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A new intelligently optimized 
model reference adaptive controller 
using GA and WOA‑based MPPT 
techniques for photovoltaic 
systems
Nassir Deghfel 1, Abd Essalam Badoud 1*, Farid Merahi 1, Mohit Bajaj 2,3,4,5* & 
Ievgen Zaitsev 6*

Recently, the integration of renewable energy sources, specifically photovoltaic (PV) systems, into 
power networks has grown in significance for sustainable energy generation. Researchers have 
investigated different control algorithms for maximum power point tracking (MPPT) to enhance 
the efficiency of PV systems. This article presents an innovative method to address the problem of 
maximum power point tracking in photovoltaic systems amidst swiftly changing weather conditions. 
MPPT techniques supply maximum power to the load during irradiance fluctuations and ambient 
temperatures. A novel optimal model reference adaptive controller is developed and designed based 
on the MIT rule to seek global maximum power without ripples rapidly. The suggested controller 
is also optimized through two popular meta‑heuristic algorithms: The genetic algorithm (GA) and 
the whale optimization algorithm (WOA). These meta‑heuristic approaches have been exploited to 
overcome the difficulty of selecting the adaptation gain of the MRAC controller. The reference voltage 
for MPPT is generated in the study through an adaptive neuro‑fuzzy inference system. The suggested 
controller’s performance is tested via MATLAB/Simulink software under varying temperature and 
radiation circumstances. Simulation is carried out using a Soltech 1sth‑215‑p module coupled to 
a boost converter, which powers a resistive load. Furthermore, to emphasize the recommended 
algorithm’s performance, a comparative study was done between the optimal MRAC using GA and 
WOA and the conventional incremental conductance (INC) method.

Keywords Maximum power point tracking, Photovoltaic systems, Model reference adaptive control, 
Adaptive neuro-fuzzy inference system, Genetic algorithm, Renewable energy, Convergence analysis

Among the most disturbing topics in the status quo is the spread of environmental pollution  worldwide1. The 
primary factor that causes ecological pollution is fossil fuels because of their use in energy production and 
industrial  fields2,3. No doubt, finding a new energy source has become necessary to reduce the use of fossil fuels 
and their  emissions4,5. Among the robust proposed solutions is renewable energy, like solar and wind energy. 
The demand for renewable energy as an alternative source is  growing6,7. Solar energy is one of the most popu-
lar sources because it is limitless and spotless to produce energy without harmful  emissions8,9. Depending on 
the photovoltaic (PV) effect, a solar cell converts the irradiation into electrical energy through many physical 
 processes10. Even though all the PV cells have enticing features, their energy conversion efficiency is still relatively 
 low11. Figure 7 shows the power-voltage (P–V) diagram for a PV array, demonstrating the variation of the PV 
power concerning PV voltage under various amounts of temperature and irradiance. It is clear that only under 
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steady-state environmental conditions does the PV cell provide the highest operating point, called the maximum 
power point (MPP)9,12,13. To achieve this point, we must employ a critical device known as a maximum power 
point tracking (MPPT)  controller14. Today, researchers worldwide seek to develop and create new methods to 
extract as much power from PV  panels15,16. In the  literature8,17,18, we can find various classifications of these 
MPPT techniques.

Among the classical MPPT techniques, we mention Perturb and observe P&O19–21, Incremental Conductance 
(INC)22–24, and Hill Climbing (HC)25–27. However, each technique has specific strengths and weaknesses; for 
example, P&O and HC are simple and require fewer sensors than other  techniques28,29.  In30, a modified perturba-
tion and observation have been proposed to avoid the drift due to the traditional P&O’s incorrect choice. The INC 
algorithm was introduced to resolve P&O issues.  In31, an improved MPPT strategy based on INC is suggested 
to increase productivity and efficiency under fast-changing irradiance.  Ref32, has been proposed an improved 
P&O using simulated annealing (SA) algorithm, the proposed algorithm exhibits better performance in varying 
weather conditions and partial shading Nevertheless, the classical MPPT methods and even those developed are 
still weak under varying environmental conditions and rapid oscillations around the maximum power.

In terms of dynamic weather-varying conditions, intelligent MPPT  techniques33 are often used, including 
fuzzy logic control (FLC)34,35, artificial neural networks (ANN)36–38, adaptive neuro-fuzzy inference systems 
(ANFIS)39, sliding mode  control40, and Gauss–Newton method-based  MPPT34. These techniques are very effi-
cient and faster for tracking the MPP. Nevertheless, they require many data sets to train and improve tracking 
accuracy, especially ANN and ANFIS-based MPPT; their implementation can be challenging.

Recently, bio-inspired algorithms like Particle Swarm Optimization (PSO)41, Genetic Algorithm (GA)42, 
Grey Wolf Optimization (GWO)43, and Whale Optimization  Algorithm44 have been widely used in PV sys-
tems to determine the maximum power point, especially under partial shading  conditions45.  In46 a new MPPT 
called the slime mold golden sine algorithm was proposed in order to address the partial shading problem, the 
proposed SMGSA method exhibits superior effectiveness and enhancement. Most of these strategies follow an 
identical sequence or procedure to accomplish  optimization47,48. Although bio-inspired solutions can effectively 
handle the challenge of partial shading, their efficacy depends entirely on the parameters chosen and the start-
ing  conditions49.

Combining bio-inspired algorithms with other MPPT approaches can overcome this restriction in bio-
inspired algorithms.  In50, an invented P&O with adaptive variable step size based on a PID controller optimized 
using the Genetic Algorithm was introduced. It shows less oscillation around the MPP and improves efficiency. 
Ref.51 has suggested a fuzzy logic controller optimized through the cuckoo strategy optimization approach (COA-
FLC) for Maximum Power Point Tracking (MPPT) under various meteorological conditions. This COA-FLC 
has improved the convergence time and minimized the output ripple power. A fractional order based MPPT 
enhanced using different metaheuristic techniques was suggested  in52, The results obtained demonstrated a high 
level of accuracy and increased robustness.

To avoid such improbable and substantial variations during the transitory phase, researchers proposed a 
two-level MPPT control  architecture53.  In54, the ripple correlation control algorithm was the initial loop of 
control, while the model reference adaptive controller MRAC was the second. The separation of these control 
algorithms results in the attainment of MPPT while ensuring the entire system’s stability. Another solution is 
described  in55; an improved model reference adaptive controller was associated with incremental conductance. 
A set of tests and simulations using PSIM and experimental tests are employed to verify the effectiveness of the 
suggested methodology. However, most plants have PV systems and boost converters, mathematically modeled 
as second-order systems. Indeed, the performance of traditional MRAC tracking systems could be better for 
second-order systems. To improve MPPT performance, a novel MRAC structure has been expanded from the 
first to the second  order56.

Nevertheless, one of the significant issues caused by non-linearity is determining MRAC adaptation gains 
according to specific methods. As described in  references57,58, the authors investigated the influence of changing 
the adaptation gain on the overall system’s performance, including the time response and the oscillation in the 
response. In this article, meta-heuristic algorithms have been used to overcome this difficulty. Two optimiza-
tion techniques are applied to tune the parameters of MRAC and improve its dynamic performance, namely the 
genetic algorithm (GA) and the whale optimization algorithm (WOA)59. In addition, an adaptable Neuro-Fuzzy 
Inference System (ANFIS) has been employed to produce voltage references for maximum power capacity, which 
a designed controller subsequently tracks; Fig. 1 illustrates the block diagram of the developed system.

The rest of this paper is organized as follows: Section “Mathematical modeling of photovoltaic array” describes 
a photovoltaic array’s mathematical modeling and the boost converter’s mathematical representation. The neuro-
fuzzy network and the proposed optimal model reference adaptive controller, OMRAC, are presented in Section 
“Dynamics modeling of the DC–DC boost converter”. Section “Proposed MPPT” contains the simulation results, 
discussion, conclusion, and future work.

Mathematical modeling of photovoltaic array
Single diode model
Several mathematical models illustrating solar panels’ operation and performance are documented in the litera-
ture. Indeed, real-time simulation requires equivalent circuit modeling of PV cells. The most popular approximate 
equivalent model researchers use is the single-diode model, as presented in Fig. 2. The used circuit consists of at 
least four components: a current source IPh, a diode D, a parallel resistor Rp, and a series resistor Rs.

According to the single diode equivalent model of the PV cell presented in Fig. 2, the output current IPV can 
be described as  follows60.
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The reverse saturation current of the cell is referred to as Irs. V denotes the voltage of the cell, whereas Ns 
indicates the number of PV cells linked in series at the same time. Np indicates the number of photovoltaic cells 
linked in parallel. K represents the Boltzmann constant, q symbolizes an electron’s charge, T denotes Kelvin’s 
temperature, and A represents the diode ideality constant. Based on Eq. (2), the irradiance of the sun E and the 
ambient temperature T are two of the main factors determining the IPh.

Ki represents the short-circuit current, T denotes the temperature coefficient of the cell, Isc is the short-circuit 
current, and E represents the variation in solar radiation. Equation (3) gives the saturation current in cell Irs. A 
strong correlation exists between temperature and saturation  current61,62.

Irr: represents the reverse saturation corresponding to Tr; Tr: is the cell reference temperature; EG: is the band-
gap energy of the semiconductor used in the cell.

Triple diode model
The PV cell scheme based triple diode model is illustrated in Fig. 3. This model taken into consideration two addi-
tional diodes as in the single diode  model63,64. The expression of the output current can be given as  following65.
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Figure 1.  The proposed MPPT block diagram for the PV system.

Figure 2.  PV cell circuit using a single diode model.
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where I01, I02 and I03 denoted to the reverse saturation current of each diode.

Dynamics modeling of the DC‑DC boost converter
A traditional MPPT algorithm relies on Eq. (4) to determine the converter’s duty cycle when the system is stable. 
On the other hand, the MPPT controller needs to consider the dynamics related to the duty cycle d and the PV 
voltage VPV to optimize transient  responses66,67. When the duty cycle is adjusted to reflect varying environmental 
circumstances, the MPPT controller should remove any transient fluctuations in the PV  voltage68–70.

As suggested  in71,72, a small signal model of the studied system was considered (Fig. 4) in order to make 
it easier to analyze how the system responds to changes over time. A resistor R with a small signal PV voltage 
represents the solar array V ̂pv and current I ̂pv throughout its terminals, while battery storage represents the 
load RO. By ignoring the battery load, the transfer function between the duty cycle d ̂(s) as an input and the array 
voltage V ̂pv(s) as an output of the system can be described as  following72:

Where f (D) is the correlation between a boost converter’s voltage at the output array Vo and the operating 
duty cycle D.

The first derivation of Eq. (6) can be expressed by:

By inserting Eq. (7) into Eq. (5), we can obtain:

The negative sign in (8) implies that reducing the duty cycle d(s) causes the array voltage to increase. The 
transfer function depicted previously is derived from a linearized  form73. Noteworthy is that C1 and L are identi-
fied, while R is unknown. The PV system’s operating point (particularly the parameter R) fluctuates as ambient 
circumstances change  quickly74,75. The value of R may be estimated by calculating the slope of the line tangent 
to point A on the I–V curve shown in Fig. 5 and then taking the inverse of that slope.
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Figure 3.  PV cell circuit using triple diode model.

Figure 4.  PV small signal model coupled to the boost converter.
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Proposed MPPT
The proposed MPPT technique in this paper can be divided into three main steps, as depicted in Fig. 6. The first 
objective is maintaining a constant reference voltage (Vref) from the PV module output using an adaptive neuro-
fuzzy controller under fluctuating environmental circumstances.

The ANFIS controller employs a relationship between VMPP and (irradiance and temperature) to supply 
reference peak power voltage. This reference value is compared with the value Vpv to provide an error value sent 
to the proposed MPPT’s second stage. During the second control stage, the MRAC algorithm generates a control 
input that adjusts the DC–DC converter’s PWM signal. This paper also optimizes this controller using meta-
heuristic optimization algorithms to ensure the most efficient dynamic performance of the system.

Reference voltage generation via adaptive neuro‑fuzzy algorithm (ANFIS)
To guarantee maximum power from the PV panel to the load, the MPPT controller must constantly check the 
PV array output voltage. Several methods have been used for calculating or learning the PV array reference peak 
power voltage. For instance, artificial neural networks (ANN)60, regression  plans49,76, Gaussian process regression 
(GPR)11, and adaptive neuro-fuzzy inference systems (ANFIS)39. This paper uses the Neuro-Fuzzy algorithm to 
generate/estimate the voltage reference VMPP for the proposed controller.

The curve of PV characteristic change under varying environmental conditions for every single temperature 
value (T) and irradiance (G) is presented in Fig. 7. The  VMPP data was collected using MATLAB/Simulink by 
adjusting the temperature from 20 to 70 °C while keeping the irradiance constant at 1000 w/m2. Then, we set 
the temperature to 25°, whereas the irradiance has been varied from 100 to 1000 w/m2. Figure 8 presents the 
result of these data as a 3-D plane. The structure of the ANFIS model in MATLAB/Simulink for VMPP estima-
tion is depicted in Fig. 9. The neuro-fuzzy estimator comprises temperature (T) and irradiance (G) inputs. The 
fuzzification layer, which includes ten triangular membership functions assigned to every variable, represents 
each rule in the output layer as a linear  equation77,78.

The ANFIS algorithm provides the reference voltage to the development controller. Then, the controller forces 
the output voltage to track the desired voltage to reach the maximum power point.

Model reference adaptive control (MRAC)
An adaptive controller is, intuitively, one that can adapt its actions based on variations in the process dynam-
ics and the nature of the  disturbance79. Several researchers have attempted to define adaptive control in the 
literature. As shown in Fig. 9, we will use the pragmatic approach in this research, which involves a controller 
with adjustable parameters and a mechanism that allows these parameters to be adjusted. MRAC systems are 
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Figure 6.  Block diagram of the suggested MPPT technique.
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designed so that the plant model’s output constantly tracks the reference model’s  output80,81. The structure of 
the model consists of a PV system with a boost converter, represented by a second-order transfer function, as 
shown in Eq. (8). The voltage reference  Vref produced by the first level (ANFIS estimator) is regarded as an input 
to the system, represented as u (t). In contrast, y (t) represents the output. The plant model can be rewritten in 
the following manner:

where kp =
−V0
LC1

, ap = 1
RC1

andbp = 1
LC1The reference model that guides how the process output should ideally react to the control signal u(t) is given 

in Eq. (11). Where ym is the desired output, Km represents a positive gain, and am and bm must be selected. The 
reference model thus offers the suggested solution.

The controller architecture depicted in Fig. 10 illustrates the approach we will use to achieve the control 
objective. The control law is described as  follows58:
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where θ = [θ1, θ2] are the parameters of the controller vector, and ω is described as Y = [Yc, Y]T.
In order to design the adaptation mechanism, MRAC theory uses two basic mathematical techniques. The 

MIT rule (Massachusetts Institute of Technology) is known as the gradient approach and Lyapunov stability 

(12)U = θ1Yc − θ2Y = θ
Tw

Figure 9.  The architecture of NeuroFuzzy.

Figure 10.  The architecture of the model references adaptive control.

Figure 11.  Structure of the controller in the proposed OMRAC.
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theory. This study has chosen the MIT rule to adjust the controller’s parameters as an adaptation mechanism. 
By using the MIT rule, the loss function is expressed by:

where e represents the error obtained by subtracting the plant y output value from the reference model output Ym.

A mathematical equation was developed for updating the parameter θ, based on the assumption that, if the 
purpose were to minimize the error-related cost, moving towards the negative gradient of J. where J is supposed 
to change proportionally to θ would be advisable. Therefore, the derivative of θ equals the negative variation in 
J. Based on the cost function selected above, the following result can be obtained:

Γ and ∂e/∂θ are the system’s adaptation gain and sensitivity derivative, respectively.
The transfer function between the input YC and the plant’s output y is given by:

Thus, Eq. (14) can be rewritten as follows:

According to (15), the sensitivity derivatives ∂e/∂θ1 and ∂e/∂θ2 can be described by:

In order to ensure a perfect tracking error from this close loop process, we will assume that the time behavior 
is the same as that of the reference model, as follows:

Therefore, based on the MIT rule, the control parameters are updated as follows:

The next step will be to tune the adaptation gain of the MRAC controller by employing two optimization 
techniques.

Optimization techniques
This section provides two optimizer algorithms, namely GA and WOA, to adjust the adaptation gains of the 
proposed MRAC structure. It is worth mentioning that both these methods are widely recognized and have been 
frequently employed for similar applications.

Genetic algorithm (GA)
GA is an algorithm that is based on the population genetics concept. Each solution represents a chromosome, 
while each parameter corresponds to a  gene79,82,83. GA employs an objective (fitness) function to assess the fitness 
of every single population member. The approach of retaining the most efficient solutions in each generation and 
utilizing them to generate the following solutions renders this algorithm reliable and proficient in approximat-
ing the best possible solution for a given  problem84,85. In order to update the population, three genetic processes 
(selection, crossover, and mutation) are applied after each chromosome has been evaluated through a cost func-
tion and assigned a fitness  value51. The genetic algorithm (GA) uses a selection operator (Boltzmann selection, 
Tournament selection, Rank selection, etc.)86 to allocate probabilities to individuals based on their fitness values. 
It allows for the selection of individuals to create the next generation in proportion to their fitness values. Once 
individuals are chosen via a selection operator, they must be utilized to produce the new generation. The chro-
mosomes from the male and female genes are merged to generate a novel chromosome; this operation in GA is 
called  crossover87,88. Mutation operators maintain diversity by adding randomness. By using this operator, the 
GA algorithm avoids local solutions and prevents solutions from becoming  similar43,79,89,90.

In this study, the cost function chosen to evaluate the result of each individual in the population is Integral 
Time Absolute Error (ITAE), where the error (e’) can be obtained by subtracting the measured power from the 
maximum power (denoted Pref), as described in (21):
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Figure 11 depicts the procedure for adjusting the parameters of the MRAC controller with GA, which can be 
outlined using a flowchart, as shown below:

Whale optimization algorithm
Highly intelligent and emotionally complex, whales have long captivated our imagination and inspired scientific 
research. Humpback whales are one of the most giant baleen whales. One of the most attractive aspects of hump-
back whales is their distinct hunting  technique73. Based on this hunting technique, Mirjalili et al. introduced an 
innovative swarm intelligence algorithm called the Whale Optimization Algorithm (WOA)59. The humpback 
whale employs a distinctive hunting mechanism named the bubble net feeding  method91. Noteworthy is that 
the bubble-net feeding method is a distinctive behavior exclusive to humpback whales. The hunting protocol of 
the humpback whale can be summarized in three steps:

Encircling Prey: Humpback whales can detect the whereabouts of their prey and surround them. In the Whale 
Optimization Algorithm (WOA), the precise location of the optimal design within the search space has yet to be 
discovered. Therefore, the algorithm postulates that the current foremost candidate solution is either the target 
prey or close to the optimal solution. Once the optimal search agent is identified, the remaining search agents 
adjust their positions toward the optimal search agent. This conduct is mathematically illustrated through the 
subsequent equations:

In the given equation, t denotes the present iteration, C ⃗and A ⃗serve as coefficient vectors, while X* represents 
a vector denoting the location of the best solution attained thus far. The process of determining the vectors A⃗ 
and C ⃗ involves the following computations:

The vector a ⃗gradually decreases linearly, starting by 2–0 over a series of iterations, whereas (r) ⃗is a haphazard 
vector within the range [0,1].

(21)ITAE =

∫

t
∣

∣

∣
e
′
∣

∣

∣
∂t

(22)D =
∣

∣X∗(t).CX(t)
∣

∣

(23)X(t+ 1) = X∗(t)− D.A

(24)A = 2a.r− a

(25)C = 2r

Figure 12.  Block diagram for tuning of MRAC adaptive gain using GA.
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Attacking Mechanism Using Bubble-Net: Two methods were developed to construct a mathematical represen-
tation for the bubble-net procedure of humpback whales: the Shrinking Encircling Mechanism and the Spiral 
Updating Position  method92.

Shrinking encircling mechanism: This conduct can be achieved by decreasing the value of vector a ⃗ in the 
Eq. (24). It is essential to highlight that vector a⃗ narrows the range of fluctuations in vector A ⃗. Accordingly, the 
value of A ⃗inside the range [−a, a]. By assigning random values to A ⃗within the range of [− 1, 1], the search agent’s 
updated position can be between its original position and the current best agent’s position.

Spiral updating position: The method described in this approach involves computing the distance between a 
whale, which is positioned at coordinates (X, Y), and the location of its prey, which is located at coordinates (X*, 
Y*). Hence, a spiral equation is formulated to represent the helix-shaped movement of the whales. This spiral 
equation is expressed as:

While D′ =
∣

∣X∗ − X
∣

∣ represents how the whale is far away from the prey, where the prey is the best result 
achieved thus far, the constant b defines the logarithmic spiral’s form. At the same time, l serves as a stochastic 
number within the interval of [− 1, 1].

In order to simulate the whales’ coordinated movements, it is postulated that there is an even chance of 50% 
to opt for either the shortening encircling mechanism or the spiral model while the optimization procedure, 
to alter the whales’ positions  simultaneously20,56,93. The mathematical representation of this model is given by:

In the equation given, the variable p represents a random number within the range of [0 1].
Exploration Phase: During this phase, it is assumed that humpback whales search for prey randomly based 

on the positions of other whales. The model of this approach is expressed in this manner:

In the given equation, −→X rand represents a whale’s haphazardly selected location data from the current iteration.
Using the same fitness function mentioned in (21), Fig. 13 illustrates the flowchart of the WOA.

(26)X(t+ 1) = X∗(t)+
(

D′.ebt
)

cos (2π l)

(27)X(t+ 1) =

{

X∗(t)− A.D, ifp ≤ 0.5

D′.ebt cos (2π l)+ X∗(t), ifp ≥ 0.5

(28)D′ =
∣

∣C.Xrand − X
∣

∣

(29)X(t+ 1) = Xrand − A.D

Figure 13.  Whale optimization algorithm for tuning MRAC controller.
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Simulation results and discussion
To check the effectiveness of the developed ANFIS-OMRAC algorithm-based MPPT, this section was dedicated 
to simulating and analyzing the entire model system with Simulink, as shown in Fig. 14. The photovoltaic solar 
panel chosen in this work is the Soltech 1STH-215-P type. PV specifications and the DC–DC boost converter 
parameters are listed in Table 1. Indeed, GA and WOA are used to tune the MRAC controller design param-
eters. GA and WOA require fewer input parameters, which is one of the most significant advantages of these 
algorithms. The specifications for each algorithmic parameter are defined in Table 2. The number of search 
agents (population size) is relatively small considering the real-time implementation so that the controller may 
be optimized as quickly as possible. Figure 15 illustrates the objective function performance during computa-
tion. The whale optimization algorithm converges faster than the genetic algorithm. The whale optimization 
algorithm was more effective than the genetic algorithm concerning the convergence rate and accuracy of results. 
The optimum MRAC adaptation gain appears in Table 3.

After the optimal gain has been determined for OMRAC, the controller is used in online mode. Two different 
scenarios were used to evaluate the proposed MPPT technique. Firstly, under rapidly changing irradiation with 
a constant temperature. We will consider a uniform irradiance with a fast-changing temperature in the second 
test. On the other hand, a comparative study between the proposed GA-MRAC and WOA-MRAC, in addition 
to a conventional MPPT technique well known as incremental conductance (INC), is done in terms of the dif-
ferent indexes are: settling time (ts), Voltage ripple, Power ripple, the efficiency, integral absolute error (IAE) and 
integral square error (ISE). The efficiency is given by:

Sudden change in irradiance level with a fixed temperature
In this case, we consider the state of fast-changing irradiation levels, as shown in Fig. 16. We picked an irradiance 
profile with both step-up and step-down irradiation changes. In contrast, we set the temperature at the steady 
state, i.e., 25 °C. Figure 17 illustrates the PV power response for each technique used (GA-MRAC, WOA-MRAC, 
and INC). The MPPT performance depicted in Fig. 17 demonstrates that the settling time (TS) to reach MPP 
for the INC approach in the first test (Test 1) is 140 ms (ms). The GA-MRAC method takes 3.34 ms, while the 
WOA-MRAC method only requires 3.25 ms to reach MPP. The proposed optimal model reference adaptive con-
troller (OMRAC) scheme exhibits superior dynamic performance using either GA or WOA. It quickly attains the 
MPP under irradiance variation and provides lower fluctuations around it throughout all four irradiation tests.

The proposed OMRAC method provides better power quality than the INC method regarding power ripple. 
The suggested controller managed to decrease the oscillation around the MPP, as shown in Fig. 18, as well as low 
voltage fluctuation with an average efficiency of 99.92% for GA-MRAC and 99.65% for WOA-MRAC. Table 4 
summarizes the dynamic performance results for each irradiation level applied in detail. Figure 19 illustrates 
the graphical representation of voltage, power ripple, and tracking efficiency.

Under variable temperature and fixed irradiation
To carry out this case, the irradiation intensity was maintained at 1000 w/m2, while the temperature was manipu-
lated by the temperature profile depicted in Fig. 20. A sudden shift of 10 °C was introduced to the temperature 
at each stage.

Figure 21 shows the PV power output during a sudden temperature change using the proposed GA-MRAC 
and WOA-MRAC compared with the INC MPPT technique. It is worth mentioning that the suggested opti-
mal MRAC exhibited significantly superior performance to INC. The traditional approach required 10.8 ms 
to monitor the maximum power point, whereas the GA-MRAC reaction time was calculated to be 1.8 ms. The 
WOA-MRAC MPPT converged in under 1.7 ms. Noteworthy, the OMRAC provides a superior improvement in 

(30)Efficiency =

∫ t
t0
PPV(t)dt

∫ t
t0
PMPP(t)dt

Figure 14.  Implementation of the proposed model using MATLAB/SIMULINK environment.
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convergence time under rapidly changing temperatures over all three temperature tests. The voltage Vpv gener-
ated by the photovoltaic (PV) array is depicted in Fig. 22; the optimal MRAC offers better VMPP tracking with 
a small voltage ripple. On the other hand, there is more voltage fluctuation around VMPP for the INC method.

Figure 23 shows the MPPT point tracking by three different algorithms. Accordingly, the suggested algorithm 
follows the MPP during varying temperature conditions with almost no power ripple.

Table 1.  PV system characteristics.

Parameters Values

The Peak Power of the PV panel (W) 213.15

Open circuit voltage  VOC (V) 36.3

Short circuit current  ISC (A) 7.84

The voltage corresponding to the maximum power  VMP (V) 29

The current corresponding to the maximum power  IMP (A) 7.35

Parallel strings  (NP) 2

Number of cells associated in Series  (NS) 2

Input capacitor C1 100 µF

Output capacitor C2 100 µF

Inductor L 2 mH

Restore load R 25Ω

Frequency f 20 kHz

Solver 1 e-6

Sample time Ode 45

Table 2.  GA and WOA parameters.

Genetic algorithm

Population size 15

Crossover probability 0.8

Mutation function Adaptive feasible

Population type Double vector

Scaling function Rank

Selection Tournament

Maximum iteration 50

Whale optimization algorithm

Population size 15

Maximum iteration 50

Cost function ITAE

5 10 15 20 25 30 35 40 45 50
Generation

6

6.1

6.2

6.3

6.4

6.5

6.6

Fit
ne

ss 
va

lue

10-3 Best_score   GA: 0.00650374   WOA : 0.006060746
GA WOA

Figure 15.  The performance of the objective function during the computation using GA and WOA.
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Table 5 shows a comparative analysis of the mentioned techniques under various temperature tests regarding 
settling time (Ts), Voltage ripple, power ripple, efficiency, IAE, and ISE. Addition to a graphical representation 
analysis to illustrate and support this comparative study is shown in Fig. 24. Through this table and graphic 
representation, we notice the superiority of WOA-MRAC, followed by GA-MRAC, and finally, the conventional 
INC technique. Table 6 thoroughly evaluates the most recent cutting-edge MPPT techniques.

Table 3.  The optimum MRAC controller gains.

Parameters Values

Adaptation gain (γ) 0.161386 0.235809

Best score 0.006503 0.006074

Convergence 15th 5th iteration
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Figure 16.  Solar irradiance profile.
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Figure 17.  PV array power under variable irradiance for three MPPT techniques.

Figure 18.  Power-Voltage characteristics under variable irradiation.



14

Vol:.(1234567890)

Scientific Reports |         (2024) 14:6827  | https://doi.org/10.1038/s41598-024-57610-0

www.nature.com/scientificreports/

Table 4.  Analysis results for variable irradiation test.

Test MPPT Settling times (ms) Voltage ripple (V) Power ripple (W) Efficiency (%) Error (IAE) Error (ISE)

1

INC 140 1.72 1.5 97.707 1.582 466.5

GA-MRAC 3.34 0.19 0.4 98.736 0.868 362.4

WOA-MRAC 3.25 0.18 0.3 98.811 0.8165 341.6

INC 63.77 2.16 2 98.47 0.2653 11.2

2

GA-MRAC 0.547155 0.16 0.08 99.993 0.00576 0.04855

WOA-MRAC 0.547155 0.2 0.1 99.994 0.00491 0.04897

INC 12.6914 1.63 1.8 98.46 1.32 157.3

3

GA-MRAC 0.9169 0.14 0.5 99.778 0.1889 1.515

WOA-MRAC 0.9533 0.15 0.5 99.793 0.1764 1.383

INC 6.2046 1.7 1.5 98.76 0.2629 16.49

4
GA-MRAC 0.002589 0.15 0.2 99.996 0.00944 0.0618

WOA-MRAC 0.8416977 0.13 0.1 99.994 0.01712 0.1151

Figure 19.  Comparison evaluation using the graphical representation: (a) Voltage ripple, (b) Power ripple, (c) 
Tracking efficiency.
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Conclusions and future research directions
In this work, an innovative two-level maximum power point tracking (MPPT) controller designed for photo-
voltaic devices is developed. The first level of control includes the implementation of an Adaptive Neuro-Fuzzy 
(ANFIS) estimator to generate the voltage reference. To improve the MPPT algorithm efficiency even more, 
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Figure 20.  Temperature profile.
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Figure 21.  PV power output under variable temperature conditions.

Figure 22.  Power-Voltage curve under variable temperature.
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we introduced a second level of control using a model reference adaptive controller (MRAC). To optimize the 
MRAC controller performance, we employed two optimization techniques, Genetic Algorithm (GA) and Whale 
Optimization Algorithm (WOA), to fine-tune the controller’s parameters. The proposed approach can cope with 
the challenges of quickly changing atmospheric conditions. The efficacy of the developed algorithm was veri-
fied through MATLAB/Simulink software. The performance of the innovative GA-MRAC and WOA-MRAC 
was compared with a conventional MPPT algorithm, namely incremental conductance (INC). Summing up the 
results, the WOA-MRAC controller exhibited the most excellent performance with the fastest convergence time, 
high tracking efficiency, and no further fluctuations. We conclude that the two-level MPPT control system shows 
promise for the optimization of PV systems, especially in dynamic environments where real-time tracking of the 
maximum power point is critical for energy harvesting.

In the future, several research directions could enhance the development of MPPT control systems for PV 
systems. Consider investigating alternative optimization algorithms other than genetic algorithms (GA) and 
whale optimization algorithms (WOA) to enhance the fine-tuning of MRAC parameters and maybe achieve 
superior outcomes. Evaluating the reliability of the two-level MPPT system in real-world scenarios, including 
partial shade, aging, and fluctuating load conditions, will offer vital insights into its practical use. Furthermore, 
combining the two-level MPPT system with additional control techniques like energy storage systems or grid-
connected inverters could improve the system’s efficiency and reliability. Hardware prototypes and field tests are 
crucial for validating the performance of the two-level MPPT system in real-world situations, offering vital input 
for PV installations in both residential and commercial environments. Future study should prioritize optimizing 
and testing the two-level MPPT control system in real-world situations and investigating its integration with 
other control systems to improve performance.
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Figure 23.  PV voltage output under variable temperature conditions.

Table 5.  Analysis results for variable temperature test.

Test MPPT Settling times (ms) Voltage ripple (V) Power ripple (W) Efficiency (%) Error (IAE) Error (ISE)

1

INC 10.895 1.65 1.9 97.14 2.435 989.8

GA-MRAC 1.810545 0.13 0.2 99.63 0.3075 46.17

WOA-MRAC 1.742495 0.1 0.2 99.68 0.2705 45.48

INC 0.009627 1.55 1.7 98.51 0.04109 0.04575

2

GA-MRAC 0.000792 0.08 0.1 99.97 0.01873 0.01618

WOA-MRAC 0.000799 0.14 0.2 99.98 0.0158 0.0196

INC 0.0009611 1.51 1.5 98.99 0.04238 0.05594

3

GA-MRAC 0.000877 0.05 0.3 99.36 0.495 2.462

WOA-MRAC 0.000891 0.06 0.5 99.39 0.474 2.258

INC 10.895 1.65 1.9 97.14 2.435 989.8

4
GA-MRAC 1.810545 0.13 0.2 99.63 0.3075 46.17

WOA-MRAC 1.742495 0.1 0.2 99.68 0.2705 45.48
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Figure 24.  Comparison evaluation using the graphical representation under variable temperature: (a) Power 
ripple, (b) Voltage ripple, (c) Tracking efficiency.

Table 6.  Comparison of the several MPPT methods found in the literature.

References MPPT algorithms Steady-state fluctuation Tracking efficiency Convergence MPPT algorithms
94 Coarse and fine Low High Low Medium
95 IBA-FLC Medium High Medium High
36 ANN Low High fast Medium
93 Twisting Sliding Mode Control Medium Medium fast Low

96 Super twisting sliding mode-type two 
fuzzy Low Very high fast Low

56 P&O-MRAC No Very high Very fast Low

Proposed ANFIS-WOA-MRAC No Very high Very fast medium
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