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Image encryption scheme based 
on improved four‑dimensional 
chaotic system and evolutionary 
operators
Ying Niu 1, Hangyu Zhou 2 & Xuncai Zhang 2*

To enhance the security of image data transmission, and address the weaknesses of existing image 
encryption schemes based on chaotic systems, particularly concerning resistance to differential 
attacks and the unstable performance of chaotic systems, this article introduces an improved four-
dimensional chaotic system and integrates evolutionary operators to propose an image encryption 
scheme. Firstly, a method for generating pseudo-random sequences associated with the plaintext 
is designed. The change rate of the ciphertext pixel value exceeds 0.9967 after a slight modification 
of the plaintext pixel value, significantly improving the plaintext sensitivity and the scheme’s ability 
to resist selected plaintext attacks. Secondly, an individual rearrangement operation is introduced 
to achieve bit-level scrambling, and pixel-level scrambling is achieved by selection strategy. 
Subsequently, crossover and mutation operations are incorporated into image encryption. To reflect 
the randomness of the pairing, we adopt the pseudo-random sequence generated by the chaotic 
system to control the crossover and mutation operators, and a diffusion operation is performed on 
selected pixel pairs. Finally, ciphertext feedback is applied. Experimental results and performance 
analysis demonstrate that the proposed scheme not only enhances the security of encrypted images 
but also effectively resists noise and cropping attacks. This method effectively meets the high-security 
requirements of images in network transmission and provides new ideas for further research in the 
field of image encryption.

Images, as an essential form of multimedia data, encompass a wide range of sensitive information, including 
personal privacy, business secrets, and medical images. With the continuous development of communication 
technology and the widespread use of information transmission, ensuring the security and confidentiality of 
image information has become particularly urgent. Image encryption, as a crucial technology in the field of 
information security, is essential to protect the safe transmission of such vital information. Due to the character-
istics of images, such as massive data volume, strong correlation, high redundancy, and distinctive recognition 
features, traditional text encryption methods like AES and DES prove to be slow and ineffective in encrypting 
and decrypting images. These methods can no longer meet the encryption needs of large-capacity image data1. 
Consequently, researchers have begun exploring new methods for image encryption. Common approaches 
include image encryption schemes based on techniques such as wavelet transform encryption2–4, invertible 
transform5–7, deep learning8–10, quantum encryption11–13, and others. Chaotic systems have garnered significant 
attention in the field of information security due to their nonlinear dynamics and high sensitivity to initial 
conditions. In image encryption schemes, the integration of chaotic systems enhances unpredictability, thereby 
improving image security by introducing a certain degree of randomness. For instance, Wang14 proposed an 
image encryption scheme based on logistic map. This approach first utilizes wavelet transform to focus on the 
key information features of the image in the low-frequency part, subsequently encrypting the low-frequency 
information through the random sequence generated by logistic map. Mondal15 proposed an image encryption 
method based on two-dimensional Tent map, combined with meta-cellular automata. The random sequence 
generated by the Tent map serves as a cipher stream to control the state of each neighborhood cell and transforms 
each pixel value, achieving the encryption of the plaintext image. Although low-dimensional chaotic systems 
offer advantages in terms of simplicity, ease of implementation, and understanding, they have limitations in 
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generating random sequences. These limitations may result in relatively low randomness and susceptibility to 
statistical analysis attacks.

To ensure the security of encrypted images and prevent malicious theft, some researchers have begun utiliz-
ing high-dimensional chaotic systems to design image encryption methods, addressing the limitations of low-
dimensional chaotic systems. For example, Ma16 employed the three-dimensional Chen chaotic system and the 
Fisher-Yates permutation scheme to encrypt color images. In this approach, the sequence generated by the three-
dimensional chaotic system serves as the cipher stream for the Fisher–Yates permutation scheme, disrupting the 
pixel positions. Subsequently, a new set of initial values is used to generate a new sequence through the chaotic 
system, ultimately operating with the plaintext pixel to alter its value. Three-dimensional chaotic systems provide 
higher security compared to their one-dimensional and two-dimensional systems, exhibiting more complex 
dynamical behavior, that enhances the system’s unpredictability against potential attackers. Three-dimensional 
chaotic systems offer relatively robust protection with somewhat controllable computational complexity, mak-
ing them suitable for moderately complex image encryption applications. However, although relatively secure, 
three-dimensional chaotic systems have a reasonably limited keyspace, which may need improvement in highly 
security-demanding scenarios. To overcome this deficiency, Zhao17 proposed a new image encryption method 
using a four-dimensional chaotic system combined with DNA coding. Experimental analyses demonstrate that 
the method not only achieves a substantial keyspace but also enhances security performance. Four-dimensional 
chaotic systems provide a larger keyspace than three-dimensional systems, heightening the difficulty of attacks 
and improving encryption security. As dimensionality increases, the dynamical behavior becomes more intricate, 
further strengthening the encryption. Four-dimensional chaotic systems are better suited for scenarios with 
higher security requirements than three-dimensional systems. They can provide richer dynamics, increasing 
the difficulty for attackers to predict the system’s state. Some scholars have explored five or higher-dimensional 
chaotic systems18–20, where computational complexity grows exponentially with dimensionality. This may lead to 
a significant reduction in the real-time performance of image encryption in resource-constrained environments, 
such as embedded systems or mobile devices. Parameter tuning and optimization for high-dimensional chaotic 
systems are relatively more complex. Finding the right combination of parameters to ensure system stability and 
good cryptographic performance may require more time and computational resources. Additionally, higher-
dimensional chaotic systems may be more demanding on hardware resources, which may limit applications 
on some resource-constrained devices. In practical applications of high-dimensional chaotic systems, these 
drawbacks and challenges should be comprehensively considered, balancing encryption security, computational 
efficiency, and hardware resource requirements.

As researchers delve deeper, they discover that single or structurally simple chaotic maps may have the 
potential to be less accurate and less secure. Therefore, image encryption methods are becoming increasingly 
diversified, typically employing not just one method but a combination of methods. Zhang21 utilized Latin 
square and S-box to implement pixel substitution and replacement, respectively, aiming to enhance the resist-
ance of the encryption system against attacks. Wang22 employed a combination of dynamic parity row check and 
Z-transform to completely disrupt pixel positions. Additionally, the chunking method was used to diffuse differ-
ent chunks of the ciphertext, thereby improving the robustness of the encryption system. Zhu23 applied chunk 
scrambling and an optimized artificial fish swarm scheme to double scramble pixel positions. Furthermore, the 
DNA coding technique was employed to diffuse each pixel value, enhancing overall security. Based on this, this 
article extends the traditional three-dimensional chaotic system into a new four-dimensional chaotic system by 
introducing new state variables based on the three-dimensional Lorenz chaotic system. Simultaneously, incor-
porating evolutionary operators and employing image encryption with the assistance of evolutionary operators 
such as selection, recombination, and mutation further enhances the effectiveness of image encryption. This 
fusion approach introduces a novel idea and method for research in the field of image encryption. To strengthen 
the cryptosystem and provide higher security, this work fully utilizes the properties of pseudo-randomness and 
the traversal of evolutionary operators and chaos theory. This comprehensive approach addresses the security 
threats and inefficiencies encountered in image encryption.

The main contributions of this article are as follows:

(1)	 Proposing a new four-dimensional chaotic system by introducing new state variables and increasing the 
dimensionality of the system. This expansion results in a larger state space, offering increased degrees of 
freedom. Consequently, the system exhibits more complex trajectories with richer dynamical behavior.

(2)	 Analyzing the maximum Lyapunov exponent with one and two parameters, sensitivity, and NIST test of 
the new four-dimensional chaotic system. The chaotic system demonstrates a high Lyapunov exponent 
and sensitivity to the initial key. The generated chaotic sequences exhibit high complexity and randomness, 
thereby enhancing the security of image encryption schemes.

(3)	 Applying evolutionary operators to image encryption, utilizing sequences generated by the four-dimen-
sional chaotic system to execute selection, mutation, and recombination operations on pixels. The approach 
facilitates highly random pixel value changes. Notably, the recombination operation involves eight rules, 
increasing the difficulty of cracking and improving the overall security of the encryption scheme.

The remaining sections of this article are outlined as follows: "Theoretical foundations" section introduces 
the concepts of three-dimensional Lorenz chaotic system and evolutionary operators; "Hyperchaotic system" 
section provides a detailed presentation of the proposed four-dimensional chaotic system and analyses its key 
performance metrics; "Image encryption scheme" section describes the detailed steps and procedures of the 
encryption scheme; "Simulation experiment results" section presents the experimental results and multiple 
security analyses; and "Conclusions" section concludes the article.
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Theoretical foundations
Chaotic system
A chaotic system is a deterministic system characterized by seemingly random, irregular motions with attributes 
of uncertainty, irreducibility, and unpredictability. To strike a balance between the complexity and efficiency 
of chaotic systems, the Lorenz chaotic system, proposed by the meteorologist Edward Lorenz in his study of 
meteorology24, is a three-dimensional nonlinear dynamical system that describes a convective phenomenon in 
which air or liquid forms a complex vortex structure in a confined space. This system consists of three coupled 
differential equations with expressions, as shown in Eq. (1).

where x, y, z are the state variables of the system, and σ, γ, b are the system’s parameters. When the parameters 
are set to σ = 10, γ = 28, b = 8/3, with initial values of (1, 1, 1), the system exhibits classical chaotic phenomena, 
including extreme sensitivity to initial conditions and randomness. In a chaotic state, the system’s trajectory 
displays complex and seemingly irregular motion, as depicted by its Lyapunov exponents in Fig. 1, which are 
(0.9021, − 0.0001, − 14.5686).

Evolutionary strategy
Evolutionary strategy25 is an evolutionary computational method designed to tackle parameter optimization 
problems. The method draws inspiration from natural biological evolution and was first proposed by H.P. Schwe-
fel of Germany in 1963. Evolutionary strategies find wide applicability across various optimization domains, 
including continuous, discrete, unconstrained, and constrained combinatorial search spaces, as well as hybrid 
search spaces. The core idea involves iteratively evolving a population of individuals containing candidate solu-
tions through three key operators: selection, recombination, and mutation, to progressively refine solutions. The 
main search loop of the evolutionary strategy is illustrated in Fig. 2.

The evolutionary strategy comprises the following key steps:

(1)	 Population initialization A group of individuals is randomly generated, with each representing a potential 
solution to the problem. The parameters of these individuals are chosen randomly.

(2)	 Fitness evaluation Apply a problem-specific fitness function to each individual, to assess their performance 
in solving the problem. The fitness function quantifies the quality of individuals.

(3)	 Recombination Involves the combination of some features or parameters of single or multiple individuals 
to generate new individuals.

(4)	 Mutation Refers to the random or systematic perturbation of individual information to introduce new 
information and thus increase the diversity of the population.

(5)	 Selection Selection is based on the individual’s adaptation, and the better-adapted individuals are retained 
through recombination and mutation operations. This mimics the process of natural selection, wherein 
individuals with superior adaptations have a greater likelihood of survival and reproduction.

(6)	 Repeat iterations and algorithm termination The above steps are repeated iterations, and the population 
evolves, with the better-adapted individuals being retained and continuously optimized to approach the 
optimal solution to the problem. The algorithm terminates when the maximum number of iterations, the 
adaptation threshold, or other specified conditions is reached; if the termination conditions are not reached, 
the algorithm returns to step 3.

(1)
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ẏ = γ x − y − xz
ż = xy − bz

,

Figure 1.   Lyapunov exponents of three-dimensional Lorenz chaotic system.
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Evolutionary strategies have strong local search ability and perform well in dealing with continuous optimi-
zation problems, enabling them to converge to the optimal solution quickly. Therefore, they are widely used in 
engineering optimization, machine learning, and computer simulation.

However, in the image encryption problem, although it is not a traditional optimization problem, the intro-
duction of evolutionary operators aims to apply the selection, recombination, and mutation operations of biologi-
cal evolution to image pixels. Encryption is achieved through pixel scrambling and diffusion via pixel selection, 
mutation of pixel values (expressed in binary form), and inter-pixel reorganization. Despite being applied to 
different domains, evolutionary operators demonstrate their flexibility and adaptability, successfully transition-
ing to the solution of the image encryption problem. Here, we define recombination operations in evolutionary 
operators for better application to image encryption, including:

(1)	 Individual rearrangement This refers to the manipulation of the interior of a single individual to generate 
a new one. This can involve restructuring, parameter changes, etc.

(2)	 Crossover It refers to selecting two or more individuals to generate new offspring by crossing over their 
parameters or structures. This emphasizes manipulation across individuals. Through crossover, evolutionary 
operators enable more flexible manipulation of pixels and produce a more comprehensive image encryption 
effect.

Hyperchaotic system
Proposed four‑dimensional hyperchaotic system
As a nonlinear dynamical system, the three-dimensional Lorenz chaotic system has been widely utilized in image 
encryption due to its strong sensitivity to initial values and parameters, as well as its unpredictable trajectories. 
To further enhance the pseudo-randomness of the generated sequences, we introduce a new state variable, 
denoted as w, into the three-dimensional Lorenz system and couple it with the third dimension of the system to 
construct a four-dimensional hyperchaotic system. The state variable w interconnects the individual state vari-
ables and system parameters in a chaotic system to enhance the disorder and sensitivity of the chaotic system, 
whose expression is shown in Eq. (2).

where x, y, z, and w represent the state variables of system, and a, b, c, d, e and f are the parameters controlling 
the chaotic behavior of the system. After parameter tuning, when the system parameters are set to a = 34, b = 28, 
c = 2.6, d = 4, e = 1.8, and f = 2.4, the system enters a hyperchaotic state with improved chaotic behavior. Given 
the initial values x0 = 0.1, y0 = 0.2, z0 = 0.2, and w0 = 0.2, the phase diagram of the hyperchaotic system is depicted 
in Fig. 3.

(2)
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Figure 2.   The main search loop of the evolutionary strategy.
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Lyapunov exponent
The Lyapunov exponent quantitatively measures the dynamic properties of a system by assessing the rate of 
orbital mean dispersion. In a four-dimensional chaotic system, there are four Lyapunov exponents, with their 
sum being required to be less than zero, including at least two positive exponents26. Each parameter in the chaotic 
system has a distinct range, leading to different chaotic states and Lyapunov exponents. The Lyapunov exponents 
of the proposed four-dimensional chaotic system are depicted in Fig. 4, indicating LE1 = 6.6892, LE2 = 0.0189, 
LE3 = 0.0143, and LE4 = -47.3166. Since the sum is less than zero and there are three positive Lyapunov exponents, 
it can be inferred that the system enters a hyperchaotic state under these conditions.

The fractal dimension of the four-dimensional chaotic system, denoted as DL, can be computed using Eq. (3).

where j + 1 represents the dimension of the chaotic system. If the fractal dimension falls within the range of 
3 < DL < 4, it signifies a hyperchaotic system27. Upon calculation, the proposed system’s fractal dimension satisfies 
3 < DL < 4, affirming its hyperchaotic nature.

The single-parameter Lyapunov exponent diagram is employed to identify local maxima of a control param-
eter in a chaotic system, facilitating the visualization of the system’s transition from cyclic to chaotic behavior. By 

(3)DL = j +
∑j

i=1 LEi
|LEj+1| = 3+ LE1+LE2+LE3

|LE4| = 3.1421,

Figure 3.   Phase diagram of hyperchaotic system: (a) x–y plane, (b) x–z plane; (c) x–w plane; (d) y–z plane; (e) 
x–y–z plane; (f) y–z–w plane.

Figure 4.   Lyapunov exponents of the improved hyperchaotic system.
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leveraging these maxima, optimal parameter values can be selected to achieve an optimal chaotic state. Figure 5 
illustrates the Lyapunov exponent for various parameters, showcasing the chaotic behavior induced by each 
parameter within a specified range. This analysis underscores the chaotic properties exhibited by the proposed 
four-dimensional chaotic system across the parameter spectrum, thereby enhancing the unpredictability of the 
generated pseudo-random sequences and expanding the keyspace.

The sequences generated by the three-dimensional Lorenz chaotic system often exhibit weak broadband 
characteristics, limited randomness, and monotonicity in localized regions28. To address these shortcomings, 
researchers have endeavored to enhance the three-dimensional Lorenz chaotic system for application in image 
encryption8,29,30. Table 1 compares the proposed four-dimensional chaotic system in this study with existing 
counterparts. Notably, the proposed system exhibits three positive Lyapunov exponents, whereas other existing 
systems feature only two. Additionally, the maximum Lyapunov exponent of the proposed system surpasses 
that of the others, indicating a more complex and nonlinear structure. Furthermore, the inclusion of multiple 
parameters in the proposed system results in a larger keyspace, bolstering image encryption security compared 
to other systems.

Figure 5.   Single-parameter Lyapunov exponents: (a) parameter a ∈ [20, 38]; (b) parameter b ∈ [28, 60]; (c) 
parameter c ∈ [− 20, 3]; (d) parameter d ∈ [2.5, 4.5]; (e) parameter e ∈ [− 5, 5]; (f) parameter f ∈ [0, 10].
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Maximum Lyapunov exponent for two‑parameter
Chaotic systems are nonlinear dynamical systems characterized by intricate behavior and high sensitivity to 
system parameters. Even minor alterations in these parameters can significantly influence the system’s trajectory. 
The two-parameter maximum Lyapunov exponent diagram offers insight into the dynamic behavior of chaotic 
systems. By setting initial values at (0.1, 0.2, 0.2, 0.2), the impact of parameters a ∈ [20, 37] and f ∈ [0, 10] on the 
system’s behavior is investigated. Figure 6 illustrates the two-parameter maximum Lyapunov exponent diagram 
and its three-dimensional representation, with distinct colors denoting different Lyapunov exponents: darker 
shades (red) indicating larger exponents, and lighter shades (blue) indicating smaller ones.

Sensitivity analysis
When varying initial values within a chaotic system, different sequences are generated, underscoring the system’s 
sensitivity to these values. Minor adjustments to initial values lead to distinct chaotic sequences, highlighting the 
system’s high sensitivity. In this section, slight modifications are made to the initial values, with four sets of tests 
conducted using x0 (0.1), y0 (0.2), z0 (0.2), w0 (0.2), and x0 + 10–14, y0 + 10–14, z0 + 10–14, w0 + 10–14. The outcomes 
of these tests are depicted in Fig. 7. Notably, even minute changes in individual initial values yield markedly 
different sequences, underscoring the pronounced sensitivity of the proposed four-dimensional chaotic system 
to initial conditions.

Dissipative and equilibrium stability analysis
The total energy of the chaotic system diminishes over time, while the phase space contracts as the system 
evolves. This characteristic, known as the dissipative nature of a chaotic system31, is defined by Eqs. (4) and (5):

where t represents time, and V denotes the dissipation volume. By substituting the system parameters, a = 34, 
b = 28, c = 2.6, d = 4, e = 1.8, and f = 2.4 into Eq. (4), we obtain ∇V = − a − c − d = − 40.6, indicating that ∇V < 0. 
Therefore, at this juncture, the chaotic system is dissipative. As time progresses infinitely, the chaotic system’s 
phase space eventually converges to a point, forming an attraction domain. Modifying one aspect of the chaotic 
system to 0, as depicted in Eq. (6):

(4)∇V = ∂ ẋ
∂x + ∂ ẏ

∂y +
∂ ż
∂z +

∂ẇ
∂w < 0,

(5)dV
dt = e∇V ,

(6)





a
�
y − x

�
+ z = 0

bx − cy − xz = 0

xy − dz + ew = 0

fx + y = 0

.

Table 1.   Comparison of four-dimensional chaotic systems.

Chaotic systems LE1 LE2 LE3 LE4 Number of parameters

Our 6.6892 0.0189 0.0143 − 47.3166 6
29 3.3488 0.1399 0 − 17.1252 6
30 0.2000 0.3000 0 − 7.5600 4
8 0.3300 0.1586 0 − 15.1752 4

Figure 6.   Two-parameter Lyapunov exponents: (a) maximum Lyapunov exponent diagram in (a–f) plane; (b) 
three-dimensional visualization diagram in (a–f) plane.
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After computation, the chaotic system yields two equilibrium points: E1 = (0, 0, 0, 0) and E2 = (0.2962, − 0.7109, 
34.2400, 76.2059). The chaotic system’s Jacobian matrix is shown in Eq. (7):

With control parameters a = 34, b = 28, c = 2.6, d = 4, e = 1.8, and f = 2.4, the eigenvalues of each equilibrium 
point are computed using the Jacobian matrix. For E1, the four eigenvalues are λ1 = − 52.9183, λ2 = 16.3249, 
λ3 = -0.0179, λ4 = − 3.9887, while for E2, the corresponding eigenvalues are λ1 = − 24.1106, λ2 = − 12.4377, 
λ3 = − 4.1019, and λ4 = 0.0501.

According to the Routh-Hurwitz criterion32, the coefficients of the eigen equations must all be negative for 
equilibrium points to be stable. However, not all coefficients of the eigenvalues for both equilibrium points are 
negative, indicating that they are unstable.

NIST test
The randomness of the sequence can be quantitatively assessed using the NIST randomization test33. In this 
experiment, the NIST test was conducted on four sequences generated by the four-dimensional chaotic system. 
Prior to the test, these sequences were converted into binary sequences. If P > 0.01, it indicates that the sequence 
is sufficiently random to pass the NIST test.

Table 2 displays the test results, indicating that the P values for all test items are highly significant, surpassing 
the significance level of 0.01. This verifies the randomness of the chaotic sequence, ensuring the encryption’s 
security.

Image encryption scheme
The generation of initial parameters for the chaotic system involves combining the provided external key with the 
plaintext image to generate pseudo-random sequences associated with the plaintext. Subsequently, the plaintext 
undergoes scrambling through individual rearrangement and selection operations, resulting in double scrambling 
at both the bit-level and pixel-level. Additionally, the image is subjected to crossover and mutation operations 
as part of the image diffusion process, aiming to obscure the original image. The inclusion of pseudo-random 
sequences in the ciphertext feedback further aids in the diffusion process. The detailed encryption flowchart is 
depicted in Fig. 8.

(7)J =




−a a 1 0
b− z −c −x 0
y x −d e
f 1 0 0


.

Figure 7.   Initial value sensitivity test: (a) x0 + 10−14 ; (b) y0 + 10−14 ; (c) z0 + 10−14 ; (d) w0 + 10−14.
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Key generation
To ensure that different keys are used for different images, we associate the key with the plaintext and use the 
plaintext image pixel values and hash values to update the key. Using the SHA-256 scheme, a 256-bit binary hash 
value (named K) is obtained by performing encryption operations on the plaintext image. Using this operation 
to perform key updates in every encrypt round. K is divided into 32 groups of 32 bytes by byte, each represented 

Table 2.   NIST random test results.

NIST-Nnme

P value

Resultx y z w

Frequency 0.976060 0.213309 0.739918 0.082177 Pass

Block frequency 0.407091 0.082177 0.082177 0.671779 Pass

Cumulative sums 0.602458 0.804337 0.671779 0.534146 Pass

Runs 0.671779 0.213309 0.949602 0.213309 Pass

Longest run 0.066882 0.253551 0.739918 0.213309 Pass

Rank 0.213309 0.911413 0.407091 0.066882 Pass

FFT 0.862344 0.949602 0.100508 0.299251 Pass

Nonperiodic template 0.911413 0.862344 0.949602 0.949602 Pass

Overlapping template 0.739918 0.299251 0.299251 0.534146 Pass

Universal statistical 0.468595 0.534146 0.213309 0.468595 Pass

Approximate entropy 0.739918 0.122325 0.468595 0.862344 Pass

Random excursions 0.122325 0.964295 0.739918 0.350485 Pass

Random excursions variant 0.122325 0.834308 0.534146 0.213309 Pass

Serial 0.976060 0.299251 0.862344 0.739918 Pass

Linear complexity 0.602458 0.407091 0.534146 0.100508 Pass

Figure 8.   Flowchart of encryption scheme.
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as K1, K2, …, K32. According to Eqs. (8)–(10), the updated set of keys is computed to get the updated set of keys 
for the chaotic system and the initial values.

where [x] is a rounding function, qi is determined by the average of the pixel values in the ith column of the 
plaintext image, N is the number of columns in the plaintext image, and x0’, y0’, z0’, ω0’ are given values.

Selection operation
In evolutionary strategy, the selection operation refers to the process of selecting individuals from the population 
based on their adaptability. The goal of the selection operation is to maintain or improve the overall quality of 
the population over consecutive generations, guiding the evolutionary process towards an optimal solution. In 
image encryption methods, to enhance the confusion effect, we need to introduce more randomness. Therefore, 
we have improved the selection operation to better adapt to the requirements of image encryption. In this article, 
we utilize the pseudo-randomness of chaotic sequences to achieve individual selection, aiming to achieve better 
pixel scrambling.

Given an image P of size M × N, for traversing all the pixels, the selection in this article involves random 
traversal, differing from the selection in the optimization scheme. The randomness of selection is achieved 
here with the help of chaotic sequences due to their easy generation, strong sensitivity to initial conditions, and 
complete reproducibility.

To achieve this, rearrange the generated pseudo-random sequence in ascending order to obtain an ordered 
sequence. Determine the location of each element in the ordered sequence and its position in the original 
sequence. Then, form a new sequence from these position sequences in order, i.e., the position index sequence 
Index = {Index1, Index2, Index3, … IndexM×N}. Based on the values of two adjacent pixels in the position index 
sequence, select the corresponding pixel positions in the image P according to Eq. (11) to obtain the pixel pairs 
PixelA and PixelB. Figure 9 shows a schematic diagram of the selection strategy, where Fig. 9a shows the chaotic 
sequence, the ascending sequence, and the index sequence of length 4 × 4, Fig. 9b shows the pixel position pair 
representation corresponding to the 4 × 4 matrix, and Fig. 9c shows the 4 × 4 pixel matrix and its pixel pair 
selection schematic, where P is the plaintext image matrix. The selection formula (11) is described as follows:

where P(·) is the plaintext pixel, PixelA, and PixelB are the selected pixel pairs, mod(·) is the modulo operation, 
floor(·) is the rounding operation, i is odd, and i < M × N.

Crossover and mutation operation
In this article, crossover and mutation are utilized to alter the bit sequence, enhancing the robustness and security 
of encryption. Given two parents and a random number, two offspring individuals are obtained after crossover. 
Here, the individuals are the pixels in the image, each represented by 256 grey levels with pixel values in an 8-bit 
binary. Following the previous selection strategy, for the selected pixel pairs noted as PixelA = a8a7a6a5a4a3a2a1 

(8)
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(9)





α = (K1⊕K2⊕K3⊕K4)+K5+K6+K7+K8

256∗5

β = (K9⊕K10⊕K11⊕K12)+K13+K14+K15+K16

256∗5

γ = (K17⊕K18⊕K19⊕K20)+K21+K22+K23+K24

256∗5

ω = (K25⊕K26⊕K27⊕K28)+K29+K30+K31+K32

256∗5

,

(10)





x0 = mod(Q1 + Q2 − α, 1)+ x′0

y0 = mod(Q2 + Q3 − β , 1)+ y′0

z0 = mod(Q3 + Q4 − γ , 1)+ z′0

ω0 = mod(Q4 + Q1 − ω, 1)+ ω′
0

,

(11)
{

PixelA = P
(
floor((Indexi − 1)/N)+ 1,mod(Indexi − 1,N)+ 1

)

PixelB = P
(
floor((Indexi+1 − 1)/N)+ 1,mod(Indexi+1 − 1,N)+ 1

) ,
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and PixelB = b8b7b6b5b4b3b2b1, the pixel pairs producing the children are denoted as Pixel′A = a′8a
′
7a

′
6a

′
5a

′
4a

′
3a

′
2a

′
1 

and Pixel′B = b′8b
′
7b

′
6b

′
5b

′
4b

′
3b

′
2b

′
1 . The random number is noted as C = c8c7c6c5c4c3c2c1.

(1)	 Crossover According to the random number c, if ci = 0, pixel Pixel′A inherits the value of the corresponding 
binary bit of PixelB, and pixel Pixel′B inherits the value of the corresponding binary bit of PixelA; if ci = 1, 
pixel Pixel′A inherits the value of the corresponding bit of PixelA, and pixel Pixel′B inherits the value of the 
corresponding bit of PixelB.

(2)	 Mutation Non-uniform mutation is used, for the pixel to be varied, according to the random number c, if 
ci = 0, the bit in which the new pixel is located inherits the value of the original pixel in the bit in which it 
is located; if ci = 1, the corresponding bit of the pixel is varied: 0 becomes 1, or 1 becomes 0. Thus, two new 
individuals Pixel′A and Pixel′B are obtained.

The process of crossover and mutation is schematically shown in Fig. 10. For the selected pixel pairs, the same 
random number is used for crossover and mutation in this article, these operations can be performed simultane-
ously. Crossover and mutation can be described by Eqs. (12) and (13):

where ai and bi are the ith bit of the original pixel pairs, ãi and b̃i are the results of the ai and bi non-operations, 
respectively, a′i and b′i are the ith bit of the new pixel pairs after crossover and mutation, and i is the number of 
bits in the binary sequence.

Individual rearrangement operation
With the idea of rearrangement, the grey value of the pixel to be encrypted is converted into an 8-bit binary 
sequence. The binary sequence of the pixel undergoes individual rearrangement to achieve bit-level scrambling. 
Here, eight individual rearrangement rules are defined, as shown in Fig. 11. For a given pixel, one individual 

(12)a′i =
{
bi if ci = 0

ãi if ci = 1
,

(13)b′i =
{
ai if ci = 0

b̃i if ci = 1
,

Figure 9.   Schematic diagram of selection strategy: (a) the chaotic sequence, the ascending sequence, and the 
index sequence; (b) shows the pixel position pair representation corresponding to the 4 × 4 matrix; (c) the 4 × 4 
pixel matrix and its pixel pair selection schematic.

Figure 10.   Schematic diagram of crossover and mutation.
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rearrangement rule is randomly selected to scramble its binary sequence, affecting the change in pixel value. The 
random selection is achieved using pseudo-random sequences generated by the chaotic system.

Ciphertext feedback
Ciphertext feedback is an operation designed to enhance the interaction between pixels and alter pixel values. It 
allows small changes in plaintext to diffuse throughout the entire ciphertext, boosting the scheme’s resistance to 
differential and statistical attacks. The process efficiently propagates small changes in the plaintext image to the 
entire ciphertext image by modifying the pixel value based on the previous pixel value along with the generated 
pseudo-sequence value. Given a pseudo-random sequence D = {d1, d2, d3,… dM×N} of length M × N, where the 
element values in D range from 0 to 255, the image matrix is converted into a one-dimensional sequence S = {s1, 
s2, s3,… sM×N} of length M × N in row-first order. The feedback image sequence is denoted as C = {c1, c2, c3,… cM×N}, 
and the feedback process is shown in Eq. (14):

where the initial element c0 = 127 and i = 1, 2, …, M × N.

Complete the encryption process
The proposed image encryption scheme in this article comprises two parts: the evolutionary operators and the 
ciphertext feedback. The evolutionary operators involve selection, crossover, and mutation, performing double 
scrambling and diffusion at the bit and pixel levels. This encryption scheme is designed to encrypt images of any 
size. For any M × N image, if M × N is even, no processing is required; if M × N is odd, supplementary processing 
is done with ’0’. The detailed encryption process is as follows:

Input a grey level image P of size M × N, where M and N are the number of rows and columns of the image, 
with initial values of the parameters x0’, y0’, z0’ and w0’; Output a ciphertext image E.

•	 Step 1 Convert the grey level image P to be encrypted into an image matrix of size M × N, denoted as matrix 
P1.

•	 Step 2 Use the hash function to calculate the hash value K of matrix P1. Obtain the initial parameter values 
x0, y0, z0, and w0 of the chaotic system using Eqs. (8)–(10).

•	 Step 3 The four-dimensional chaotic system is iterated M × N + 1000 times, and the values of the first 1000 
iterations are discarded to eliminate transient effects, thereby obtaining four pseudo-random sequences LX, 
LY, LZ, and LW of length M × N.

•	 Step 4 Process the pseudo-random sequence LX according to Eq. (15), reshaping it into a matrix form for 
the selection of individual recombination rules. After the individual recombination operation in "Individual 
rearrangement operation" section, recombine and scramble each pixel in matrix P1 to obtain the recombina-
tion matrix P2.

•	 Step 5 Sort the pseudo-random sequence LY in ascending order to obtain a new sequence LY’. Find the posi-
tions of each element in the original sequence LY within the new sequence LY’, and arrange these position 
numbers into a new sequence to obtain the index sequence ‘Index’. According to the index sequence ‘Index’, 
select the pixel pairs sequentially from the matrix P2 using Eq. (11).

•	 Step 6 Process the pseudo-random sequence LZ according to Eq. (16) to obtain the random sequence LZ’ and 
ensure the value of each element in the random sequence LZ’ is between 0 and 255. According to "Crossover 
and mutation operation" section, select the elements from the odd positions of the random sequence LZ’ as 
the random numbers used in the crossover and mutation operations. Based on the selected random numbers, 

(14)ci = si ⊕ ci−1 ⊕ di ,

(15)lx′i = mod
(
floor

(
1014 × lxi

)
, 8
)
+ 1.

Figure 11.   Individual rearrangement rules.
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the pixels selected in Step 5 are sequentially subjected to crossover and mutation operations to obtain the 
matrix P3.

•	 Step 7 Process the pseudo-random sequence LW according to Eq. (17). Convert matrix P3 into a one-dimen-
sional sequence, and according to the ciphertext feedback operation described in "Ciphertext feedback" 
section, perform ciphertext feedback for each pixel. Recover the result into matrix form to obtain matrix P4, 
i.e., the ciphertext image E.

The decryption scheme is the inverse process of the above scheme and is not elaborated here. Additionally, 
this scheme is equally applicable to encrypting color images by simply decomposing pixels that are only images 
into RGB channels.

Simulation experiment results
To verify the feasibility and effectiveness of this method, we selected five grayscale images (Boat, House, Gray21, 
Pentagon, SanDiego) with a size of 256 × 256 from the image database (http://​sipi.​usc.​edu/​datab​ase/). These 
images were then subjected to encryption validation and tested on the Matlab 2018 platform, with the key given 
the value of x0’ = y0’ = z0’ = w0’ = 0.01. In terms of security analysis, only the Boat image was used as an example to 
demonstrate the advantages of our method. The plaintext, ciphertext and decrypted images are shown in Fig. 12, 
by visual observation, the ciphertext has completely lost the characteristics of the plaintext. The scheme is lossless, 
and the decrypted image obtained after decrypting the ciphertext is the same as the plaintext.

(16)lz′i = mod
(
floor

(
1014 × lzi

)
, 256

)
.

(17)lw′
i = mod

(
floor

(
1014 × lwi

)
, 256

)
.

Figure 12.   Simulation results: (a) plaintext images; (b) ciphertext images; (c) decrypted images.

http://sipi.usc.edu/database/
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An ideal encryption scheme must be key-sensitive and resistant to common attacks. Standard performance 
metrics are used to fully evaluate the proposed encryption scheme, including keyspace analysis, statistical attack 
analysis, differential attack analysis, and robust analysis.

Keyspace analysis
The key plays a crucial role in encryption systems and must have a high level of security. The proposed encryp-
tion scheme is so sensitive to its key, the plaintext image, and the ciphertext image that any small change in one 
of them can lead to a significant difference in the generated image. For example, the generated image is random 
if any slight disturbance is applied to the ciphertext image. The main reason for this is the application of chaotic 
systems, which are very sensitive to small changes.

An attacker will try to use all possible keys to try to break the encryption system. Therefore, a larger keyspace 
is more resistant to brute force attacks. It has been shown that even with powerful computers if the keyspace is 
more significant than 2128 34, the encryption method cannot be cracked by a brute force attack within the specified 
time. In this article, the keystream length reaches 1060 > 2128, which is sufficient to resist any brute-force attack.

Statistical analysis
The performance of the proposed image encryption scheme is tested through statistical analysis. Statistical 
methods to analyze any predictable relationship between plaintext and ciphertext images.

Histogram analysis
The histogram represents the distribution of pixels across different grey levels in the image. In a robust crypto-
system, the pixel distribution in the ciphertext image should exhibit uniformity and be distinguishable from the 
histogram of the plaintext image. It is evident from Fig. 13 that the uniform distribution of pixel values in the 
ciphertext image prevents attackers from extracting any statistical information.

χ
2test

To prove that this uniformity is not only visually uniform but also theoretically uniformly distributed, the χ2 test 
is performed on the ciphertext. The histogram of the image is represented by histi(i = 0, 1, …, 255). Equation (18) 
depicts the formula used to calculate the χ2 distribution of the histogram.

The histogram obeys the χ2 distribution with 255 degrees of freedom. The hypothesis is accepted given a 
significance level α such that P

{
χ
2 ≥ χ

2
α
(n− 1)

}
= α , i.e., χ2 < χ

2
α
(n− 1) . When significant level α = 0.01, 0.05 

and 0.1, there are χ2
0.01(255) = 310.45739 , χ2

0.05(255) = 293.24783 , and χ2
0.1(255) = 284.33591.

Displays the χ2 distribution of the test images. All ciphertext images in Table 3 pass the test in experiments 
with significance levels of α = 0.01, α = 0.05, and α = 0.1. The comparison shows that the scheme significantly 
changes the histogram distribution of the images and can break the statistical features of plaintext images.

Correlation analysis
Neighboring pixels of a plaintext image correlate highly in all directions. An ideal encryption scheme aims to 
minimize the correlation between adjacent pixels in the ciphertext image, thereby effectively enhancing its resist-
ance against statistical attacks. The calculation of the correlation coefficient can be performed using Eq. (19):

where rxy is the correlation coefficient, cov(x, y), D(x), and E(x) represent the covariance, variance, and mean 
value, respectively.

To analyze adjacent pixel correlation in plaintext and ciphertext images, 10,000 randomly selected adjacent 
pixel pairs from plaintext and ciphertext images are tested, using the Boat image as an example. Figure 14 
demonstrates that neighboring pixels in plaintext images are highly concentrated and have a strong correlation, 
whereas neighboring pixels in ciphertext images are randomly distributed, resulting in a reduced correlation 
between them. Furthermore, Table 4 shows that the correlation between neighboring pixels in ciphertext images 
is lower than in plaintext images.

Information entropy test
Information entropy is a statistical metric used to assess the randomness or disorder of information35. It measures 
the level of uncertainty or unpredictability associated with a given set of information, represented as Eq. (20):

(18)χ
2 = 1
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.
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where l is the grey value of the image, take l = 255. mi is the ith grey level value on the image, and P(mi) represents 
the probability of mi.

(20)H(m) = −
l∑
i
P(mi) log2 P(mi),

Figure 13.   Histogram: (a) histogram of plaintext images Boat, House, Gray21, Pentagon, SanDiego; (b) 
histogram of each corresponding ciphertext image.
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Table 3.   Statistics of χ2 distribution of histograms.

Plaintext images Ciphertext images α = 0.01 α = 0.05 α = 0.1

Boat 100,853.4922 243.7891 Passed Passed Passed

House 83,975.34375 269.0938 Passed Passed Passed

Gray21 614,162.6718 249.7891 Passed Passed Passed

Pentagon 151,407.1641 251.3203 Passed Passed Passed

SanDiego 59,757.75781 249.3359 Passed Passed Passed

Figure 14.   Pixel statistics of randomly selected pixel points and their neighboring pixel points of the Boat 
image: (a–c) are the neighboring pixel statistics of the plaintext in horizontal, vertical, and diagonal directions, 
respectively; (d–f) are the neighboring pixel statistics of the ciphertext in horizontal, vertical and diagonal 
directions, respectively.

Table 4.   Correlation coefficients.

Image Horizontal Vertical Diagonal

Boat

 Plaintext 0.9458 0.9315 0.8861

 Ciphertext 0.0043 0.0017 0.0017

House

 Plaintext 0.9359 0.9194 0.8742

 Ciphertext − 0.0085 0.0079 0.0084

Gray21

 Plaintext 0.9998 0.9963 0.9961

 Ciphertext − 0.0052 0.0010 0.0040

Pentagon

 Plaintext 0.8331 0.8089 0.7025

 Ciphertext 0.0023 0.0050 − 0.0071

SanDiego

 Plaintext 0.7804 0.7902 0.7071

 Ciphertext 0.0039 0.0026 0.0056
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The ideal information entropy value for a completely random image is 8. By measuring the information 
entropy of the ciphertext image, we can determine how close it is to 8 and how random the image information 
is. As shown in Table 5, after encryption, the information entropy of all ciphertext images is close to 8.

Differential attack analysis
Differential attack involves studying the impact of differences in the plaintext on its corresponding ciphertext. 
The objective is to establish a connection between the plaintext and ciphertext images, aiming to identify vulner-
abilities and potentially compromise the encryption algorithm. NPCR and UACI are the two methods to test 
whether the encryption scheme resists differential attacks36. NPCR measures the ratio of differing pixels found at 
corresponding locations in two images, relative to the total number of pixels in the image, with an ideal value of 
99.6094%. UACI represents the average density of changes in an image, reflecting the overall intensity of change 
in the image, with an ideal value of 33.4635%. They are calculated using the Eq. (21):

where P1 and P2 are two different ciphertexts.
Five different ciphertext images of Boat, House, Gray21, Pentagon, and SanDiego are tested, and their NPCR 

and UACI values for the proposed encryption scheme are presented in Table 6, indicating strong resistance to 
differential attacks as all test results are close to ideal values.

Robustness analysis
Noise attack analysis
Effective image encryption schemes can reconstruct recognizable decrypted images even when noise interference 
or data loss occurs during transmission, as digital images may be disrupted by various factors. Pepper noise of 
1%, 5%, and 10% are added to the ciphertext image of Boat and then decrypted. Figure 15 shows the experimen-
tal results of the images of Boat with noise intensity of 1%, 5%, and 10% and the decrypted image. The figure 
demonstrates that the decrypted image remains recognizable even under a noise intensity of 10%, indicating the 
proposed encryption scheme’s effective resistance against noise attacks.

(21)
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255×M×N × 100%

,

Table 5.   Information entropy.

Image Information entropy

Boat

 Plaintext 7.1572

 Ciphertext 7.9973

House

 Plaintext 7.2298

 Ciphertext 7.9970

Gray21

 Plaintext 4.8997

 Ciphertext 7.9973

Pentagon

 Plaintext 6.5577

 Ciphertext 7.9972

SanDiego

 Plaintext 7.2289

 Ciphertext 7.9972

Table 6.   NPCR and UACI values.

Scheme NPCR (%) UACI (%)

Boat 99.5851 33.4002

House 99.5926 33.3774

Gray21 99.6216 33.5847

Pentagon 99.6033 33.4884

SanDiego 99.6384 33.5156
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Figure 15.   Ciphertext image and decrypted image after pepper noise attack with different strengths: (a–c) are 
the ciphertext images with 1%, 5%, and 10% pepper noise added, respectively; (d–f) are the decrypted images 
corresponding to (a–c).

Figure 16.   Cropping the ciphertext image and the corresponding decrypted image with different degrees of 
cropping: (a–c) are the ciphertext images cropped 1/64, 1/16, and 1/4 respectively; (d–f) are the decrypted 
images corresponding to (a–c).
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Clipping attack analysis
When images are transmitted over a network, data may be lost for various reasons. By cropping a portion of the 
ciphertext image and decrypting the cropped ciphertext image, we can test the ability of the ciphertext image to 
be recovered to the plaintext image in case of data loss and analyze the performance of the encryption scheme 
against the cropping attack. Cropping attack analysis can reflect the effect of the encryption algorithm on the 
scrambling of the plaintext image. The better the scrambling effect, the stronger the encryption algorithm recovers 
the visual features of the plaintext image when a part of the data is lost. In Fig. 16, the ciphertext image of Boat is 
decrypted after being cropped at different proportions (1/64, 1/16, and 1/4). The decrypted image retains iden-
tifiable information, demonstrating the robustness of the proposed encryption scheme against cropping attacks.

Comparative analysis
We compare the performance of this scheme with the literature of the last 3 years, and the newly compared 
schemes satisfy the criteria of image security based on both experimental results and performance analysis. They 
can represent the general level of image encryption security in recent years. Table 7 summarizes the compara-
tive analysis results for the same image, focusing on the evaluation metrics of correlation, NPCR, UACI, and 
information entropy. It can be seen that, in terms of information entropy, the proposed scheme in this article 
is higher than others and closer to the ideal value. In terms of NPCR and UACI, the proposed scheme is closer 
to the ideal value than the others. In terms of relevance, the scheme proposed is better than the schemes37–40, 
but slightly higher than the schemes41. Overall, the proposed encryption scheme has a superior performance 
in terms of security.

Conclusions
By introducing a new state variable, this article successfully injects a more complex dynamical component into the 
three-dimensional chaotic system. Through experimental analyses, it is verified that the proposed four-dimen-
sional chaotic system exhibits higher stochasticity and sensitivity. This complexity brings significant benefits to 
image encryption applications by enhancing the strength and unpredictability of the encryption algorithm. It 
enables the algorithm to possess a larger keyspace and increases the difficulty of attacks. Furthermore, an image 
encryption scheme is proposed by combining evolutionary operators with the pseudo-randomness of chaotic 
systems. In this encryption scheme, the introduction of evolutionary operators effectively disrupts the correlation 
between neighboring pixels. The resistance to differential attacks is significantly enhanced through operations 
such as crossover and mutation, yielding remarkable results. The experimental and simulation results compre-
hensively demonstrate the feasibility and superiority of the scheme. With its vast keyspace and high sensitivity 
to keys, the scheme effectively withstands multiple attacks, including exhaustive attacks, statistical analysis, and 
differential attacks.

In summary, the image encryption scheme proposed in this article exhibits commendable performance, 
meeting the stringent security requirements of image transmission. It is expected to have a positive impact on 
security measures in practical applications. This research outcome provides valuable insights and practical solu-
tions for further development and innovation in the field of image encryption. Future research could explore 
additional image security schemes based on chaotic systems and evolutionary strategies to further enhance the 
security and privacy of image transmission.
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Received: 24 November 2023; Accepted: 21 March 2024

References
	 1.	 Hui, Y., Liu, H. & Fang, P. A DNA image encryption based on a new hyperchaotic system. Multimed. Tools Appl. 82, 21983–22007 

(2023).
	 2.	 Noori Ghanim, Z. & Raheem Khoja, S. A. A partial image encryption scheme based on DWT and texture segmentation. Cogent 

Eng. 9(1), 2026555 (2022).
	 3.	 Geng, S., Li, J., Zhang, X. & Wang, Y. An image encryption algorithm based on improved Hilbert curve scrambling and dynamic 

DNA coding. Entropy 25(8), 1178 (2023).

Table 7.   Comparison.

Schemes Entropy NPCR UACI

Correlation coefficient

Horizontal Vertical Diagonal

Our 7.9974 99.6735 33.2765 0.0018 0.0020 0.0001
37 7.9973 99.5859 28.6400 − 0.0035 − 0.0004 − 0.0004
38 7.9972 99.6427 33.4741 0.0053 0.0059 0.0031
39 7.9974 99.6107 33.4576 − 0.0022 0.0018 − 0.0019
40 7.9960 99.5415 33.2400 0.0023 − 0.0020 − 0.0073
41 7.9970 99.6277 33.4390 0.0015 − 0.0012 0.0021



20

Vol:.(1234567890)

Scientific Reports |         (2024) 14:7033  | https://doi.org/10.1038/s41598-024-57756-x

www.nature.com/scientificreports/

	 4.	 Huang, X., Dong, Y., Ye, G. & Shi, Y. Meaningful image encryption algorithm based on compressive sensing and integer wavelet 
transform. Front. Comput. Sci. 17(3), 173804 (2023).

	 5.	 Wang, L., Ran, Q. & Ding, J. Quantum color image encryption scheme based on 3D non-equilateral Arnold transform and 3D 
logistic chaotic map. Int. J. Theor. Phys. 62(2), 36 (2023).

	 6.	 Sun, X. & Chen, Z. A new image encryption strategy based on Arnold transformation and logistic map. In Proceedings of the 11th 
International Conference on Computer Engineering and Networks 712–720 (Springer, Singapore, 2022).

	 7.	 Panchikkil, S., Manikandan, V. M. & Zhang, Y. D. A convolutional neural network model based reversible data hiding scheme in 
encrypted images with block-wise Arnold transform. Optik 250, 168137 (2022).

	 8.	 Zhou, S., Zhao, Z. & Wang, X. Novel chaotic colour image cryptosystem with deep learning. Chaos Solitons Fractals 161, 112380 
(2022).

	 9.	 Panwar, K., Kukreja, S., Singh, A. & Singh, K. K. Towards deep learning for efficient image encryption. Procedia Comput. Sci. 218, 
644–650 (2023).

	10.	 Himthani, V., Singh Dhaka, V. & Kaur, M. A visually meaningful image encryption scheme based on a 5D chaotic map and deep 
learning. Imaging Sci. J. 69(1–4), 164–176 (2021).

	11.	 Guo, L., Du, H. & Huang, D. A quantum image encryption algorithm based on the Feistel structure. Quantum Inf. Process. 21, 
1–18 (2022).

	12.	 Liu, X. & Liu, C. Quantum image encryption scheme using independent bit-plane pervariation and Baker map. Quantum Inf. 
Process. 22(6), 262 (2023).

	13.	 Dai, J. Y. & Zhou, N. R. Optimal quantum image encryption algorithm with the QPSO-BP neural network-based pseudo random 
number generator. Quantum Inf. Process. 22(8), 318 (2023).

	14.	 Wang, J., Geng, Y. & Liu, J. Adaptive quantum image encryption method based on wavelet transform. arXiv:​1901.​07762 (2019).
	15.	 Mondal, B., Singh, S. & Kumar, P. A secure image encryption scheme based on cellular automata and chaotic skew tent map. J. Inf. 

Secur. Appl. 45, 117–130 (2019).
	16.	 Ma, K., Teng, L., Wang, X. & Meng, J. Color image encryption scheme based on the combination of the fisher-yates scrambling 

algorithm and chaos theory. Multimed. Tools Appl. 80, 24737–24757 (2021).
	17.	 Zhao, J., Wang, S. & Zhang, L. Block image encryption algorithm based on novel chaos and DNA encoding. Information 14(3), 

150 (2023).
	18.	 Ahuja, B., Doriya, R., Salunke, S., Hashmi, M. F. & Gupta, A. Advanced 5D logistic and DNA encoding for medical images. Imaging 

Sci. J. 71(2), 142–160 (2023).
	19.	 Sun, S. A new image encryption scheme based on 6D hyperchaotic system and random signal insertion. IEEE Access 66009–66016 

(2023).
	20.	 Ndassi, H. L. et al. A robust image encryption scheme based on compressed sensing and novel 7D oscillator with complex dynam-

ics. Heliyon 9, e16514 (2023).
	21.	 Zhang, H., Wang, X., Xie, H., Wang, C. & Wang, X. An efficient and secure image encryption algorithm based on non-adjacent 

coupled maps. IEEE Access 8, 122104–122120 (2020).
	22.	 Wang, X. & Chen, X. An image encryption algorithm based on dynamic row scrambling and Zigzag transformation. Chaos Solitons 

Fractals 147, 110962 (2021).
	23.	 Zhu, Y., Wang, C., Sun, J. & Yu, F. A chaotic image encryption method based on the artificial fish swarms algorithm and the DNA 

coding. Mathematics 11(3), 767 (2023).
	24.	 Ye, G., Wu, H., Liu, M. & Shi, Y. Image encryption scheme based on blind signature and an improved Lorenz system. Expert Syst. 

Appl. 205, 117709 (2022).
	25.	 Beyer, H. & Schwefel, H. Evolution strategies–a comprehensive introduction. Nat. Comput. 1(1), 3–52 (2022).
	26.	 Jasra, B. & Moon, A. H. Color image encryption and authentication using dynamic DNA encoding and hyper chaotic system. 

Expert Syst. Appl. 206, 117861 (2022).
	27.	 Cun, Q., Tong, X., Wang, Z. & Zhang, M. A new chaotic image encryption algorithm based on dynamic DNA coding and RNA 

computing. Vis. Comput. 1–20 (2023).
	28.	 Li, T., Yan, W. & Chi, Z. A new image encryption algorithm based on optimized Lorenz chaotic system. Concurr. Comput. Pract. 

Exp. 34(13), e5902 (2022).
	29.	 Yang, S., Tong, X. & Wang, Z. S-box generation algorithm based on hyperchaotic system and its application in image encryption. 

Multimed. Tools Appl. 82, 25559–25583 (2023).
	30.	 Arthi, G., Thanikaiselvan, V. & Amirtharajan, R. 4D Hyperchaotic map and DNA encoding combined image encryption for secure 

communication. Multimed. Tools Appl. 81, 15859–15878 (2022).
	31.	 De Dieu, N. J., Ruben, F. S. V., Nestor, T., Zeric, N. T. & Jacques, K. Dynamic analysis of a novel chaotic system with no linear terms 

and use for DNA-based image encryption. Multimed. Tools Appl. 81(8), 10907–10934 (2022).
	32.	 Gong, L. H., Luo, H. X., Wu, R. Q. & Zhou, N. R. New 4D chaotic system with hidden attractors and self-excited attractors and its 

application in image encryption based on RNG. Phys. A Stat. Mech. Appl. 591, 126793 (2022).
	33.	 Yu, J., Xie, W., Zhong, Z. & Wang, H. Image encryption algorithm based on hyperchaotic system and a new DNA sequence opera-

tion. Chaos Solitons Fractals 162, 112456 (2022).
	34.	 Rani, N., Sharma, S. R. & Mishra, V. Grayscale and colored image encryption model using a novel fused magic cube. Nonlinear 

Dyn. 108(2), 1773–1796 (2022).
	35.	 Erkan, U., Toktas, A. & Lai, Q. 2D hyperchaotic system based on Schaffer function for image encryption. Expert Syst. Appl. 213, 

119076 (2023).
	36.	 Lone, M. A. & Qureshi, S. Encryption scheme for RGB images using chaos and affine hill cipher technique. Nonlinear Dyn. 111(6), 

5919–5939 (2023).
	37.	 Adhikari, S. & Karforma, S. An efficient image encryption method using henon-logistic-tent chaotic pseudo random number 

sequence. Wirel. Pers. Commun. 129, 2843–2859 (2023).
	38.	 Liang, Q. & Zhu, C. A new one-dimensional chaotic map for image encryption scheme based on random DNA coding. Opt. Laser 

Technol. 160, 109033 (2023).
	39.	 Gui, X., Huang, J. & Li, L. A novel hyperchaotic image encryption algorithm with simultaneous shuffling and diffusion. Multimed. 

Tools Appl. 81, 21975–21994 (2022).
	40.	 Wang, X. & Su, Y. Image encryption based on compressed sensing and DNA encoding. Signal Process. Image Commun. 95, 116246 

(2021).
	41.	 Hussain, M., Iqbal, N. & Bashir, Z. A chaotic image encryption scheme based on multi-directional confusion and diffusion opera-

tions. J. Inf. Secur. Appl. 70, 103347 (2022).

Acknowledgements
This work was supported in part by the National Natural Science Foundation of China under Grants 62102374 
and 62072417.

http://arxiv.org/abs/1901.07762


21

Vol.:(0123456789)

Scientific Reports |         (2024) 14:7033  | https://doi.org/10.1038/s41598-024-57756-x

www.nature.com/scientificreports/

Author contributions
Y.N.: review and editing, formal analysis, methodology, conceptualization, investigation, project administra-
tion, supervision. X.Z.: writing—original draft, writing—review and editing, software, methodology. H.Z.: data 
curation, validation.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to X.Z.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2024

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Image encryption scheme based on improved four-dimensional chaotic system and evolutionary operators
	Theoretical foundations
	Chaotic system
	Evolutionary strategy

	Hyperchaotic system
	Proposed four-dimensional hyperchaotic system
	Lyapunov exponent
	Maximum Lyapunov exponent for two-parameter
	Sensitivity analysis
	Dissipative and equilibrium stability analysis
	NIST test

	Image encryption scheme
	Key generation
	Selection operation
	Crossover and mutation operation
	Individual rearrangement operation
	Ciphertext feedback
	Complete the encryption process

	Simulation experiment results
	Keyspace analysis
	Statistical analysis
	Histogram analysis
	test
	Correlation analysis
	Information entropy test

	Differential attack analysis
	Robustness analysis
	Noise attack analysis
	Clipping attack analysis

	Comparative analysis

	Conclusions
	References
	Acknowledgements


