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Prognosis and chemotherapy 
drug sensitivity in liver 
hepatocellular carcinoma 
through a disulfidptosis‑related 
lncRNA signature
Chao Chen 1, Chaoyang Wang 1, Yi Li 1, Shanshan Jiang 1, Ningjun Yu 2 & Guofeng Zhou 1*

Disulfidptosis, a new type of regulated cell death associated with the actin cytoskeleton, provides 
a new therapeutic tool for cancers. The direct relationship between disulfidptosis-related 
lncRNAs(DRLs) in liver hepatocellular carcinoma(HCC) remains unclear. We acquired transcriptomic 
data, corresponding clinical data, and tumor mutation data of HCC from the TCGA database. First of 
all, DRLs were determined through correlation analysis. Then, a prognostic model containing six DRLs 
was created by adopting univariate Cox regression, LASSO algorithm and multivariate Cox regression 
analysis. Based on the model, 424 HCC patients were divided into high- and low-risk groups. Next, we 
structured ROC curves and PCA through combining the model and clinical data. Enrichment analysis 
and immune infiltration analysis were adopted to further explore the relationship between the model 
and prognosis. In addition, we explored the relationship between the model and tumor mutation 
burden (TMB). There were significant differences between high- and low- risk groups, and patients in 
the high-risk group showed poor prognosis. Enrichment analysis suggested that metabolic progress 
was obviously different between the two groups. According to the analysis of immune infiltration, 
there were several differences in immune cells, function, and checkpoints. Patients with high-risk and 
high TMB demonstrated the least favorable prognosis. The two risk groups both manifested visiblly in 
chemotherapy drug sensitivity. To sum up, we set up a DRL-based signature and that may provide a 
predictable value for the prognosis and use of chemotherapy drugs for HCC patients.
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Liver cancer is one of the most malignant cancers in the world and has an extremely poor prognosis. According 
to recent global cancer statistics, liver cancer ranks third in terms of cancer associated mortality, although it ranks 
only sixth in cancer related incidence1. Moreover, the number of deaths from liver cancer ranks second among 
all cancers in China2. Among all pathological types, HCC is the most predominant type. Surgical resection is the 
main treatment method for patients with early-stage disease. Without obvious symptoms, patients often become 
unsuitable for surgical treatment when first diagnosed with liver cancer. While interventional therapy (includ-
ing transcatheter arterial chemoembolization (TACE), microwave ablation, and particle implantation), targeted 
therapy, and immunotherapy have been proven effective for most patients with advanced HCC, such methods 
can only prolong the survival period and the prognosis remains unsatisfactory in most cases3. Even though it is 
widely known that hepatitis B virus (HBV) is associated with HCC, hepatocarcinogenesis is a complex process 
in which many signal pathway transductions are altered4. Mutation is the most common molecular pathogenesis, 
which may lead to different types of treatments5.

Disulfidptosis, a novel metabolic-related regulated cell death (RCD), is of peculiar value in the area of cancer 
metabolic therapy6. High expression of solute carrier family 7 member 11 (SLC7A11) could result in the accu-
mulation of cysteine which would contribute to disulfide stress in cell metabolism7. When anomalous disulfide 
bonds form between actin cytoskeleton proteins, a lack of glucose and high expression of SLC7A11 would cause 
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the excessive accumulation of disulfides, which could eventually lead to cell shrinkage and death8. It is worth 
mentioning that disulfidptosis would not be suppressed by diverse kinds of cell death inhibitors, even though 
genes related to cell death had been knocked out9. Based on this discovery, disulfidptosis may serve as a novel 
measure for tumor treatment. A small portion of regulatory mechanisms had been identified recently9. However, 
further exploration and identification of disulfidptosis are urgently needed and it is necessary to discover the 
underlying mechanism.

Long noncoding RNAs (lncRNAs), a group of non-protein-coding transcripts with at least 200 nucleotides, are 
now well recognized to regulate energy metabolism in cancer10. An increasing number of studies have revealed 
that lncRNAs are closely associated with the occurrence and development of tumors and have a dual effect on 
promoting and inhibiting cancer11. For instance, downregulating the expression of LINC01060 could inhibit 
tumor growth and metastasis in osteosarcoma through PI3K/AKT signaling12. Similarly, silencing HOTAIR 
significantly reduces the migration ability of cells and induces cell apoptosis in cervical cancer13. Liu et al. found 
that LIN01268 can promote pancreatic cancer through PI3K/AKT aixs14. In human hepatocellular carcinoma, 
Guo et al. found the high expression of LNC02870 which could result in migration and invasion of cancer15. TPA 
has been shown to promote the progression of breast cancer via the TGF-β signaling pathway16.

In this study, we extracted transcriptome data of patients with HCC from The Cancer Genome Atlas (TCGA) 
database. We identified 746 lncRNAs that were significantly correlated with disulfdptosis-related genes (|Cor|> 0.4 
and P < 0.001). Then, we constructed a prognostic model containing 6 disulfdptosis-related lncRNAs, including 
AC007406.2, AL049840.3, AC138696.2, MKLN1-AS, AC069307.1 and TMCC1-AS1. Subsequently, we investi-
gated the predictive ability through combining the risk score and clinical data. We also evaluated the biological 
properties, immune infiltration, TMB, and drug responsiveness of the model. The aim of this study was to offer 
new perspectives and approaches for clinical immunotherapy and potential chemotherapeutic drugs for HCC.

Materials and methods
Data collection
Transcriptomic data, corresponding clinical data and simple nucleotide variation(SNV) of patients with HCC 
(374 tumor tissues and 50 normal tissues) from The Cancer Genome Atlas (TCGA) database (https://​www.​cancer.​
gov/). The Perl programming language (version 5.30.0.1) was used to arrange data including transcriptomic and 
clinical information for subsequent analysis.

Collection of the disulfdptosis‑related genes and lncRNAs
The disulfdptosis-related genes list was gathered from the previous study of Liu and their colleagues17. Correla-
tion analysis was used to assess the relationship between disulfdptosis-related genes and lncRNAs and Sankey 
diagram was plotted to visualize the results. The standards for the correaltion are |Cor|> 0.4 and P < 0.001.

Construction of the prognosis model
All patients were randomly separated into a training cohort and a test cohort at a ratio of 1:1. Univariate regres-
sion analysis was applied to screen genes associated with prognosis (P < 0.05). The least absolute shrinkage and 
selection operator (LASSO) and multivariate Cox regression were used to further filter the lncRNAs for model 
establishment. The final formula of the model was as follows.

Characterization of the model
Datas were classified by the median risk score threshold in train group as high- or low-risk groups. To estimate 
the predictive value of the model, we used a series of methods. The R packages "survminer" and "survival" were 
utilized to depict overall survival (OS) and progression-free survival (PFS). Scatter plots, risk curves, and heat-
maps were portrayed to valuate the differences between high- and low-risk groups. Such methods were taken in 
the training cohort, test cohort and TCGA cohort.

Validation of the prognostic model
Univariate and multivariate Cox regression analyses were implemented to confirm the independence of the prog-
nostic model with other clinical characteristics (age, gender, grade stage, Alpha-fetoprotein (AFP), Prothrombin 
Time (PT), Total Bilirubin (TB), Albumin (Alb), Platelet). Receiver operating characteristic (ROC) curves were 
drawn to evaluate the sensitivity and specificity of the prognostic model compared with other clinical charac-
teristics. In addition, an external cohort from GEO database(https://​www.​ncbi.​nlm.​nih.​gov/​geo/) was used to 
validate the stability and generalization ability of the model.

PCA and nomogram construction
Principal component analysis (PCA) was applied to investigate whether the risk score could be a meaningful 
signature to classify patients. A nomogram was created through integrating the risk score and other prognostic 
characteristics to predict the 1-, 3- and 5-year OS of HCC patients by using the R package "regplot". Meanwhile, 
a calibration curve was made to examine whether the nomogram had a high accuracy of survival prediction.

Biological enrichment analysis
Genes which P < 0.05 and the false discovery rate (FDR) q < 0.05 would be set as differentially expressed genes. 
The Gene Ontology (GO) function18 and Kyoto Encyclopedia of Genes and Genomes (KEGG)19 were used to 

Risk Score
(

patient
)

= �iCoefficient(lncRNAi) × Expression(lncRNAi).
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analyze the differential pathway enrichment according to differentially expressed genes through the "clusterPro-
filer" R package. In addition, gene set enrichment analysis (GSEA) was utilized to identify the primary pathways 
in the two groups20.

Immune infiltration of the model
The R package "GSEABase" was operated to find the differences between the high- and low- risk groups in 
immune function. Moreover, a histogram and a boxplot were drawn to visualize the differences in immune cell 
infiltration between the two groups.

Tumor mutation burden and chemotherapy drug sensitivity
We employed waterfall plots to investigate the discrepancies in tumor mutation burden (TMB) between the two 
groups. Furthermore, we identified mutant genes and types of mutations which were occurred most frequently. 
According to the TMB score we calculated, we used a survival curve to analysis the differences in prognosis 
between the high- and low- TMB groups. In addition, we incorporated the TMB score and risk score to analyze 
the survival conditions of the HCC patients.

For further exploration of the clinical value of the model and drug sensitivity prediction, "oncoPredict" 
package was operated to calculate chemotherapy drug sensitivity. We downloaded data from Drug Sensitivity 
in Cancer (GDSC) and combined the data with transcriptomics data to estimate the differences in sensitivity 
between the high- and low- risk groups.

Statistical analysis
All statistical analyses were performed using R 4.3.1 software and Perl packages were applied to deal with the 
data. Of all the processes, P < 0.05 was considered statistically significant.

Ethical approval and consent to participate
The study complied with the principles of the Declaration of Helsinki. Access to the de-identifed linked dataset 
was obtained from the TCGA databases in accordance with the database policy. For analyses of de-identifed 
data from the TCGA databases, institutional review board approval and informed consent were not required.

Results
The overall study progress is shown in Fig. 1.

Identification of disulfidptosis‑related LncRNAs (DRLs) in HCC
The genes GYS1, NDUFS1, OXSM, LRPPRC, NDUFA11, NUBPL, NCKAP1, RPN1, SLC3A2 and SLC7A11 were 
regarded as disulfdptosis-related genes according to pervious study. All the genes were highly expressed in tumor 
samples and except for the genes NDUFS1 and NUBPL, other genes showed apparent differences between the 
two groups (Fig. 2). A Sankey diagram was constructed to visualize the correlation between disulfdptosis-related 
genes and lncRNAs(Fig. 3a). As seen in the figure, NCKAP1 and GYS1 have the most connections with lncRNAs.

Figure 1.   The overall study progress.
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Prognostic model and characterization of model
After combining transcriptomic and clinical data from TCGA, we randomly divided the samples into training 
and validation groups at a ratio of 1:1 and there was no significant difference in clinical characteristics between 
the two groups (Table 1). 88 DRLs were screened by using univariate Cox regression analysis. After that, the 
LASSO regression analysis was applied to find candidate DRLs. Finally, 6 DRLs were filtered to construct a 
prognostic model, including AC007406.2, AL049840.3, AC138696.2, MKLN1-AS, AC069307.1 and TMCC1-
AS1. Among all the genes, AC007406.2, AL049840.3, AC138696.2, MKLN1-AS and TMCC1-AS1 were con-
sidered as positive factors for prognosis while AC069307.1 was considered as negative factor. The calculation 
formula of risk score was as follows: Risk-Score = [Expression level of AC007406.2 * (0.17) + Expression level of 
AL049840.3 * (0.63) + Expression level of AC138696.2 * (0.27) + Expression level of MKLN1-AS * (0.74)- Expres-
sion level of AC069307.1 * (0.80) + Expression level of TMCC1-AS1 * (0.79)]. In addition, co-expression analysis 
was performed between disulfdptosis-related genes and DRLs and the results are shown in Fig. 3b. Based on 
the formula, we divided the patients into high- and low- risk groups by the median risk score threshold (The 
median risk score threshold was 0.834941555). We used several prognostic analyses to assess the predictive value 
of the model. According to the OS and PFS curves, we identified that patients in high-risk group had a worse 
prognosis than those in the low-risk group (Fig. 4a–c,g). Meanwhile, survival curves were used to evaluate the 
risk of death between the two groups (Fig. 4d–f). As shown in the figures, the high-risk group had a superior 
risk of death compared to the low-risk group.

Model predictive value assessment
By integrating clinical characteristics (including age, sex, tumor grade, tumor stage, AFP, TB, Alb, platelet and 
PT), we adopted univariate and multivariate Cox regression analyses to assess the independence of the model 
(Fig. 5a,b). The results suggested that risk score could serve as an independent prognostic factor in univariate 
Cox regression analysis and was also independent of other clinical traits according to multivariate Cox regression. 
Moreover, the ROC curve indicated that the model had a more accurate predictive ability than other clinical 
characteristics, with an area under curve (AUC) of 0.712 (Fig. 5c). As for the predictive value of survival, the 

Figure 2.   Differences in the expression of disulfdptosis-related genes between tumor tissues and normal tissues.

Figure 3.   Identification of the signature of DRLs. (a) Sankey diagram of lncRNAs co-expressed with 
disulfdptosis-related genes. (b) Co-expression relationships between disulfdptosis-related lncRNA and 
disulfdptosis-related genes.
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AUCs of 1-year, 3-year and 5-year survival were 0.726, 0.712 and 0.738 (Fig. 5d). A c-index curve was plotted to 
further verify the predictive value, with c-index values greater than those of other traits (Fig. 5i). Furthermore, 
we drew a nomogram to provide a convenient and visualizable tool for prediction (Fig. 5j). With the growth of 
the nomscore, the survival rates of patients gradually decreased and the consistency of the predictions and actual 
measured results of the nomogram was validated by a calibration curve (Fig. 5k). Through dividing the clinical 
characteristics stage and the value of AFP into two groups, we found that whether in the early and advanced stage 
or low and high value of AFP, the low-risk group showed a better prognosis than high-risk group (Fig. 5e–h). As 
for the validation cohort, the AUC is 0.622 (Fig. 5l). The outcomes of PCA indicated that the DRL model had a 
better ability of risk cutoff compared with other gene sets (Fig. 6 a-d).

Biological functional analysis
According to a standard of fdr < 0.5, we investigated the differentially expressed genes between high- and low- 
risk groups. We operated GO and KEGG analyses and the results revealed the genes were primarily enriched 
in organic anion transport and motor proteins (Fig. 7a–c). In addition, GSEA analysis showed that the genes 
in the high-risk group were enriched mainly in pentose and glucuronate interconversions and ascorbate and 
aldarate metabolism (Fig. 7d). While in the low-risk group, they were functionally enriched mainly in glycine 
and theronine metabolism and fatty acid metabolism (Fig. 7e).

Immune cells infiltration analysis
Based on the TIME analysis, patients in high-risk group showed higher stromal and ESTIMATE scores than those 
in the low-risk group which indicating that tumor invasion and metastasis would be more likely to appear in the 
high-risk group(Fig. 8a).We evaluated the immune function between high- and low-risk groups and the results 
were presented in Fig. 8b. R package "Cibersoft" was used to analyze the difference in immune cell infiltration 
between two groups (Fig. 8c). The specific quantization of the difference was shown in Fig. 8d, suggesting that 
the low-risk group was enriched in several immune functions (B-cells, Neutrophils, NK-cells, T-helper cells, 
Type-I IFN response and Type-II IFN response) while the high-risk group was enriched mainly in MHC class-I 
and Macrophages.

Tumor mutational burden
Of all the samples, 20 genes including TP53, CTNNB1, TNN, MUC16, ALB, PCLO et al. were mutated most 
frequently (Fig. 9a). We operated the same analysis in both training cohort and validation cohort (Fig. 9b,c). In 
addition, we conducted a correlation analysis among the genes which mutated most (Fig. 9d). As for the gene 

Table 1.   Clinical characteristics between the two groups.

Characteristics Total(n = 370) Train(n = 185) Test(n = 185) p Value

Age
 <  = 65 232(62.7%) 121(65.41%) 111(60%) 0.333

 > 65 138(37.3%) 64(34.59%) 74(40%)

Gender
Male 249(67.3%) 123(66.49%) 126(68.11%) 0.825

Female 121(32.7%) 62(33.51%) 59(31.89%)

Grade

G1 55(14.86%) 25(13.51%) 30(16.22%) 0.807

G2 177(47.84%) 86(46.49%) 91(49.19%)

G3 121(32.7%) 64(34.59%) 57(30.81%)

G4 12(3.24%) 6(3.24%) 6(3.24%)

unknow 5(1.35%) 4(2.16%) 1(0.54%)

Stage

Stage I 171(46.22%) 84(45.41%) 87(47.03%) 0.16

Stage II 85(22.97%) 43(23.24%) 42(22.7%)

Stage III 85(22.97%) 41(22.16%) 44(23.78%)

Stage IV 5(1.35%) 5(2.7%) 0(0%)

unknow 24(6.49%) 12(6.49%) 12(6.49%)

T stage

T1 181(48.92%) 88(47.57%) 93(50.27%) 0.552

T2 93(25.14%) 46(24.86%) 47(25.41%)

T3 80(21.62%) 39(21.08%) 41(22.16%)

T4 13(3.51%) 9(4.86%) 4(2.16%)

unknow 3(0.81%) 3(1.62%) 0(0%)

M stage

M0 266(71.89%) 129(69.73%) 137(74.05%) 0.123

M1 4(1.08%) 4(2.16%) 0(0%)

unknow 100(27.03%) 52(28.11%) 48(25.95%)

N stage

N0 252(68.11%) 125(67.57%) 127(68.65%) 1

N1 4(1.08%) 2(1.08%) 2(1.08%)

unknow 114(30.81%) 58(31.35%) 56(30.27%)



6

Vol:.(1234567890)

Scientific Reports |         (2024) 14:7157  | https://doi.org/10.1038/s41598-024-57954-7

www.nature.com/scientificreports/

TP53, we drew a lollipop to explore the frequency of mutation, the genetic locus which mutated most and the type 
of mutations (Fig. 9e). Results showed TP53 had a probability of 29% to mutate and missense mutation was the 
type of mutation occurred most frequently. Moreover, of all the classifications of mutations, missense mutation 
occurred most often, and single nucleotide polymorphisms (SNVs) were the most frequent type. Among all the 
types of SNV, transitions occurred more frequently than transversions, and conversion of cytosine to thymine 
had the most frequent occurrence (Fig. 9f,g). To assess the predictive value of the TMB score, we plotted a 
survival curve and the results showed that patients with low-TMB would have a better prognosis (Fig. 9h). The 
same results appeared in the survival curve when incorporating TMB and risk score. The low-TMB and low-risk 
groups had the best prognosis among all the groups (Fig. 9i).

Prediction of chemotherapy drug sensitivity
Chemotherapy is one of the most considerable treatments for patients with HCC. We calculated the sensitivity of 
a series of chemotherapy drugs in high- and low- risk groups by using GDSC database. According to the results, 
epirubicin, gemcitabine and oxaliplatin were more sensitive to patients in high-risk group while vinblastine, 
paclitaxel and 5-fluorouracil seemed to be sensitive to low-risk group patients (Fig. 10a–f).

Figure 4.   Characterizations of the DRLs model. (a–c) The OS of TCGA cohort, the training cohort, and the test 
cohort. (d–f) Survival curves between high- and low- risk groups in TCGA cohort, the training cohort and the 
test cohort. (g) The PFS survival analysis in TCGA cohort.
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Discussion
Liver cancer had been a major public health problem for many years all over the worlds. There are a large num-
ber of patients with hepatitis B, which causes HCC most in China. In the past 10 to 20 years, more and more 
researches had focused on the mechanisms of cancer occurrence and development. Therefore, targeted therapy 
and immunotherapy had become increasingly important with the development of molecular biology. In recent 
years, several prognostic models based on autophagy-related genes21, ferroptosis-related genes22, cuproptosis-
related genes23, pyroptosis-related genes24 have been constructed to predict the prognosis of different cancers. 
Not only mRNAs but also lncRNAs had been used to establish prognostic models for predicting prognosis25–28. 
Disulfidptosis is a novel type of cell death. Rather than other types of regulated cell death, disulfidptosis would 
not be suppressed by cell death inhibitors, which would provide a new thread for cancer therapy.

To the best of our knowledge, there is no research on constructing disulfdptosis-related lncRNAs in HCC at 
present. In the present study, we discovered 746 lncRNAs, which had apparently correlationships with disulfdp-
tosis-related genes. After a series of processes of dimensionality reduction, 6 disulfdptosis-related lncRNAs had 
been screened to construct a prognostic model, including AC007406.2, AL049840.3, AC138696.2, MKLN1-AS, 
AC069307.1 and TMCC1-AS. The DRL prognostic model showed an excellent ability of prognosis prediction 
according to the C-index and ROC curves. Among the six lncRNAs, several genes have been identified to be 
associated with tumor progression. For example, MKLN1-AS is upregulated in HCC tissues and promotes 
the proliferation and epithelial-mesenchymal transition (EMT) of HCC29. Chen found that TMCC1-AS could 
promote cell proliferation and migration in HCC30. Both articles showed the same results as our study. On the 
basis of the algorithm of the model, the risk score was calculated to separate the patients into two groups and the 
low-risk group had a better prognosis according to the OS and PFS curves. Further validation was conducted 
to evaluate the accuracy, independence, sensitivity, and specificity of the model’s value of prediction. Independ-
ent prognostic analysis suggested that the model was an independent prognostic factor for HCC patients. The 
ROC and C-index curves identified that the accuracy, sensitivity and specificity of the model were superior to 
other clinical characteristics. Such results demonstrated that the model could be a novel method for prognostic 
prediction of HCC. The results of PCA showed that the model had an excellent ability to distinguish low- and 
high-risk patients. GSEA showed that in high-risk group, the genes were mainly enriched in glycometabolism 

Figure 5.   Validation of the disulfdptosis-related lncRNA signature. (a, b) Assessment of the independency 
of the model by univariate and multivariate Cox regression analyses (c) The AUC showed that risk score was 
an independent predictor compared with other clinical characteristics. (d) The predictive value in the OS of 
1-, 3-, 5 years. (e, f) Survival curves of patients with early stage or advanced stage. (g, h) Survival curves of 
patients with Low and high value of AFP. (i) The C-Index of risk score was higher than other clinicopathological 
signatures. (j) The nomogram of DRLs model combined with other clinical features. (k) The calibration curve of 
the nomogram. (l) The ROC curve of validation cohort.
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steroid metabolism. While in the low-risk group, they were mainly enriched in amino acid metabolism and 
lipid metabolism.

The immune environment is of vital importance to the tumor microenvironment. Our findings revealed that 
the immune functions of high-risk group were enriched mainly in MHC class-I and Macrophages. As for the 
immune cells infiltration, there was a better enrichment of CD4 + T cells and CD8 + T cells in low-risk group 
and the results were the same as a previous study in which CD8 + T cells may be related to superior prognosis31.

TMB, which is related to immune checkpoint inhibitors (ICIs) and prognosis, has become more and more 
important for cancer therapy. Our study showed that there was no significant difference between high- and 
low-risk groups in TMB. However, by integrating TMB and risk-score, we found patients with low-TMB and 
low-risk had the best prognosis while the prognosis of patients with high-TMB and high-risk was worst. Gene 
TP53 showed the highest frequency of mutation in both groups, with a proportion of 29% of all the patients. 

Figure 6.   The outcomes of PCA in different gene sets.
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TP53 was identified to be related to colorectal cancer liver metastasis32. Similarly, Tornesello33 found the muta-
tion of TP53 could promote the progress of liver cancer. In addition, we calculated the sensitivity of several 
chemotherapy drugs. Epirubicin, gemcitabine, oxaliplatin, vinblastine, paclitaxel and 5-fluorouracil are common 
chemotherapy drugs for patients with HCC. In our study, we found epirubicin, gemcitabine and oxaliplatin were 
sensitive to patients in high-risk group and in contrast, vinblastine, paclitaxel and 5-fluorouracil were sensitive 
to patients in low-risk group.

There are several deficiencies that need to be mentioned. First, this study is theoretically feasible because we 
only analyzed the data from TCGA and we did not verify it in vivo or vitro. Second, disulfidptosis is a new type 
of RCD which means there are not enough researches on it and the biological significance of six long stranded 
non coding RNAs is not yet clear, and it is possible that they affect prognosis through a mechanism completely 
unrelated to disulfide deficiency. Therefore, the disulfidptosis-related we used may not contain all genes which 
would lead to imprecise results. Third, external validation may be taken to further evaluate the prognostic value 
of the 6-DRLs model. Thus, further studies and more experiments should be carried out to validate the model 
and biomarker.

Conclusion
We constructed a 6 disulfidptosis -related lncRNAs prognostic model and based on the model, we separated 
HCC patients into two groups. There were significant differences between two groups in survival outcomes. In 
addition, the independence, accuracy, and specificity of the model had been validated. In summary, this model 
could be a therapeutic biomarker for the treatment and prognosis of HCC patients.

Figure 7.   GO, KEGG and GSEA analysis. (a) The circle diagram of GO analysis. (b) The bubble diagram of GO 
analysis. (c) The barplot diagram of KEGG analysis. (d) GSEA analysis of the high-risk group. (e) GSEA analysis 
of the low-risk group.
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Figure 8.   Immune infiltration analysis of the signature. (a) Stromal, immune, and ESTIMATE scores 
comparison between high- and low-risk group. (b) Differences in immune function between high- and low-
risk groups. (c) Differences in immune cells infiltration between high- and low-risk group. (d) The barplot of 
differences in immune function between high- and low-risk groups.
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Figure 9.   Relationship between DRLs model and tumor mutation burden. (a–c) Waterfall plots of somatic 
mutation characteristics in TCGA cohort, the training cohort and the test cohort. (d) Correlation analysis 
among the genes which mutated most. (e)The lollipop of gene TP53. (f, g) The identifications of the 
classifications of mutation. (h)The survival curve between high- and low-TMB groups. (i) K–M survival curves 
between the four groups.
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Data availability
Data used to support the fndings of this study are available from the corresponding authors upon request.
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