box regression loss ( Lbox ), and human keypoint loss ( Lkpoints ). The changes in the loss functions during model 
training are illustrated in Fig. 8. The overall loss function for the task can be roughly represented as:

Experimental results on publicly available datasets
Our CCAM-Person HPE model is based on the YOLOv8 framework and draws inspiration from the keypoint 
regression approach of YOLO-POSE, enabling simultaneous detection and pose estimation of all individuals in 
an image. Furthermore, we have improved the Backbone and Neck components of the YOLOv8 model to further 
enhance the accuracy of HPE. As shown in Table 1, we have conducted a fair comparison with other recent real-
time HPE methods on the MS COCO 2017 dataset.

The experimental outcomes explicated below suggest that CCAM-Person achieves an estimation accuracy 
of 74.9% on the COCO 2017 test set. Compared to other popular real-time HPE  methods2,3,22,34, our model 
demonstrates competitive results in all metrics. Benefiting from our improvements, CCAM-Person achieves a 
2.8% improvement in accuracy and a 4.2% improvement in recall rate compared to the baseline. In comparison 
to methods based on Vision  Transformers28,54,55, our approach still exhibits certain advantages in terms of both 
accuracy and speed. Although the introduction of attention modules and multi-path fusion modes leads to 
a certain decrease in inference speed, even when resizing the input image to 960× 960 , CCAM-Person still 
maintains a competitive processing rate, meeting the temporal constraints of a majority of tasks.

The empirical findings in Table 2 illustrate that CCAM-Person exhibits high accuracy and an acceptable 
running speed on the CrowdPose keypoint detection dataset. Compared to the original YOLOv8x-pose model, 
our approach achieves a 3.5% increase in AP. Interestingly, our method achieves a notable improvement of 4.7% 
in the APH metric, indicating that our improvements result in better pose estimation performance in densely 
crowded scenes.

Ablation experimental study
In order to independently verify the efficacy of various proposed enhancement modules, we performed ablation 
experiments in this section to meticulously assess the functionalities of distinct modules.

(14)Ltotal =
∑

S

(�clsLcls + �boxLbox + �kpointLkpoint)
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Baseline architecture ablation experiment
These experiments examined the effect of enhancements made to the model’s Backbone (MRF) and Neck 
(MFPN) on the precision of HPE tasks. The evaluation of the baseline model’s performance, before and after 
the improvements, was carried out using the AP and AR metrics. The experimental outcomes, concerning the 
COCO val2017 dataset, are presented in Table 3.

Figure 8.  The trend of changes in each component’s loss function during the model training process with 
respect to the number of iterations.

Table 1.  Comparison with real-time HPE methods on COCO keypoint 2017 test-dev set. Significant values 
are in bold.

Method Input size AP AP
50 AP

75 AP
M AP

L AR Latency (ms)

OpenPose30 960 61.8 84.9 67.5 57.1 68.2 66.5 366

HGG52 960 67.6 85.1 73.7 62.7 74.6 71.3 –

HigherHRNet-W322 960 66.4 87.5 72.8 61.8 74.2 73.8 1653

HigherHRNet-W482 960 70.5 89.3 77.2 66.6 75.8 74.9 1890

DEKR-W323 960 67.3 87.9 74.1 64.8 75.1 73.2 1441

DEKR-W483 960 71.0 89.2 77.3 67.1 76.9 76.7 2237

CenterGroup-W4853 960 71.1 90.5 77.5 66.9 76.7 77.1 2196

FCPose32 960 65.6 87.9 72.6 62.1 72.3 72.6 188

YOLOv5l6-pose22 960 68.5 90.3 74.8 66.8 76.5 75.0 132

KAPAO-L34 960 70.3 91.1 77.8 66.3 76.8 77.7 163

PRTR 54 960 72.1 90.4 79.6 68.1 79.0 79.4 96

HRFormer55 960 74.4 92.2 82.3 70.7 80.5 79.8 147

ViTPose-B28 960 74.7 92.8 82.6 71.0 80.6 80.2 122

YOLOv8x-pose36 960 72.1 91.5 78.4 67.2 78.3 77.9 78

CCAM-Person 960 74.9 93.7 80.8 69.1 81.4 82.1 110
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The results of the ablation experiments demonstrate that our improvements to the baseline in the Backbone 
and Neck components lead to an improvement of approximately 1.6% in estimation accuracy. Additionally, our 
baseline design introduces more information from different receptive fields, enabling the detection of more 
keypoints in the image, resulting in a 4.1% increase in recall rate.Despite the increased complexity introduced 
by the MRF module, resulting in a slight decrease in the inference speed of the model, the inference latency of 
around 110 ms remains acceptable for real-time HPE tasks.

Attention module ablation experiment
In this part of the experiment, we explored the impact of introducing CCAM on the overall performance of the 
model. We compared the accuracy before and after the introduction of the attention mechanism. Furthermore, we 
compared CCAM with several popular visual attention mechanisms, including  SENet43,  CBAM45, and  ECA44, to 
validate the advantages of our proposed improved attention module in the pose estimation task. The experimental 
results on the COCO val2017 dataset are shown in Table 4.

The above results indicate that the introduction of visual attention mechanisms can effectively enhance the 
model’s focus on important information, thereby improving the pose estimation performance. The introduction 
of CCAM allows the model to better focus on important positions within feature blocks and process specific 
feature information more accurately. The introduction of CCAM results in a 1.5% improvement in AP and a 
2.1% improvement in AP50 , showing better accuracy improvement compared to other common visual attention 
mechanisms. Furthermore, the introduction of CCAM can also mitigate the failure of keypoint regression due 
to occlusion to a certain extent, enabling more keypoints to be accurately regressed, as shown in Fig. 9.

Visual analytics
Grad-Cam++56 is a gradient-based class activation mapping method widely used in deep learning-based com-
puter vision tasks such as object detection, image classification, and object localization. This method visualizes 

Table 2.  Results obtained on the CrowdPose test-dev set. Significant values are in bold.

Method AP AP
50 AP

75 AP
E AP

M AP
H AR Latency(ms)

OpenPose30 48.0 61.5 53.7 62.7 48.7 32.3 53.2 368

HigherHRNet-W482 67.6 87.4 72.6 75.8 68.1 58.9 73.1 1650

DEKR-W483 68.0 85.5 73.4 76.6 68.8 58.4 73.6 2235

CenterGroup-W4853 70.0 89.7 75.7 77.3 70.8 63.2 76.1 2195

YOLOv5l6-pose22 67.1 87.1 72.2 75.1 67.6 59.1 74.5 131

KAPAO-L34 68.9 89.4 75.6 76.6 69.9 59.5 75.7 165

HRFormer55 72.6 85.4 76.7 76.6 73.5 59.5 76.1 148

ViTPose-B28 74.2 85.1 78.9 79.8 75.9 65.3 77.3 122

YOLOv8x-pose36 70.9 90.8 75.5 78.6 72.2 62.2 76.7 78

CCAM-Person 74.4 92.7 78.4 80.4 75.7 66.9 80.2 111

Table 3.  Baseline enhancement effects. Significant values are in bold.

Method

Backbone Neck

AP AR Latency (ms)C2F C2F+MRF PANet MFPN

CCAM-Person

� � 73.1 77.8 96

� � 73.8 79.5 99

� � 74.2 80.4 108

� � 74.7 81.9 110

Table 4.  Ablation study on attention modules. Significant values are in bold.

Method AP AP
50 

Baseline 73.2 91.5

Baseline &SENet 73.7 91.7

Baseline &CBAM 74.4 92.2

Baseline &ECA 74.0 92.3

Baseline &CCAM 74.7 93.6
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the activation levels of different feature maps in a neural network, helping to understand and explain the basis 
for network decisions, and providing an interpretable and visually intuitive analysis tool. Grad-Cam++ utilizes 
a dual principle, leveraging positive and negative gradient information to more accurately capture key regions, 
resulting in more accurate and discriminative class activation maps. We applied Grad-CAM++ to visualize several 
different real-time HPE models, and the heatmap results shown in Fig. 10 reflect their focus on different regions.

The results of the above Class Activation Mapping demonstrate that compared to some other real-time HPE 
methods, our model pays higher attention to the person regions in the image. At the same time, CCAM-Person 
exhibits lower attention to the image background, reducing the interference of background noise on pose esti-
mation. These factors contribute to the performance improvement of our method. The HPE outcomes, utilizing 
the CCAM-Person model, are depicted in Fig. 11.

Discussion
Our proposed CCAM-Person model builds upon the YOLOv8x-pose framework while incorporating the 
keypoint regression idea from the YOLO-Pose model. The stacking of downsampling operations in the backbone 
of the YOLOv8x-pose model leads to feature information loss, and the PANet in the Neck component is limited 
in establishing effective feature fusion due to receptive field constraints. To address the deficiencies in the baseline 
mentioned above, we introduced the MRF module and MFPN feature fusion network, which not only improve 

Figure 9.  Differences in the efficacy of anterior-posterior human pose estimation with the inclusion of CCAM.

Figure 10.  Grad-CAM analysis for partial real-time HPE model.
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the utilization of feature information but also enhance the model’s ability to detect person keypoints. The results 
of the ablation experiments, as shown in Table 3, indicate increases of 1.6% and 4.1% in AP and AR, respectively. 
Moreover, in order to enhance the saliency of critical feature information, we introduced the CCAM attention 
module to assign weights to different positions in the feature space, further improving the model’s segmentation 
performance (+1.5%), as shown in Table 4. Compared to other real-time HPE methods, CCAM-Person achieves 
competitive performance on the MS COCO 2017 and CrowdPose datasets, as shown in Tables 1 and Table 2.

Although CCAM-Person demonstrates excellent performance on most metrics, it does not reach the optimal 
inference speed. We attribute this to the inclusion of the attention mechanism and the complex interaction of 
feature information, which often come with complex structures and larger parameter sizes, leading to decreased 
runtime efficiency. While our efficiency is not at the highest level, it remains capable of fulfilling the real-time 
demands of a majority of tasks.

Conclusion
Our work proposes a framework called CCAM-Person for person detection and pose estimation. Comparative 
experiments on large-scale public datasets with other real-time human pose estimation methods demonstrate 
competitive results in terms of regression accuracy and inference speed. Through improvements in the network 
structure and information processing modes of the YOLOv8x-pose model, our method achieves breakthroughs 
in accuracy indicators. In future work, we will attempt more improvement designs based on these foundations 
to streamline the model structure and improve the model’s inference speed. This may include incorporating 
recent technologies such as  ReXNet7 and PAGCP  pruning57. Additionally, we also consider the application of the 
designed CCAM attention mechanism to other tasks such as image segmentation and object tracking.

Data availability
The datasets analyzed during the current study are available in the repositories of CrowdPose (https:// github. 
com/ Jeff- sjtu/ Crowd Pose. git) and MS COCO (https:// cocod ataset. org/).
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