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Integrated analysis of single‑cell 
and bulk RNA‑sequencing reveals 
a novel signature based on NK cell 
marker genes to predict prognosis 
and immunotherapy response 
in gastric cancer
Jian‑Rong Sun 1,4, Chen‑Fan Kong 2,4, Yi‑Xiang Ye 1, Qin Wang 1, Xiang‑Ke Qu 1, Li‑Qun Jia 1* & 
Song Wu 2,3*

Natural killer (NK) cells play essential roles in the tumor development, diagnosis, and prognosis of 
tumors. In this study, we aimed to establish a reliable signature based on marker genes in NK cells, 
thus providing a new perspective for assessing immunotherapy and the prognosis of patients with 
gastric cancer (GC). We analyzed a total of 1560 samples retrieved from the public database. We 
performed a comprehensive analysis of single‑cell RNA‑sequencing (scRNA‑seq) data of gastric cancer 
and identified 377 marker genes for NK cells. By performing Cox regression analysis, we established 
a 12‑gene NK cell‑associated signature (NKCAS) for the Cancer Genome Atlas (TCGA) cohort, that 
assigned GC patients into a low‑risk group (LRG) or a high‑risk group (HRG). In the TCGA cohort, the 
areas under curve (AUC) value were 0.73, 0.81, and 0.80 at 1, 3, and 5 years. External validation of the 
predictive ability for the signature was then validated in the Gene Expression Omnibus (GEO) cohorts 
(GSE84437). The expression levels of signature genes were measured and validated in GC cell lines by 
real‑time PCR. Moreover, NKCAS was identified as an independent prognostic factor by multivariate 
analysis. We combined this with a variety of clinicopathological characteristics (age, M stage, and 
tumor grade) to construct a nomogram to predict the survival outcomes of patients. Moreover, 
the LRG showed higher immune cell infiltration, especially CD8+ T cells and NK cells. The risk score 
was negatively associated with inflammatory activities. Importantly, analysis of the independent 
immunotherapy cohort showed that the LRG had a better prognosis and immunotherapy response 
when compared with the HRG. The identification of NK cell marker genes in this study suggests 
potential therapeutic targets. Additionally, the developed predictive signatures and nomograms may 
aid in the clinical management of GC.
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ICB  Immune checkpoint blockade
TME  Tumor microenvironment
TCGA   The cancer genome atlas
GEO  Gene expression omnibus
PCA  Principal component analysis
t-SNE  T-distributed stochastic neighbor embedding
LASSO  The least absolute shrinkage and selection operator
ROC  The receiver operating characteristic
AUC   The area under curve
DCA  Decision curve analysis
LRG  Low-risk group
HRG  High-risk group
TIDE  Tumor immune dysfunction and exclusion
TMB  Tumor mutation burden

Gastric cancer (GC) is the fifth most common malignancy worldwide, with 1,089,103 newly reported cases and 
768,793 newly reported deaths in  20201. Most patients are diagnosed with advanced-stage GC due to its insidi-
ous onset and the lack of overt early symptoms, thus resulting in missed opportunities for surgical resection. 
Despite recent improvements in the development of treatment approaches for advanced GC, the 5-year survival 
rate of less than 20% is still considered  unsatisfactory2. Over the past decade, anti-PD-1/PD-L1 immune check-
point blockade (ICB) therapy has revolutionized the treatment of many types of cancer. However, due to the 
heterogeneity of tumors, the overall response rate of ICB is relatively low and only a subset of GC patients could 
derive clinical benefit from such  therapy3,4. Given this, it is necessary to identify novel biomarkers to predict the 
prognosis and immunotherapy response of GC.

The tumor microenvironment (TME) refers to the non-cancerous cells and components that are presented in 
a tumor, including the molecules produced and released by these cells and components. The constant interactions 
between tumor cells and the TME play decisive roles in tumor initiation, progression, metastasis, and response 
to  therapies5. An increasing body of data suggests that the abundance and diversity of immune cells infiltrating 
the TME can significantly affect both the efficacy of immunotherapy and tumor  growth6. Most current treatment 
options that harness the TME focus on T cell-immunity; however, the limited success of this technique highlights 
the importance of developing new-generation immunotherapies.

NK cells are a population of innate lymphoid cells that play a pivotal role in host immune responses against 
infection and tumor  growth7. A previous study suggested that the low activity of NK cells in the peripheral blood 
is associated with an increased risk of  cancer8. The higher abundance of infiltrating NK cells in the TME correlates 
with a favorable prognosis of some  malignancies9–11. Furthermore, NK cell therapy can effectively improve the 
outcome of oncology treatment, thus presenting us with a promising perspective for cancer  immunotherapy12,13. 
The molecular characteristics of NK cells have been reported in several solid tumors; however, the precise func-
tion of NK cells in GC remains unclear in terms of diagnosis and  prognosis14–16.

Single-cell RNA-sequencing (scRNA-seq) technology enables the comprehensive characterization of the 
cellular compositions and transcriptional phenotypes in the TME. Previous studies have reported that a gene 
expression signature based on immune cells derived from scRNA-seq data could potentially be a powerful 
method for predicting the prognosis and response to immunotherapy of cancer  patients14,17,18. In the present 
study, we investigated the molecular characteristics of the GC microenvironment by analyzing scRNA-seq data 
and identifying specific marker genes for NK cells. Then we established and validated a NK cell-associated sig-
nature (NKCAS) to predict prognosis through bulk RNA-seq analysis. Moreover, we investigated the immune 
microenvironment and the relationship between the NKCAS and immunotherapy response in GC patients.

Methods
Data collection
A total of 1560 samples were included in the current study, namely, 8 samples with scRNA-seq data of GC from 
the Gene Expression Omnibus (GEO, GSE183904), 371 samples of GC from the Cancer Genome Atlas (TCGA), 
833 samples of GC from the Gene Expression Omnibus (GEO, 433 samples from GSE84437 and 400 samples 
from GSE66229) (Supplementary Table 1), and 348 samples of urothelial carcinoma receiving immunotherapy 
from the IMvigor 210 cohort (Supplementary Table 2). The scRNA-seq dataset was used to determine the sig-
nature genes for NK cells in GC. The bulk RNA-seq data and corresponding clinical annotations of GC patients 
were acquired from the TCGA to identify genes associated with prognosis and establish a predictive signature. 
The independent microarray datasets (GEO, GSE84437) were used to perform the external verification of the 
signature for predicting the survival outcomes. Another independent dataset (GEO, GSE66229) was used to 
validate the expression of the signature genes. The transcriptomic profile and corresponding clinical information 
of the IMvigor210 dataset (in which patients of urothelial carcinoma received anti-PD-L1 treatment) were used 
to investigate the speculative value of a NK cell-associated signature (NKCAS) on immunotherapy response. 
Particularly, due to the scarcity of immunotherapy cohorts for GC, we investigated the ability of the NKCAS to 
predict immunotherapy response using the IMvigor210 cohort, which has been widely used in other cancer types.

Identification of NK cell signature genes by scRNA‑seq analysis
In the scRNA-seq (GSE183904) cohort, the “Seurat” and “Single R” tools in R software were used to conduct 
scRNA-seq data analysis. First, we removed the clusters with cell counts < 3. Cells with < 50 mapped genes and 
cells in which mitochondrial genes exceeded 5% were also removed. Then, we performed data normalization by 
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utilizing the “NormalizeData” package in R software. The top 15 principal components were selected for principal 
component analysis (PCA) based on the top 1500 variably expressed genes. T-distributed stochastic neighbor 
embedding (t-SNE) was used for unsupervised clustering and to visualize cell subpopulations on a two-dimen-
sional map in a non-biased manner. The Human Primary Cell Atlas Data was used to annotate the cell clusters. 
The “FindAllMarkers” function in R software was then used to compare differences in gene expression among 
clusters. Genes with a |log2 (fold change) |> 1 and an adjusted P-value < 0.05 were regarded as signature genes. 
Finally, we used the “SingleR” tool in the R package to annotate cell subpopulations from the different clusters.

Establishment and verification of the NK cell‑associated signature (NKCAS)
In the TCGA cohort, we used univariate Cox regression analysis to evaluate the predictive ability of NK cell sig-
nature genes on the survival of GC patients. Prognostic genes were identified with a significance level of P < 0.05. 
Then, to avoid overfitting and enhance the robustness of the prognostic signature, we performed the least abso-
lute shrinkage and selection operator (LASSO) Cox proportional hazards regression analysis to select optimal 
prognostic genes. Then ten-fold cross-validation was used to select the ideal model, and the tuning parameter 
λwas chosen by 1-SE (standard error). Finally, based on the genes screened by LASSO Cox regression analysis, 
we conducted the multivariate Cox regression analysis to generate a prognostic signature. The formula used to 
calculate the NKCAS risk score was as follows:

in which Coefk represented the coefficient and Bk represented the normalized expression value of the NK cell 
signature genes. Each patient was given a risk score based on the formula and then all patients were assigned 
into a low-risk group (LRG) or a high-risk group (HRG) by the median value of the risk score. Receiver operat-
ing characteristic (ROC) curves were plotted and the area under curve (AUC) was calculated by the “survival-
ROC” package in R; AUC values were then used to evaluate the predictive efficacy of the NKCAS model. The 
Kaplan–Meier (KM) curves and log-rank (LR) tests were conducted to determine the differences of overall 
survival (OS) between the two risk groups. The robustness of the NKCAS model was then validated in the 
independent GEO datasets (GSE84437).

Exploration of the mRNA expression levels of signature genes
Next, we compared the mRNA expression levels of signature genes between GC tumor samples and normal 
samples derived from the TCGA database. The GSE66229 dataset from the GEO database was used to validate 
the results of the signature genes involved in the prognostic model.

Validation of the prognostic signature by relative quantitative real‑time PCR (qPCR) and 
immunofluorescence
The expression levels of signature genes were measured in three GC cell lines (AGS and MKN-45, human gastric 
cells) and a control cell line (GES-1, human gastric mucosal epithelial cells). All the cell lines were obtained from 
the National Infrastructure of Cell Line Resources (Beijing, China) and were in RPMI-1640 (Gibco, USA), 10 fetal 
bovine serum (FBS, Gibco, USA), and 1% penicillin/streptomycin (Gibco, Canada). All the cells were cultured 
at 37℃ with 5% CO2. Total RNA was extracted from cells using the RNAsimple Total RNA Kit (TIANGEN, 
China, Cat. 4992858), and reverse transcription was subsequently performed using the FastKing gNDA Dispel-
ling RT SuperMix (TIANGEN, China, Cat. 4992227). qPCR was performed with a SYBR Green Real-time PCR 
Kit (TIANGEN, China, Cat. 4992881) on a QuantStudio 5 Real-Time PCR System (Thermo Fisher Scientific, 
USA). All experiments were repeated at least three times. The RNA primer sequences are listed in Supplementary 
Table 3, Relative expression was calculated using the comparative threshold cycle (Ct) method.

Furthermore, we validated the level of proteins encoded by these signature genes in GC cell line (AGS) and 
control cell line (GES-1) via immunofluorescence. The antibodies for immunofluorescence including CXCR4 
(Cat# ab181020), SHOX2 (Cat# ab55740), MSI2 (Cat# ab76148) and PLCL1 (Cat# ab157200) were purchased 
from Abcam (USA). RDH8 (Cat# PA5-139867), GRB14 (Cat# PA5-101612), SLC35E4 (Cat# PA5-62009), NEK5 
(Cat# PA5-101860) and AKAP5 (Cat# PA5-101095) were purchased form Thermo (USA). MAGEA11(Cat# 
15474-1-ap), CYP191A (Cat# 16554-1-ap) and KYNU (Cat# 11796-1-ap) were purchased from Proteintech 
(China). Cy3 conjugated Donkey Anti-Mouse IgG (Cat# GB21401), Cy3 conjugated Donkey Anti-Rabbit IgG 
(Cat# GB21403), FITC conjugated Donkey Anti-Rabbit IgG (Cat# GB22403), FITC conjugated Donkey Anti-
Mouse IgG (Cat# GB22401) and Cy5 conjugated Goat Anti-rabbit IgG (Cat# GB27303) were purchased from 
Servicebio (China). The cells were treated with 4% paraformaldehyde and 0.1% Triton X-100 for fixation and 
penetration. After blocked with serum, cells were incubated with primary antibodies at room temperature for 
1.5 h. Then cells were incubated with secondary antibody for 1 h. Finally, the nuclei were stained with DAPI.

Development and efficiency of a NKCAS‑clinicopathologic nomogram
To facilitate clinical application and provide a more convenient tool for predicting the prognosis of GC patients, 
we established a nomogram was established based on the NKCAS and clinical parameters.

The nomogram consists of four main sections: points, variables, total points, and 1,3,5-year survival rate. 
The point corresponding to each variable for a given patient is summed to the total point, and the total points 
draws a vertical line down corresponding to the patient’s 1,3,5-year survival rate. Multivariate Cox regression 
analysis was performed to identify the independent prognostic factors and then to establish a nomogram. ROC 
curves and time-dependent AUC values were used to evaluate predictive ability. Calibration curves were adopted 

Risk Score =

n∑

k=1

Coefk × Bk
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to evaluate the consistency between prediction and actual values with a diagonal line indicating the first-rank 
prediction. Finally, decision curve analysis (DCA) was used to appraise the clinical applicability.

Gene mutation landscape
Somatic mutation data from GC patients were acquired from the TCGA. The somatic mutation characteristics 
between different risk groups were then analyzed by the “maftools” package in R software. Furthermore, the 
tumor mutation burden (TMB) for each patient was calculated as mutations per million bases, and then all GC 
patients were split into low- or high-TMB groups according to TMB median value to investigate their impact on 
survival. In addition, we evaluated the impact of TMB together with risk stratification on survival.

Landscape of the tumor immune microenvironment in GC
The immune score, stromal score, and ESTIMATE score of GC patients, as calculated by the ESTIMATE algo-
rithm, were used to estimate the abundance of stromal cells and infiltrating immune cells in malignant tumors to 
predict the purity of tumors. In addition, the CIBERSORT algorithm was performed to evaluate the proportions 
of 22 immune cell types in each GC tumor sample. The H&E staining of TCGA pathology slides from different 
risk groups was used to detect the immune infiltrating cells in TME, to confirm the aforementioned analysis. 
Moreover, a seven-metagene (HCK, IgG, Interferon, LCK, MHC-I, MHC-II, and STAT1), representing the diverse 
inflammatory and immune activities that were described previously in the literature, was used to compare 
inflammatory activities between the LRG and  HRG19. In addition, a heatmap was plotted by the “pheatmap” 
package in R to visualize discrepancies between the two groups. Spearman analysis was performed to examine 
the relationship between the risk scores and the seven metagenes. A correlation pie chart of metagenes and risk 
scores was then plotted by the “corrgram” package in R. Red represents a positive correlation, blue represents a 
negative correlation, and a larger pie chart represents a stronger correlation.

Immunotherapy response prediction
Next, the tumor immune dysfunction and exclusion (TIDE) score, PD-L1 expression, and TMB were analyzed 
to predict the response to ICB therapy. The TIDE score was calculated from an online website (http:// tide. dfci. 
harva rd. edu/). The PD-L1 mRNA expression data from patients with GC were downloaded from the TCGA 
cohort. A gene mutation profile was acquired from the TCGA and the TMB was computed as mutations per 
million bases. In addition, the immunotherapy cohort (IMvigor210), featuring both transcriptomic data and 
treatment response, was used to verify the value of the NKCAS for predicting immunotherapeutic response.

Ethics statement
As our data were downloaded from the online public database, there is no requirement for ethics committee 
approval and consent to participate.

Results
Identification of NK cell signature genes
The gene expression profiles of 24,860 cells from eight primary GC samples were acquired from the scRNA-seq 
dataset (GSE183904). After data normalization, the top 1500 variable genes were selected and used for PCA 
analysis to reduce the dimensionality (Fig. 1A–C), and 15 PCs with P < 0.05 were chosen for further analysis 
(Fig. 1D). We conducted t-SNE analysis to visualize cell distribution and then identified 17 cell clusters, and each 
cluster showed distinct gene expression profiles (Fig. 1E–F). We used the “singleR” algorithm to annotate different 
cell subpopulations and identified cluster 13 as a subpopulation of NK cells (Fig. 1G). Finally, a total of 377 genes 
were identified in the NK cell cluster; these were considered as NK cell signature genes (Supplementary Table 4).

Establishment and validation of a NKCAS for the prognostic assessment of GC
The TCGA cohort was then used to perform the univariate Cox regression analysis, and a total of 36 genes were 
found to be associated with the OS of GC patients (Supplementary Fig. 1). LASSO analysis identified 25 genes 
based on the optimal lambda value (one standard error) and tenfold cross-validation (Fig. 2A–B, Supplementary 
Table 5). Finally, multivariate Cox regression analysis was conducted to establish an optimal prognostic signature 
based on the 12 most predictive NK cell signature genes (CXCR4, RDH8, MAGEA11, CYP19A1, SHOX2, GRB14, 
SLC35E4, NEK5, AKAP5, MSI2, KYNU, and PLCL1). Based on their coefficients of these genes, the risk score 
formula was computed as follows:

Risk score = (0.247 × CXCR4expression) + (0.589 × RDH8expression) + (0.477 × MAGEA11expres-
sion) + (0.916 × CYP19A1expression) + (0.480 × SHOX2expression) + (0.400 × GRB14expression) + ( 
− 0.439 × SLC35E4expression) + (− 1.04 × NEK5expression) + (− 2.11 × AKAP5expression) + ( − 0.44 × MSI2ex-
pression) + (0.377 × KYNUexpression) + (0.868 × PLCL1expression). The GC patients were assigned into the HRG 
(n = 185) and LRG (n = 186) groups according to the median risk score (1.042). The KM analysis indicated that 
the LRG showed significant better survival when compared with the HRG (Fig. 2C). The AUCs of the training 
set at 1-, 3-, and 5-years were 0.730, 0.809, and 0.804, respectively (Fig. 2D). To validate the predictive efficacy 
of the signature, the same analysis was conducted in the GEO dataset. Analysis showed that survival was better 
in the LRG than in the HRG (Fig. 2E). The AUCs of the GEO cohort at 1-, 3-, and 5-years were 0.775, 0.687, and 
0.649, respectively (Fig. 2F). A scatter plot of risk score and survival status in both the TCGA and GEO cohorts 
revealed a higher mortality rate in the HRG (Supplementary Fig. 2A–B). Detailed expression data for the 12 NK 
cell signature genes are presented in Supplementary Fig. 2C–D. These results suggested that the NKCAS could 
maintain it predictive ability in different cohorts of patients.

http://tide.dfci.harvard.edu/
http://tide.dfci.harvard.edu/
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Differential expressions of the signature genes
The detailed information on the proteins encoded by the signature genes and their functions are showed in Sup-
plementary Table 6, The mRNA expression analysis showed that CXCR4, RDH8, MAGEA11, CYP19A1, SHOX2, 
GRB14, SLC35E4, NEK5, AKAP5, MSI2, and KYNU were upregulated in the GC samples, whereas PLCL1 was 
downregulated in GC patients (Fig. 3A). This result was validated in the GSE66229 cohort; analysis showed that 
MAGEA11, CYP19A1, SHOX2, GRB14, SLC35E4, NEK5, AKAP5, MSI2, and KYNU were upregulated in the GC 
samples while PLCL1 was downregulated. Furthermore, there was a tendency for the upregulation of RDH8 and 
CYP19A1 in the GC samples; however, these changes were not statistically significant (Fig. 3B). Furthermore, we 
utilized qPCR and immunofluorescence to validate our findings, which demonstrated strong consistency with 
the bioinformatics analysis. (Figs. 4 and 5).

Figure 1.  scRNA-seq analysis identifies NK cell marker genes. (A) Quality control of scRNA-seq data from 
eight GC samples. (B) The variance plot showed 1500 genes in all cells, red dots represent the top 1500 highly 
variable genes. (C) PCA was utilized for dimensionality reduction. (D) 15 PCs were identified based on 
P-value < 0.05. (E) t-SNE plot colored by various cell clusters. (F) Heatmap showing the top marker genes in 
each cell cluster. (H) The cell subpopulations identified by marker genes.
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Construction and assessment of the nomogram
Next, we performed multivariate Cox regression analysis; analysis showed that the NKCAS as well as age, M 
stage, and tumor grade were all independent prognostic factors for GC patients (Table 1). Next, a nomogram 

Figure 2.  Construction and validation of the NK cell-associated signature (NKCAS). (A–B) LASSO regression 
analysis. (C) The Kaplan–Meier curves in the TCGA cohort. (D) The AUCs at 1-, 3-, and 5-year of the NKCAS 
in TCGA cohort. (E) The Kaplan–Meier curves in the GEO cohort (GSE84437). (F) The AUCs at 1-, 3-, and 
5-year of the NKCAS in GEO cohort (GSE84437).
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was built by integrating clinical factors and the NKCAS risk model to predict the short- and long-term survival 
rates of patients with GC (Fig. 6A). The AUC values of the nomogram at 1-, 3-, and 5-years were 0.763, 0.858, and 
0.847, respectively (Fig. 6B–D); these values remained higher than other factors over time, thus indicating that 
the nomogram had a good predictive performance in terms of prognosis (Fig. 6E). The calibration curve showed 
that the prediction values were highly consistent with the observation values (Fig. 6F). In addition, DCA found 
the nomogram more clinically valuable than the other factors (Fig. 6G). Collectively, these results demonstrated 
that the nomogram established based on the NKCAS risk signature along with clinical factors could be applied 
as a convenient tool to predict the prognosis of patients in clinical management.

Gene mutation atlas and tumor mutation burden analysis
Summaries of gene mutations in different groups are shown in the Supplementary Figs. 3 and 4, respectively; 
analysis indicated that the LRG had a higher overall mutation frequency than the HRG. The top six genes with 
the highest mutation rates in the LRG were TTN (52%), TP53 (44%), MUC16 (37%), LRP1B (33%), ARID1A 

Figure 3.  The expression of signature genes in TCGA and GEO datasets. (A) The expression of signature genes 
in TCGA datasets. (B) The expression of signature genes in GSE66229.
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(30%), and SYNE1 (24%); this was similar to the HRG with TTN (41%), TP53 (38%), MUC16 (23%), SYNE1 
(18%), CSMD3 (17%), and ARID1A (16%). The most common type of mutation was missense mutation in both 
the LRG and the HRG (Fig. 7A–B). The results of tumor mutation burden analysis showed that a high TMB 
predicts a better prognosis only by not dividing GC patients between high and low risk (Fig. 7C). Moreover, we 
analyzed the impact of risk grouping combined with TMB on the survival outcomes of gastric cancer patients, 
considering the effect of risk groupings on patient prognosis; analysis showed that both the LRG and high TMB 
were favorable prognostic predictors for GC patients (Fig. 7D). Given this variation in prognosis, we subsequently 
executed an extensive analysis of the TME in GC.

Figure 4.  The expression of prognostic signature in cell lines. (A–L) The qPCR results of CXCR4, RDH8, 
MAGEA11, CYP19A1, SHOX2, GRB14, SLC35E4, NEK5, AKAP5, MSI2, KYNU, and PLCL1 in GC cell lines 
(AGS, and MKN45) and control cell lines (GSE-1). *P < 0.05, **P < 0.01, ***P < 0.001.
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Characteristics of the TME in GC
Analysis with the CIBERSORT algorithm analysis showed that the LRG had more infiltrating CD8+ T cells 
and CD4+ T cells, and more activated NK cells; The HRG had more infiltrating M2 macrophages, monocytes, 

Figure 5.  The expression level of proteins encoded by the signature genes detecting by immunofluorescence. 
The GES-1 cells were used as cancer group and AGS cells were used as control group. The nuclei were staining 
with DAPI. Scale bar, 20 μm.
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and Tregs; these findings were consistent with data arising from the histopathological sections, thus indicating 
a higher immune killing ability in the LRG (Fig. 8A–B). Furthermore, the relationship between the risk scores 
and immune infiltrating cells were validated in XCELL, TIMER, QUANTISEQ, MCPCOUNTER, and EPIC; 
the results of these analyses were similar with those arising from CIBERSORT analysis (Fig. 8C). ESTIMATE 
analysis further suggested that the HRG group had a higher stromal score, immune score, and estimated score 
when compared with the LRG(Fig. 8D).

To identify the relationship between the NKCAS and inflammatory activities, we next investigated the asso-
ciation between the NKCAS and seven clusters of metagenes, specifically HCK, LCK, IgG, Interferon, MHC-I, 
MHC-II, and STAT1. Analysis showed that the LRG had higher expression levels of the 7 gene clusters (Fig. 8E–F), 
thus demonstrating higher levels of anti-tumor immunity.

The NKCAS could predict the response to immunotherapy
Considering the important roles of NK cells in anti-tumor immunity, we next investigated whether the NKCAS 
could predict the response to immune checkpoint inhibitors in patients with GC. Analysis demonstrated that 
the LRG held higher levels of PD-L1 mRNA expression and TMB than the HRG but a lower TIDE score, thus 
indicating a greater response to treatment with ICBs (Fig. 9A–C). Furthermore, the IMvigor210cohort, featuring 
348 patients taking anti-PD-L1 treatment, was included to further explore the prediction value of the NKCAS 
in immunotherapy response. Analysis suggested that lower risk scores were related to better objective responses 
(Fig. 9D). Anti-PD-L1 treatment was significantly more effective in the LRG than in the HRG (Fig. 9E). KM 
analysis further suggested that the LRG had better survival after receiving immunotherapy (Fig. 9F). In addi-
tion, the TMB and neoantigen burden were higher in the LRG, further indicating a better response to treatment 
with ICBs (Fig. 9G–H). The relationship between the NKCAS and survival in patients receiving immunotherapy 
persisted as statistically significant even when considering gender, smoking, ECOG score, immune phenotype, 
and TMB status (Fig. 9I). These results demonstrated that the NKCAS had a good predictive value for both 
immunotherapy and prognosis for GC patients.

Discussion
With the ongoing advancement of scRNA-seq methods, it is now possible to study the cellular composition of 
malignant tumors at the level of single-cell resolution, and thus explore the heterogeneity of tumors and dis-
sect the complex interactions between tumors and their immune microenvironment; this is crucial if we are to 
discover feasible therapeutic targets. Most existing studies have focused on the adaptive immunity generated 
by T cells; however, intrinsic immune cells have not received enough attention. NK cells are an important com-
ponent of intrinsic immunity and play an important role in anti-infection and tumor-killing processes. Several 

Table 1.  Multivariate Cox analysis for clinical variables.

Variables HR (95% CI) P-value

Age

 ≤ 65 Reference

 > 65 2.07 (1.45–2.97)  < 0.001

Gender

 Female Reference

 Male 1.28 (0.89–1.85) 0.181

Tumor grade

 G1-2 Reference

 G3-4 1.52 (1.05–2.21) 0.028

Pathological stage

 Stage I–II Reference

 Stage III–IV 1.51 (0.89–2.54) 0.125

T

 T1-2 Reference

 T3-4 1.38 (0.84–2.28) 0.205

N

 N0 Reference

 N1-3 0.90 (0.51–1.59) 0.715

M

 M0 Reference

 M1 2.03 (1.22–3.38) 0.007

Risk score

 Low Reference

 High 4.04 (2.74–5.95)  < 0.001
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studies have reported on the significant role of NK cells in GC. For example, previous study reported that NK 
cells were independent prognostic factor for  GC20. The number of NK cells decreased in advanced-stage GC, 

Figure 6.  The establishment and assessment of nomogram. (A) The construction of the nomogram. (B–D) The 
AUC of the nomograms compared for 1-, 3-, and 5-year OS, respectively. (E) The time-dependent AUCs of the 
nomogram. (F) The calibration curve for assessing the agreement at 1-, 3-, and 5-year OS. (G) The DCA curves 
of the nomogram.
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and their density could predict favorable survival outcomes. Mechanistically, tumor-derived PGE2 can induce 
NK cell dysfunction in GC, hindering their anti-tumor activity and promoting tumor growth and  progression21. 
Given the importance of NK cells in gastric cancer. Here, we aimed to identify the NK cell signature genes of 
GC via scRNA-seq analysis. Then, we developed a novel NKCAS for the prognosis of GC in the TCGA cohort. 
The GEO cohort was used to further verify the predictive performance of the NKCAS. In addition, the LRG had 
a greater number of infiltrating immune cells, gene mutations, and exhibited a stronger response to treatment 
with ICIs. Previous study have reported the predictive value of NK signatures in gastrointestinal cancer. This 
NK signature consists of SLC2A3 and POU2F2, can predict both the prognosis of colon cancer patients and the 
efficacy of  immunotherapy22. However, this study has relatively little research on the relationship between NK 
signatures and the tumor microenvironment and gene mutations. Overall, the signatures of natural killer cells 
(NK) in gastric cancer are largely unknown. Therefore, in the current study, we examined the prognostic value 
of the NK signature, as well as its association with the tumor microenvironment, gene mutations, and response 
to immunotherapy.

In the current study, the NKCAS was established with 12 NK cell signature genes including CXCR4, RDH8, 
MAGEA11, CYP19A1, SHOX2, GRB14, SLC35E4, NEK5, AKAP5, MSI2, KYNU, and PLCL1. Some of these genes 
had previously been reported to play an important role in cancer. CXCR4 encodes a CXC chemokines receptor 
specific for stromal cell-derived factor-1 and it can combine with CXCL12 to facilitate NK cell development in 
 adults23. Besides, CXCR4 has been reported to be overexpressed in numerous malignancies and is associated 
with tumor growth, invasion, angiogenesis, metastasis, recurrence, and drug  resistance24. The upregulation of 
CXCR4 promoted the invasion and migration of GC cells by inducing epithelial-mesenchymal transition (EMT), 
thus weakening the prognosis of  patients25. MAGEA11 was previously found to be highly expressed in breast 
cancer, bladder cancer, and laryngeal squamous cell  carcinoma26–28; the positive expression of this gene was 

Figure 7.  The gene mutational landscape. (A–B) Waterfall plot of the top 20 mutant genes in the low-, and 
high-risk group. (C) The Kaplan–Meier analysis curves for GC patients with low or high tumor mutation 
burden. (D) The Kaplan–Meier analysis curves for the GC patients stratified by NKCAS and TMB.
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associated with the progression of malignant tumors, thus leading to poor  survival29,30. CYP19A1, a member of 
the cytochrome P450 family, was previously found to be highly expressed in GC and associated with an adverse 
prognosis; the silencing of its expression could be useful for GC  treatment31,32. A previous study showed that 

Figure 8.  Landscape of tumor immune microenvironment. (A) Difference expression levels of 22 types of 
tumor-infiltrating immune cells between low-risk and high-risk groups. (B) H&E staining showed the infiltrated 
immune cells in TME. (Magnification, 5× & 20×.) (C) The relationship between the risk score and immune cell 
infiltration were validated in XCELL, TIMER, QUANTISEQ, MCPCOUNTER, and EPIC. (D) TME analysis 
based on ESTIMATE algorithm. (E) Correlogram was generated based on Pearson R-value between risk score 
and metagenes. (F) A Heatmap showed the relationship between risk score and inflammatory metagenes.
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SHOX2 methylation represent a potential biomarker for some  cancers33–37. This gene was also shown to be related 
to unfavorable distant metastasis-free survival and could promote WASF3 transcriptional activity to induce 
the growth and metastasis of breast cancer. GRB14 was previously shown to be a poor prognostic predictor 
for colorectal cancer; the overexpression of this gene can enhance cell invasion and result in the metastases of 
thyroid  cancer38,39. Interestingly, GRB14 was identified as a good prognostic factor for breast cancer patients; 
the overexpression of GRB14 was shown to inhibit estrogen-induced cell cycle  progression40,41. NEK5 activity is 
known to regulated the mesenchymal and phenotype of breast cancer cells and can promote cell proliferation via 
the up-regulation of Cyclin  A242,43. MSI2 has the potential to be a novel therapeutic target for  cancers44 and can 
promote cancer progression and drug resistance via multiple signaling  pathways45–49. KYNU encodes kynureni-
nase, an enzyme that catalyzes the cleavage of L-kynurenine, which has been found to block cytokine-mediated 
up-regulation of the expression and function of NKp46 and NKG2D, thereby inducing NK cell-mediated  killing50. 

Figure 9.  The role of NKCAS in predicting immunotherapy response. (A–C) Comparison of conventional 
immunotherapy predictors including PD-L1, TMB, and TIDE scores in low- and high-risk groups. (D) The 
relationship between the response to immunotherapy and the risk scores. (E) The proportion of response to 
immunotherapy in low- versus high-risk group. (F) Kaplan–Meier survival curve of the low- versus high-
risk group in the immunotherapy cohort (IMvigor 210 cohort). (G–H) The TMB and neoantigen burden 
in low- versus high-risk group. (I) Multivariate Cox regression analysis of the NCMGS with features in the 
immunotherapy cohort.
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In addition, high expression levels of KYNU were previously shown to be related to poor disease-free survival 
in cancer  patients51. It has been reported that the depletion of KYNU could inhibit the growth of cancer cells via 
the PI3K/AKT signaling  pathway52. A previous study showed that the upregulation of PLCL1, mediated by the 
overexpression of CHD5, could suppress the invasion and migration of neuroblastoma  cells53. In addition, lipid 
browning mediated by PLCL/UCP1 promotes tumor cell “slimming” and reduces abnormal lipid accumulation, 
thus repressing the progression of clear cell renal cell  carcinoma54. In particular, there is limited information 
available regarding the involvement of SLC35E4, AKAP5, and RDH8 in malignancies; only a few bioinformatics 
studies have addressed their potential as prognostic predictors for cancer. Consequently, further research is now 
required to fully understand their biological roles. In addition, we analyzed the expression levels of marker genes 
and validated these results using independent external datasets. Due to the importance of the signature in the 
prognosis, TME, and immunotherapy of GC. The signature’s included genes may represent potential molecular 
mechanisms for GC.

The predictive ability of the NKCAS was further evaluated in the GEO dataset. Analysis showed a good 
consistency in all datasets, thus demonstrating a strong robustness and repeatability. Moreover, we developed a 
nomogram to predict the survival probabilities of GC patients. The outcomes of multiple methods (AUCs and 
calibration curves) indicated a good predictive performance of the nomogram. Furthermore, DCA analysis sug-
gested that applying this nomogram into clinical management might provide more net-benefit for GC patients. 
The nomogram could improve guidance on patient prognosis and facilitate the efficient utilization of medical 
resources.

The TME plays an important role in tumor progression and antitumor  response55. Here, we investigated the 
characteristics of the GC TME in distinct risk groups. The stromal, immune, and ESTIMATE scores were lower 
in the LRG than in the HRG. This indicated a higher proportion of stromal cells and lower tumor purity in the 
HRG. It has been reported that stromal cells related to the TME can promote tumor growth and hinder immu-
nity, and that low tumor purity is associated with an unfavorable prognosis and immune-evasion phenotype. 
Thus, stromal changes during the development of GC may be  detrimental56,57. As a crucial element of the TME, 
the allocation of immune infiltrating cells also fluctuates among different risk categories. CIBERSORT results 
showed that tumors from the LRG had a high infiltration of CD4+ T cells, CD8+ T cells, NK cells, and neutrophils. 
Previous research indicated that a significant abundance of T cells may denote a “hot” tumor phenotype, which 
can improve the host’s anti-tumor defenses and enhance the efficacy of  immunotherapies58. This ultimately leads 
to improved overall survival rates for GC  patients59. NK cells are a crucial facet of innate immunity and play a 
significant role in organizing antitumor immune responses. A previous study showed that the high infiltrations 
of NK cells in solid tumors was associated with a favorable  prognosis10. The CIBERSORT results also suggested 
that tumors from the HRG had a high infiltration of monocytes, B cells, Tregs, and M2 macrophages. The pro-
motion of tumor growth and invasion may be facilitated by anti-inflammatory M2 macrophages. Inflammatory 
monocytes, on the other hand, may promote the extravasation of tumor cells, thus facilitating cancer metas-
tasis. Additionally, a study has suggested that patients with GC who have high peritumoral TIGIT + CD20 + B 
cell infiltration may experience inferior clinical outcomes due to the effect of these cells on the exhaustion of 
CD8+ T cells. Furthermore, it has been reported that Foxp3+ Tregs are highly expressed in gastric cancer and are 
associated with poor clinical outcomes. This may explain the clustering of M2 macrophages, B cells, monocytes, 
and Tregs in the  HRG60–63. Collectively, these results indicated that low-risk patients may have a relatively active 
anti-tumor immune response.

Furthermore, we investigated the relationship between the risk groups and the immune-related metagene, 
which reflects various inflammatory and immune activities, as previously  reported19. We found that the risk 
score was negatively related to LCK, STAT1, interferon, IgG, MHC-I, and MHC-II clusters. LCK, a Src-related 
protein tyrosine kinase, is essential for the development and activation of T  cells64. Activated LCK signaling can 
potentiate CD8+ T cell activation and anti-tumor responses thereby improving  survival65. STAT1 inhibits T cell 
exhaustion and myeloid derived suppressor cell accumulation; thus, the selective induction of STAT1 phospho-
rylation in cancer patients could potentially improve antitumor immune  responses66. MHC molecules are closely 
associated with immune response and immune regulation, and tumors can circumvent T cell-mediated cytotoxic 
responses via the loss of MHC67. Given this, the therapeutic increase MHC expression could sensitizes cancer 
cells to T cell-dependent killing, thus increasing the efficacy of immune checkpoint  blockade68. Interferons exert 
a synergistic effect on anti-tumor immunity, and can active MHC I to enhance protective anti-tumor CD8+ T 
cell  immunity69,70. Collectively, our data show that the high-risk patients exhibit low inflammatory activity and 
immune activity; this may explain their poorer prognosis, at least in part.

Given the differences in the TME between risk groups, we next investigated the potential usefulness of the 
NKCAS in predicting the response to immunotherapy. We evaluated the relationship between the NKCAS and 
currently recognized markers such as PD-L1 expression, TMB, and TIDE score. Analysis showed that PD-L1 
expression and TMB were significantly higher but TIDE score was lower in the LRG, thus indicating that low-risk 
tumors are more immunogenic and may respond better to immunotherapy. Collectively, these results revealed a 
potential power of NKCAS for predicting immunotherapy response. Thus, we used the immunotherapy cohort 
(IMvigor210) to further verify this hypothesis. Particularly, the IMvigor210 cohort was about uroepithelial can-
cer receiving immunotherapy. Multiple previous studies have confirmed the use of this dataset in other cancer 
types to validate the predictive signatures developed. Our result suggested that low-risk patients had a higher 
neoantigen burden and TMB, thus demonstrating higher immunogenicity. Consequently, these patients were 
more sensitive to anti-PD-L1 treatment thereby achieving a better prognosis. In summary, patients in the LRG 
were more likely to benefit from immunotherapy. With more in-depth evaluation, the NKCAS might become a 
reliable biomarker for immunotherapy response.

The strength of this study is that we initially created a durable signature (NKCAS) by combining scRNA-
seq and bulk RNA-seq. The signature was subsequently verified with an external dataset and exhibited good 
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predictive ability for GC prognosis. Furthermore, we explored the relationship between NKCAS and clinico-
pathological factors, the tumor immune environment, and immunotherapy response; this provides insight into 
the precise immune characteristics that underlie NKCAS and may be critical for individuals with GC. Regardless 
of these strengths, our study has limitations that should be acknowledged. First, the signature was built using 
data from public datasets. Further validations are now needed by research undertaken in multiple centers and 
in a prospective clinical cohort. Second, we did not perform any in vivo or in vitro experiments in the current 
study; further functional experiments on the signature are required to verify our silico results.

In conclusion, in this study, we developed and validated a novel prognostic signature consisting of 12 NK cell 
marker genes by comprehensively analyzing scRNA-seq and bulk RNA-seq. Our gene signature could serve as 
a powerful biomarker and may be able to predict prognosis and immunotherapy response in GC patients. Our 
study provides new insights into the role of immune cell marker genes in the prognosis and immunotherapeutic 
response of GC patients.

Data availability
The data that support this study are openly available in online repositories including the TCGA database (https:// 
portal. gdc. cancer. gov/ repos itory), GEO database (https:// www. ncbi. nlm. nih. gov/ geo/), and IMvigor210 cohort 
(http:// resea rch- pub. gene. com/ IMvig or210 CoreB iolog ies).
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