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Image convolution techniques 
integrated with YOLOv3 algorithm 
in motion object data filtering 
and detection
Mai Cheng * & Mengyuan Liu 

In order to address the challenges of identifying, detecting, and tracking moving objects in video 
surveillance, this paper emphasizes image-based dynamic entity detection. It delves into the 
complexities of numerous moving objects, dense targets, and intricate backgrounds. Leveraging the 
You Only Look Once (YOLOv3) algorithm framework, this paper proposes improvements in image 
segmentation and data filtering to address these challenges. These enhancements form a novel multi-
object detection algorithm based on an improved YOLOv3 framework, specifically designed for video 
applications. Experimental validation demonstrates the feasibility of this algorithm, with success 
rates exceeding 60% for videos such as “jogging”, “subway”, “video 1”, and “video 2”. Notably, the 
detection success rates for “jogging” and “video 1” consistently surpass 80%, indicating outstanding 
detection performance. Although the accuracy slightly decreases for “Bolt” and “Walking2”, success 
rates still hover around 70%. Comparative analysis with other algorithms reveals that this method’s 
tracking accuracy surpasses that of particle filters, Discriminative Scale Space Tracker (DSST), and 
Scale Adaptive Multiple Features (SAMF) algorithms, with an accuracy of 0.822. This indicates superior 
overall performance in target tracking. Therefore, the improved YOLOv3-based multi-object detection 
and tracking algorithm demonstrates robust filtering and detection capabilities in noise-resistant 
experiments, making it highly suitable for various detection tasks in practical applications. It can 
address inherent limitations such as missed detections, false positives, and imprecise localization. 
These improvements significantly enhance the efficiency and accuracy of target detection, providing 
valuable insights for researchers in the field of object detection, tracking, and recognition in video 
surveillance.
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Since the twenty-first century, there has been a growing demand for video surveillance, with applications in 
almost every  location1. In the military field, these algorithms can be used for tasks such as locating and track-
ing criminals. In the civilian domain, they can enable intelligent-assisted monitoring  functionalities2. However, 
manual target recognition, detection, and tracking are time-consuming, labor-intensive, and lack  accuracy3. You 
Only Look Once (YOLOv3), as a deep learning (DL)-based object detection algorithm, can accurately detect 
multiple objects of different classes in an image and provide bounding box annotations. It holds great potential 
in the research of object detection and tracking  techniques4. In the field of video analysis, the YOLOv3 algorithm 
has shown immense promise in object detection tasks. However, inherent limitations such as missed detections, 
false positives, and imprecise localization pose obstacles to achieving optimal accuracy and efficiency. Therefore, 
this paper aims to address these drawbacks by integrating advanced image convolution techniques with the 
YOLOv3 algorithm. The motivation behind this study stems from the urgent need for effective identification, 
detection, and tracking of moving objects in the context of video surveillance. Video surveillance plays a crucial 
role in various domains such as security, transportation, and public safety, making accurate identification and 
monitoring of dynamic entities paramount.

Traditional object detection methods primarily rely on manually designed features and classifiers, such as 
Haar features, and HOG features combined with SVM classifiers. While these methods perform well in some 
simple scenarios, their effectiveness is limited in complex scenes with significant variations in targets. In recent 
years, DL methods such as the Convolutional Neural Network (CNN) have made significant strides. Specifically, 
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methods like You Only Look Once (YOLO), Faster Region-based CNN (R-CNN), and Single Shot Multibox 
Detector (SSD) have improved the accuracy and efficiency of object detection through end-to-end learning. 
Multi-object detection algorithms typically utilize information from the motion trajectories of objects for track-
ing, such as Kalman filters and particle filters (MSPF). However, these methods are susceptible to uncertainties 
in target motion and occlusion. Recently, DL techniques have also been widely applied in multi-object tracking. 
By combining object detection with temporal information, these methods can more accurately handle complex 
scenarios, such as Simple Online and Realtime Tracking (SORT) and Deep Simple Online and Realtime Track-
ing (DeepSORT). Since multiple targets may be correlated and intersect in complex scenes, tracking algorithms 
need to accurately handle these situations. A review of past research literature reveals that many researchers have 
conducted studies in this area. Kaliappan et al.5 proposed a novel classification technique for detecting objects 
in motion scenes from video datasets. They employed an enhanced deep belief-based multilayer CNN for data 
classification, achieving a recognition accuracy of 97% and demonstrating good  results5. In their research, Shen 
et al.6 presented an image enhancement algorithm based on DL for video surveillance scenes. Their approach 
involved the utilization of a hybrid deep convolutional network to achieve image super-resolution reconstruc-
tion and enhance the clarity of the captured images. Through experimental evaluation, it was observed that the 
proposed algorithm achieved significant improvements in image quality for video surveillance scenes under 
various conditions, including daytime, nighttime, and high noise environments. The maximum enhancement 
difference rate was found to be less than 0.5%, indicating minimal distortion introduced during the enhance-
ment process. Furthermore, the cross-correlation coefficient approached unity, signifying a strong similarity 
between the enhanced and original images. Additionally, the average image enhancement time was less than 
1.3 s, demonstrating the efficiency of the algorithm. This approach contributes to enhancing image clarity in the 
context of video surveillance  scenes6. To ensure reliable ship detection in scenarios with low visibility, Guo et al.7 
proposed a lightweight and versatile network called LVENetc, based on the Retinex theory, for improving the 
imaging quality of maritime video surveillance. Comprehensive evaluations were conducted, including both full-
reference and no-reference assessment experiments, which demonstrated that LVENetc yielded comparable or 
even superior visual quality when compared to other state-of-the-art methods. By employing LVENetc, the detec-
tion performance in low-light imaging conditions could be significantly enhanced, thereby improving visibility 
and facilitating reliable ship  detection7. Yi et al.8 introduced an innovative end-to-end network and designed an 
encoder comprising multiple mixed convolutional transformer feature extraction blocks to effectively extract 
intrinsic features from infrared images. Experimental results provided compelling evidence for the effectiveness 
of the proposed network structure and its superiority over existing methods for deblurring in infrared images. 
The results highlighted the potential of the proposed network in significantly enhancing the quality of infrared 
images by effectively addressing blurring  issues8. Although past research has made valuable contributions to 
the fields of object detection and tracking, certain limitations still persist. Existing methods may face challenges 
in achieving optimal performance under various dynamic conditions such as motion scenes, low visibility, and 
changing environmental factors. Some methods may exhibit inefficiencies in handling image clarity, particularly 
in video surveillance scenarios with complex backgrounds and high levels of noise. Furthermore, while progress 
has been made in lightweight network and feature extraction techniques, there is still room for improvement in 
addressing specific challenges related to reliable detection under adverse conditions. Against this backdrop, this 
paper aims to address these gaps in the current research landscape. By integrating enhanced image convolution 
techniques with the widely used YOLOv3 algorithm, it seeks to provide a comprehensive solution to enhance the 
efficiency and accuracy of target detection, especially in dynamic, low visibility, and challenging environmental 
conditions. Through a thorough exploration of the new approach, it aims to contribute innovative insights and 
advancements, driving the development of this field and providing practical solutions for the ongoing challenges 
in object detection and tracking in video surveillance.

This paper aims to explore the integration of the YOLOv3 algorithm with image convolution techniques for 
application in motion object data filtering and detection. Combining image convolution techniques’ character-
istics with the YOLOv3 algorithm makes it possible to address the complexities and real-time requirements in 
object detection. This paper hopes to provide an innovative approach to enhance the performance of motion 
object filtering and detection, advancing the development of computer vision and DL in practical applications.

Integration of image convolution techniques with YOLOv3 algorithm
Basics of image convolution techniques
In recent years, CNN has gained widespread attention in the field of computer vision, characterized by weight 
sharing and local  connectivity9. YOLOv3 algorithm, as a typical CNN-based object detection algorithm, employs 
a feature extraction backbone network called Darknet-53. This structure consists of 53 convolutional layers and is 
inspired by the design principles of the ResNet network, incorporating residual modules. After the initial LeNet-5 
network, a series of significant network architectures emerged, such as AlexNet, Visual Geometry Group Network 
(VGGNet), and ResNet, which have driven rapid developments in the field of image processing and spawned 
excellent  algorithms10. The YOLOv3 algorithm has been widely applied in subsequent research. Hence the focus 
will be on introducing the fundamental knowledge of the Darknet-53 network  structure11.

The convolutional layer is a crucial component in neural networks, primarily responsible for feature extrac-
tion from  images12. By stacking multiple convolutional layers and other types of layers (such as pooling layers 
and fully connected layers), neural networks can gradually learn higher-level feature representations, enabling 
more complex tasks like image classification and object  detection13. The parameters of the convolutional layer 
are learnable, and through backpropagation and optimization methods, the network can automatically learn the 
weights of convolutional kernels to extract useful features to the greatest extent. Activation functions are used 
for nonlinear mappings between input and output. There are some common activation functions, including the 



3

Vol.:(0123456789)

Scientific Reports |         (2024) 14:7651  | https://doi.org/10.1038/s41598-024-57799-0

www.nature.com/scientificreports/

Sigmoid function, Rectified Linear Unit (ReLU) function, and Leaky-ReLU  function14. The Sigmoid function 
compresses output values between 0 and 1 and possesses the properties of continuity, differentiability, and mono-
tonicity. However, the Sigmoid function suffers from the vanishing gradient problem during  backpropagation15. 
The mathematical expression of this function is shown in Eq. (1):

In Eq. (1), z represents the input value.
The mathematical computation of the ReLU function is shown in Eq. (2):

The mathematical computation of the Leaky-ReLU function is shown in Eq. (3):

In Eq. (3), α is a fixed value, typically set to 0.2.
The ReLU function outputs 0 when the input value is less than 0, and it outputs the input value itself when 

the input value is greater than or equal to 0, thus exhibiting a linear relationship. The ReLU function successfully 
addresses the issue of vanishing gradients but can suffer from neuron inactivation during the backpropagation 
 process16. Unlike the ReLU function, the Leaky-ReLU function introduces a small slope (usually a small positive 
value) for input values less than 0, ensuring activation in the negative region and preventing complete neuron 
 inactivation17. This improvement enables the Leaky-ReLU function to exhibit better performance and stability 
in many deep-learning tasks.

Improved YOLOv3 detection algorithm
The YOLO algorithm was proposed by Redmon et al. in  201618. Subsequently, a series of improved algorithms, 
including YOLO9000 and YOLOv3, were introduced. YOLOv3 has seen significant improvements in recognition 
accuracy and processing time compared to previous algorithms. Its network structure differs significantly from 
previous ones, being deeper and based on the Darknet-53 architecture, as shown in Fig. 1.

The Darknet-53 network mainly consists of 53 convolutional unit blocks. Each convolutional unit block is 
primarily composed of three parts: a convolutional layer (conv), a BatchNormalization layer (BN), and an activa-
tion function (leakyReLU), as illustrated in Fig. 2. The entire network comprises 23 residual modules, with each 
module consisting of a convolutional layer with a (1 × 1) kernel, a convolutional layer with a (3 × 3) kernel, and 
a residual network. In order to change the feature map scale, downsampling is performed using convolutional 
layers with (3 × 3) kernels and a stride of 2. This configuration of the network structure allows for maintaining 
a certain depth of the network while avoiding gradient explosion or vanishing, resulting in better convergence 
of the network. In order to address the issues of missed detections and inaccurate localization in the YOLOv3 
algorithm, this paper proposes two improvements: image partitioning size and data  filtering19. The detection 
principle of the YOLOv3 algorithm involves dividing the input image into equal-sized cells and performing 
object recognition. The original YOLOv3 algorithm divides the image into cells of size 7 ×  720. However, based 
on the characteristics of moving objects, when the cell size is large, it is possible for multiple object centers to 
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Figure 1.  Structure Diagram of the Darknet-53 Network.
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fall within the same cell, leading to missed  detections21. In order to reduce missed detections, the image parti-
tioning size can be increased to make each cell smaller. However, increasing the partitioning size also increases 
the computational workload, resulting in longer detection times and reduced  efficiency22. Through these two 
improvement methods, the detection performance of the YOLOv3 algorithm can be enhanced, reducing missed 
detections. While ensuring detection accuracy, efforts are made to improve detection speed, thereby increasing 
the efficiency and accuracy of object  detection23. The performance comparison with different partitioning sizes 
is shown in Table 1.

In Table 1, when the image partitioning size is 7 × 7, the frame rate is 41.35, but the average precision is 
relatively low at 85.4. When the image is uniformly partitioned into 14 × 14, the mean average precision (MAP) 
reaches a higher value of 91.2, but the frame rate decreases to 41.78. On the other hand, when the image is 
uniformly partitioned into 10 × 10, the MAP is 89.9, while the frame rate achieves a faster rate of 43.24. This 
data indicates that the detection accuracy is comparable at image partitioning sizes of 10 × 10 and 14 × 14, but 
the former has a faster detection speed. Furthermore, the detection speed is nearly the same when comparing 
image partitioning sizes of 10 × 10 and 7 × 7, but the former has higher detection accuracy. Therefore, ultimately 
choosing 10 × 10 as the image partitioning size strikes a balance in performance. In the YOLOv3 algorithm, 
object detection is performed based on the k-means clustering  algorithm24.

In the improved YOLOv3 convolutional layers, the inception network structure concept is incorporated by 
adding convolutional kernels of sizes (1 × 1) and (5 × 5). The purpose of including a separate (1 × 1) kernel is 
to adjust the output channel numbers, while adding a (5 × 5) kernel aims to increase the receptive field of the 
convolution process, extracting more feature information. Then, all features extracted from different branches 
are fused and used as input for the next layer. In order to reduce computational complexity while achieving the 
same convolution effect, two convolutional kernels of sizes (3 × 1) and (1 × 3) are used instead of one (5 × 5) 
kernel. In terms of parameter calculation, the parameters for two (3 × 1) and (1 × 3) kernels are 18, while one (5 
× 5) kernel has 25 parameters, resulting in a reduction of nearly 1/3 in the parameters for a single layer. Figure 2 
illustrates the improved YOLOv3 convolutional layer.

The K-means algorithm possesses advantages such as fast computation, high efficiency, and simplicity of 
 operation25. Through K-means clustering, objects can be segmented based on their features, enabling better 
adaptation to different object sizes and shapes, thereby improving detection accuracy and adaptability. This allows 
the YOLOv3 algorithm to handle detection tasks in various scenarios and with different objects more effectively. 
However, invalid data during the object recognition process can affect the recognition results. Therefore, this 
paper adds a step in the K-means algorithm to filter out invalid data and remove them. Figure 3 illustrates the 
specific steps of the improved experiment.

Using the improved K-Means algorithm for object detection significantly enhances detection accuracy com-
pared to using the original K-Means algorithm. The improved algorithm can more accurately select cluster centers 
and better partition clusters, adapting well to different object sizes and shapes, thereby improving the accuracy 

Previous layer 

output

Convolution 

kernel (1*1)

Convolution 

kernel (3*1)

Convolution 

kernel (1*3)

Residual network
Convolution 

kernel (1*1)

Convolution 

kernel (1*1)

Convolution 

kernel (3*3)

ADD

Figure 2.  Structure Diagram of the Improved YOLOv3 Convolutional Layer.

Table 1.  Performance comparison with different partitioning sizes.

Image division size 7 × 7 10 × 10 14 × 14

Average accuracy 85.4 89.9 91.2

Frame rate 41.35 43.24 41.78
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and adaptability of object detection. The application of data filtering and the improved K-Means algorithm 
enhances the performance of object  detection26. Combining filtering of invalid data with optimized clustering 
algorithms allows cluster centers to more accurately represent the features and distribution of valid data, reduc-
ing computational complexity while improving detection accuracy. This is crucial for practical object detection 
tasks as it enhances system performance and  reliability27.

Multi-object detection and tracking algorithm
Algorithm framework
This paper introduces a novel multi-object detection and tracking algorithm based on YOLOv3. The algorithm 
encompasses three key components: the detection module, the tracking module, and the correction strategy. 
In order to enhance tracking efficiency, a unique identification (ID) number is assigned to each target for con-
sistent tracking. The detection module is trained on a designated dataset, and the resulting trained module is 
subsequently applied to test videos to obtain accurate detection outcomes. These detection results serve as input 
to the tracking module, which utilizes the Kernelized Correlation Filters (KCF) algorithm to concurrently track 
multiple targets. Additionally, a correction strategy is periodically employed to update the number and positions 
of targets within the tracking module, ensuring its effectiveness and adaptability.
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Figure 3.  Improved K-Means Algorithm.
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YOLOv3 detection module
In order to obtain an effective YOLOv3 model, this paper divides the data into training, testing, and validation 
sets. The training and testing sets are used to generate the parameters of the YOLOv3 model.

The YOLOv3 detection module is responsible for detecting objects at different scales on feature maps and 
generating detection results. This module includes three output layers of different scales, with each layer predict-
ing bounding boxes and class information at a specific scale. The network architecture of YOLOv3 is depicted in 
Fig. 4, where Domain Block List (DBL) represents the interception list, and Balancing Network (BN) represents 
the balancing network.

Figure 4 depicts the incorporation of a graph convolutional network template into the detection module. 
In this template, the Pointwise convolutions utilize convolutional kernels of size (1,1). The purpose of the 
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convolution in the front part is feature extraction, while the convolution in the latter part serves to fuse features. 
The specific convolutional template is illustrated in the figure.

The detection layer of YOLOv3 is the final layer of the network, located after the Darknet-53 backbone 
network. The detection layer processes feature maps from the backbone network and generate predictions for 
bounding boxes and class information. Feature Map Processing: YOLOv3 performs object detection on feature 
maps at different levels with varying scales and semantic information. The detection layer processes these feature 
maps to obtain predictions for object positions and categories. By applying convolutions to the feature maps, the 
detection layer predicts the positions and sizes of a series of anchor boxes. Each anchor box is associated with 
a confidence score, indicating the presence of an object within that box. Decoding the predicted box positions 
and confidence scores results in the final bounding boxes. Non-Maximum Suppression (NMS) is then applied: 
On each scale, the detection layer uses the NMS algorithm to filter and remove overlapping bounding boxes, 
reducing redundancy. This yields the final detection results, which include object categories, bounding box posi-
tions, and confidence scores. The Feature Pyramid Network (FPN) structure produces predictions at three scales: 
13 × 13 × 255, 26 × 26 × 255, and 52 × 52 × 255. Each prediction includes the center coordinates and dimensions 
of the predicted boxes, confidence scores, and class probabilities. Finally, the NMS method is applied to filter 
the confidence scores, selecting the highest-scoring predicted boxes as the final output.

Training of the object prediction module
In object detection, in order to outline the detected objects, it is essential to predict the data related to the posi-
tion of the predicted bounding boxes. In this paper, a YOLOv3 network model was trained using pedestrian data 
from the Common Objects in Context (COCO) dataset. The model’s output includes the position information of 
predicted boxes, confidence scores, and probabilities for each class. During training, different coefficients were 
set for three types of data, and the network model was optimized through weighted loss calculation. The confi-
dence loss function was computed using cross-entropy. If a predicted bounding box does not contain an object 
and represents the background region, the Intersection over Union (IoU) between the box and the anchor box 
is calculated, and the maximum value is obtained. If this maximum value exceeds a predefined threshold, the 
confidence score for the background box is ignored. Otherwise, the confidence loss function for the background 
bounding box is computed as shown in Eq. (4).

In Eq. (4), Ci represents the true value of the confidence of the sample, which is 0 in the background. Ĉi 
represents the confidence of the predicted bounding box. The loss function for the confidence of foreground 
bounding boxes is given by Eq. (5):

In Eq. (5), lobjij  indicates the matching between the bounding box and the j-th prior box of the i-th grid cell. Ci 
is equal to 1 in the foreground. The categorical probability loss function for the predicted classes of foreground 
bounding boxes is calculated using the cross-entropy method, which is represented by Eq. (6):

In Eq. (6), P represents the true values of the sample’s class probabilities, while P̂ represents the predicted class 
probability values of the bounding box, specifically the probability of the predicted result being a pedestrian. 
The coordinate values of the bounding box are predicted using the sum of the squared error loss function. The 
calculation method for this loss function is shown in Eq. (7):

In Eq. (7), ( ̂tx , t̂y , t̂w , t̂h) represents the predicted output of the bounding box’s coordinates. �x , �y , tw , and 
th are obtained through the inverse transformation from Eqs. (8) to (11) based on the true bounding box.
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Detection process
The detection module of the proposed algorithm incorporates the utilization of a pre-trained network model. The 
application of this trained model within the detection module follows a specific flow, which is visually depicted in 
Fig. 5. The detection process encompasses four integral stages, namely image normalization, feature extraction, 
result prediction, and the subsequent determination of the final detection outcomes.

The YOLOv3 detection process is illustrated in Fig. 5. Firstly, an initial frame image is obtained and fed into 
the detection module. The input image is resized to 416 × 416 and normalized. Next, the processed image is 
passed through the Darknet-53 network for feature extraction, resulting in feature maps of sizes 13 × 13 × 255, 
26 × 26 × 255, and 52 × 52 × 255. These feature maps are used to generate candidate predictions for the image. 
Information is computed for all candidate predictions. Subsequently, candidate predictions below a set threshold 
are ignored. The NMS method is then applied to select the optimal predictions, resulting in the final detection 
results. Each detection result is assigned an ID in the order of their output. In order to prevent the reoccurrence 
of IDs for targets that move out of the field of view, all IDs are always kept and not reused. The detection results 
for all targets are output and serve as inputs for the tracking module.

Darknet-53

13*13 26*26 52*52

NMS

Forecast 

results

Detection 

result

Image normalization

Feature extraction

Figure 5.  YOLOv3 Detection Process.
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Experimental data design
Experimental validation was conducted on the proposed multi-object detection and tracking algorithm. This 
study selected the MOT16 dataset, which comprises multiple multi-object videos. Videos were randomly selected 
from the dataset for tracking. These video sequences involve multiple moving pedestrians and various challenges 
such as occlusion, deformation, and scale variations.

All experiments in this paper were conducted on the Windows 10 operating system. The development tools 
used include OpenCV 3.4.2, TensorFlow 1.11.0, and PyCharm 2017.1.2. The hardware environment consisted 
of an Intel(R) Core(TM) i5-6200U@2.30 GHz processor. The video datasets used in the experiments were pub-
licly available datasets collected from the internet. The video backgrounds were static, and the targets included 
pedestrians and vehicles. The hardware configuration included an Intel Core i5 CPU, 8 GB of memory, and the 
Matlab R2016a software platform.

Analysis of multi-object detection and tracking algorithm experimental results
Analysis of the algorithm’s target detection success rate
The target detection of the algorithm is analyzed using videos from the dataset. The success rate of each frame’s 
tracking result is calculated by measuring the overlap between the tracked position of each target and the ground 
truth position. Subsequently, the average overlap rate of multiple targets is calculated to obtain the success rate 
for the current frame. Figure 6 illustrates the specific results.

In Fig. 6, the “Jogging” video shows a relatively high success rate, with most frames achieving success rates 
above 90%. The lower success rates are around 80%. The “Subway” video has success rates above 75%, with the 
highest reaching 90%. The success rates for the “Bolt” video have decreased, with some frames achieving only 
around 40% and higher rates reaching 70%. The “Walking2” video has the highest success rate, reaching around 
85% at its peak and around 60% at its lowest. The success rates of the “Jogging,” “Subway,” “Video1,” and “Video2” 
videos are all above 60%. Among them, “Jogging” and “Video1” show better detection performance, with a 
higher occurrence of success rates above 80%. The detection accuracy of the “Bolt” and “Walking2” videos has 
decreased, but their success rates are still around 70%.

Algorithm robustness analysis
Motion object recognition is easily affected by factors such as rain, snow, fog, and sandstorms, making it difficult 
to effectively detect targets due to the poor quality of the photos. Therefore, using salt and pepper noise to blur 
the images is used to simulate low visibility conditions to verify the target detection capability of the proposed 
algorithm. The YOLOv3 algorithm and the improved YOLOv3 algorithm proposed are analyzed using images 
with different levels of salt and pepper noise. Figure 7 illustrates the specific results.

Figure 7 shows the results of the noise robustness analysis, where the numbers in the images represent the 
noise level. It can be observed that as the noise level increases, the difficulty of target detection gradually increases. 
Even when the signal-to-noise ratio (SNR) reaches 0.2, the improved YOLOv3 algorithm can still recognize 
relatively close targets. Table 2 displays the number of detected targets and their accuracy as SNR increases.

Table 2 shows that with the addition of noise, the number of targets detected by YOLOv3 is consistently fewer 
than those detected by the improved YOLOv3. When noise with an SNR of 0.1 is added to the photo, although 
YOLOv3 can detect targets, its accuracy is zero. In contrast, the improved YOLOv3 maintains a 77.78% accuracy 
even when noise with an SNR of 0.1 is added to the photo. This indicates that the improved YOLOv3 enhances 
the model’s target recognition capability. As the noise level increases, the improved YOLOv3 gradually loses its 
recognition ability, but it can still detect certain targets.

Figure 6.  Multi-object Tracking Success Rate.
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Figure 7.  Results of noise robustness analysis (a) Result of YOLOv3 algorithm; (b) Result of Improved YOLOv3 
algorithm.

Table 2.  Number and accuracy of target detection.

SNR Detection count of YOLOv3 Detection count of improved YOLOv3 Detection accuracy of YOLOv3
Detection accuracy of 
improved YOLOv3

0 12 13 100% 100%

0.1 1 9 0% 77.8%

0.2 0 1 / 0%
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In order to evaluate the tracking performance of the algorithm discussed in this chapter, a series of experi-
ments are conducted on the widely recognized OTB-2015 dataset. The algorithm’s performance is compared 
with five commonly used tracking algorithms: MSPF, Discriminative Scale Space Tracker (DSST), Multi-Sensor 
Tracker (MTS), Staple with Convolutional Features, Structured Output Tracker (SRDCF), and Staple. In order to 
comprehensively assess the algorithm’s ability to handle videos with different attributes, the One-Pass Evaluation 
(OPE) performance evaluation method is adopted. The evaluation includes measurements of target tracking accu-
racy in six different attribute scenarios, including illumination variation (IV), background clutter (BC), severe 
deformation (SV), occlusion (OCC), deformation (DEF), and motion blur (MB). Figure 8 describes the evalua-
tion results using the OTB-2015 dataset, illustrating the accuracy of target tracking under each attribute scenario.

In Fig. 8, the proposed algorithm achieves approximately 0.8 target tracking accuracy in all six different 
attribute scenarios. The MSPE algorithm achieves a target tracking accuracy of around 0.6 in various attribute 
scenarios. The DSST algorithm achieves target tracking accuracy ranging from 0.5 to 0.7 in different attribute 
scenarios. The MTS algorithm achieves a maximum target tracking accuracy of 0.664 and a minimum of 0.546 
in various attribute scenarios. The SRDCF algorithm achieves a maximum target tracking accuracy of 0.744 and 
a minimum of 0.671 in different attribute scenarios. In different attribute scenarios, the Staple algorithm’s target 
tracking accuracy ranges from 0.694 to 0.624. In summary, the proposed algorithm outperforms the other five 
target tracking algorithms in target tracking accuracy in all six attribute scenarios.

Conclusion
Motion target detection and tracking technology is a focal area of research in the field of video surveillance. 
However, there are still some challenges in algorithm research in this direction that need to be addressed. In order 
to achieve recognition, detection, and tracking of moving objects in the field of video surveillance, this paper 
proposes a multi-object detection algorithm based on an improved YOLOv3. The algorithm detects and tracks 
moving objects in videos, and its feasibility is verified through experimental analysis. The experimental results 
show that the success rates of the “jogging”, “subway”, “Video1”, and “Video2” videos are all above 60%. Among 
them, the detection effects of the “jogging” and “Video1” videos are the best, with success rates mostly above 
80%. Although there is a slight decrease in detection accuracy for the “Bolt” and “Walking2” videos, the suc-
cess rates are still around 70%. The tracking accuracy of the MSPF algorithm is around 0.6, the DSST algorithm 
achieves a tracking accuracy of 0.603, the MTS algorithm achieves a tracking accuracy of 0.639, and the tracking 
accuracy of the proposed algorithm in this paper is 0.822. In terms of tracking accuracy and success rate, this 
algorithm outperforms the other six target tracking algorithms. In the noise resistance experiment, even with 
noise with an SNR of 0.1 added to the photos, the algorithm still maintains a precision of 77.78%. The algorithm 
demonstrates excellent performance in detecting and tracking moving targets. One limitation of this paper is 
that the motion target detection algorithm assumes the camera is stationary and does not consider cases where 
the camera experiences vibration or motion. Future research will focus on developing motion target selection 
and detection tracking algorithms to handle dynamic backgrounds.
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Figure 8.  Target Tracking Accuracy under Six Different Attribute Scenarios.
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Data availability
All data generated or analysed during this study are included in this published article [and its supplementary 
information files].
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