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Multigrid simulations 
of non‑Newtonian fluid flow 
and heat transfer in a ventilated 
square cavity with mixed 
convection and baffles
Nusrat Rehman 1, Rashid Mahmood 1, Afraz Hussain Majeed 1*, Ilyas Khan 2 & 
Abdullah Mohamed 3*

The impact of baffles on a convective heat transfer of a non-Newtonian fluid is experimentally 
studied within a square cavity. The non-Newtonian fluid is pumped into the cavity through the 
inlet and subsequently departs from the cavity via the outlet. Given the inherent non-linearity of 
the model, a numerical technique has been selected as the method for obtaining the outcomes. 
Primarily, the governing equations within the two-dimensional domain have been discretized 
using the finite element method. For approximating velocity and pressure, we have employed the 
reliable P2–P1 finite element pair, while for temperature, we have opted for the quadratic basis. To 
enhance convergence speed and accuracy, we employ the powerful multigrid approach. This study 
investigates how key parameters like Richardson number (Ri), Reynolds number (Re), and baffle gap 
bg influence heat transfer within a cavity comprising a non-Newtonian fluid. The baffle gap ( bg ) has 
been systematically altered within the range of 0.2–0.6, and for this research, three distinct power law 
indices have been selected namely: 0.5, 1.0, and 1.5. The primary outcomes of the investigation are 
illustrated through velocity profiles, streamlines, and isotherm visualizations. Furthermore, the study 
includes the computation of the Nuavg(average Nusselt number) across a range of parameter values. 
As the Richardson number (Ri) increases, Nuavg also rises, indicating that an increase in Ri results in 
augmented average heat transfer. Making the space between the baffles wider makes heat flow more 
intense. This, in turn, heats up more fluid within the cavity.
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List of symbols
Cp 	� Specific heat ( J (kg)−1K−1)
Bg 	� Baffle gap
Pr 	� Prandtl number, dimensionless
p 	� Pressure (Nm−2)
p 	� Dimensionless pressure
n 	� Power law index, dimensionless
T 	� Temperature ( K)
x, y 	� Dimensional Cartesian coordinates (m)
X Y  	� Dimensionless Cartesian coordinates
Re 	� Reynolds number, dimensionless
L 	� Cavity length (m)

Ri 	� Richardson number, dimensionless
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u, v 	� Velocity components (m s−1)
U ,V  	� Dimensionless velocity components
m 	� Consistency parameter
Gr 	� Grashof number, dimensionless
g 	� Gravitational acceleration (m s−2)
k 	� Thermal conductivity (W m−1 K−1)
Nuavg 	� Average Nusselt number, dimensionless
Uin 	� Velocity at the inlet port (m s−1)

Greek symbols
ρ 	� Fluid density (kgm−3)

θ 	� Normalized temperature, dimensionless
β 	� Thermal expansion coefficient ( k−1)
µ 	� Dynamic viscosity (N s m−2)
τ	� Shear stress
η 	� Apparent viscosity

Supscript
C 	� Cold
H 	� Heated
in 	� Inlet port
out 	� Outlet port
w 	� Wall
avg 	� Average

Convective heat transfer in cavities has become a magnet for researchers, attracting widespread interest and 
attraction. It’s a captivating field of study that has captured the attention of the scientific community, standing 
out as an exclusive and highly sought-after research area. Mixed convection heat transfer in vented cavities 
has gained noteworthy attention in practical engineering problems due to its amenable simplicity. In recent 
times, heat transfer through the introduction of obstacles within cavities has also achieved notable interest. The 
phenomenon of fluid flow around a rotating cylinder within a ventilated enclosure is commonly observed in a 
variety of real-world applications. These include thermal system design, rotary heat exchangers, air conditioning 
systems, electric cooling mechanisms, oil well drilling operations, solar collectors, and food processing industries. 
In each of these scenarios, understanding the behavior of the fluid flow is crucial for optimizing performance 
and efficiency. By reviewing this phenomenon, engineers and designers can develop innovative solutions to 
encounter precise requirements and improve the overall functionality of these applications1. Optimizing heat 
transfer within a vented enclosure can be achieved through strategic placement of baffles. These baffles help to 
endorse better airflow and increase the efficiency of heat transfer within the system. By purposeful insertion 
of baffles, the flow shapes can be directed in a way that maximizes heat exchange, leading to enhanced overall 
performance. Bassam2 carried out a computational study to scrutinize the laminar natural convection occur-
ring around a horizontal cylinder. This cylinder was fitted with one or more than one fin (baffles) on its external 
surface, characterized by low thermal conductivity. It was discovered that the efficient positioning of single or 
dual baffles has a substantial impact on the reduction of entropy formation and heat transfer. Abraham and 
Sparrow3 conducted a thorough experiment to examine heat transfer in an oven-shaped enclosure. They also 
looked into how having or not having vents in the oven affected things. It was discovered that as the heating 
period progressed, the frequency of the periodic temperature changes brought on by the oven control circuit 
decreased. Saha et al.4 performed a numerical investigation to explore transverse mixed convection within a 
ventilated enclosure. Their focus was on a uniformly heated bottom wall under a fixed heat flux. Based on the 
computational findings, the position of the inlet and outlet has a substantial impact on both the heat transfer 
along the heated cavity wall and the dispersion of temperatures within the flow fields. Joodi5 conducted an 
investigation using COMSOL Multiphysics techniques to study how the geometry of baffles in the flocculation 
basin affects turbulence behavior. It was found that changing the inlet water velocity can significantly impact 
the turbulence structure of the water carrying the particles. Radhakrishnan et al.6 investigated mixed convec-
tion from a heat-generating device in a vented cavity with or without a baffle configuration using numerical 
and experimental methods. The existence or presence of a baffle placed at the central of the bottom wall has 
been observed to effectively channel the flow toward the heater. This configuration led to an enhancement in 
the freezing rate of up to 50% compared to the scenario where no baffle was present. Nougbléga et al.7 system-
atically analyze mixed convection within a baffled vented chamber where a uniform heat flow emanates from 
the left vertical wall, aiming to provide a quantitative assessment. The findings demonstrate that the horizontal 
walls where the heated baffles are located allow for the simultaneous creation of heated and isolated zone in the 
baffled vented cavity. Mahmood et al.8 performed a computational analysis of heat transfer within a magnetized 
staggered cavity with wavy insulation baffles. They addressed the partial differential equations that describe the 
flow and heat transfer phenomena within the cavity. Results indicate that when the Rayleigh number is smaller, 
the flow strength is greater. Aun et al.9 undertook a comprehensive investigation into the heat transfer dynamics 
within an enclosures, especially studying the impact of a vertical heated block and baffles. Results indicate that 
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the baffles spread the flow inside the cavity and produce several circulation cells, which improve heat transfer. 
In a vented square enclosure with vertical walls that are differentially heated and an elastic baffle connected to a 
circular rod, Hamzeh et al.10 concentrate on the transient mixed convection. According to the research findings, 
it was evident that the comparison of the average Nusselt number in cavities with flexible baffles, rigid baffles, 
and no baffles showed that the cavity with the flexible baffle had the highest value. Palaniappan et al.11 look at 
the outcomes of a computational analysis of convection in ventilation square chamber with parallel insulated 
baffles. It is discovered that the behavior of ventilation cavities depends on more factors than only the size and 
placement of the baffles. It also greatly depends on how the ventilation cavity is set up.

The investigation of non-Newtonian fluid flow in vented cavities opens up exciting opportunities for advanc-
ing heat transfer and tumbling friction. It’s a fascinating path of research that holds boundless potential for 
innovation in these areas. Kefayati12 conducted an investigation into mixed convection involving non-Newtonian 
nanofluids within a square cavity driven by lids on two sides. The findings indicate that as the Richardson number 
increases, the influence of nanoparticles becomes more pronounced and significant. Yassen and Ismael13 studied 
how power law fluid design interacts in a trapezoidal cavity connected to a rectangular channel. The analysis 
demonstrates a significant improvement in heat transfer with the suggested baffled channel. Yang and Du14 
conducted a study on heat transfer in enclosures using non-Newtonian fluids or nanofluids. Their discoveries 
suggest that enhancing the precision of fluid simulations in cavities can be achieved by quantifying the complex 
behavior of non-Newtonian nanofluids using empirical viscosity model. Shahabadi et al.15 explored into the 
intricate realm of flow and heat transfer, with a particular emphasis on a non-Newtonian fluid characterized 
by a power law. They introduce a twist by incorporating a flexible fin within a cavity. Flow patterns in natural 
convection are heavily influenced by both non-Newtonian fluid behavior and fin flexibility, mainly above the 
fin. Ghurban et al.16 numerically investigate mixed convective heat transfer in an externally vented square cavity 
occupied with non-Newtonian fluid and equipped with a baffle. Conclusions specifies that the power law index 
plays a substantial role in determining how strong the convectional transfer is.

Nanofluids within cavities, combined with baffles or fins, are of great importance in current research. 
Mahmoudi et al.17 conducted a numerical investigation that explored the complex interplay between mixed 
convection flow patterns and temperature distributions within a square cavity equipped with vents. Their study 
also incorporated the use of an external nanofluid consisting of copper and water. According to the investigations, 
the thermal properties and the flow field are significantly influenced by Re, Ri, as well as the solid concentration. 
Bellahcena et al.18 took on the challenge of exploring the fascinating world of forced convection heat transfer and 
fluid flows in a baffled shell and tube heat exchanger (STHE), using water-based Al203 nanofluids. The findings 
indicate that using nanofluids in conjunction with baffling techniques in STHEs can improve heat transfer rates 
while consuming less energy. Ali et al.19 performed a computational investigation to observe mixed convection 
flow within a horizontal channel. This channel was configured with alternating baffles and exposed to an external 
magnetic field. It was discovered that alternated baffles greatly impacted the flow circulation by creating vortices 
and serpentine streamlines. The process of natural convection was numerically investigated by Gumir et al.20 
through the utilization of a two-dimensional enclosure, which features finite solid wavy walls and is occupied with 
a hybrid water nanofluid. Experimental data showed that the heat transfer rate progressively decreased with the 
introduction of additional undulations. Biswas et al.21 propose an powerful method to enhance mixed convection 
heat transfer within a corrugated channel by segregating the overall flow into a primary flow and an injected 
flow, particularly under the assisting flow configuration. The findings indicate consistently superior performance 
with injection, leading to a heat transfer enhancement ranging from 50 to 218%. The extent of enhancement is 
contingent on features such as injection, Richardson number, and Reynolds number. Biswas et al.22 investigate 
the thermal control of a heating element by dividing the heater into multiple identical segments and studying 
it under mixed convection conditions. The findings suggest that heat transfer from segmental heating consist-
ently surpasses that of uniform heating, whether applied to the left or right side of the enclosure. Biswas et al.23 
explore the heat transfer characteristics of a porous cavity heated at the bottom and subjected to top injection of 
Cu-water nanofluid. The investigation employs the Brinkman–Forchheimer–extended Darcy model (BFDM) 
and assumes laminar flow conditions. Chakravarty et al.24 explore the effectiveness of side-injected cold fluid in 
boosting heat extraction from a truncated conical, internally heated porous bed within a restricted volume. The 
results suggest a notable enhancement in the extraction of temperature from the heat-generating porous bed 
with the additional introduction of cold fluid into the enclosure.

Today’s researchers have the potential to find precise results with only a few computations because to the 
progress of the multigrid approach in current years. In the initial few repetitions, single-grid methods quickly 
converge, but as the correct solution of the finite-difference equations approaches, the rate of convergence 
steadily declines. In fact, the precision typically reaches an asymptotic limit after which further improvement is 
exceedingly expensive25. Certainly! The multigrid method is a powerful technique used in computational fluid 
dynamics (CFD) to solve complex fluid flow problems. Researcher have extensively studied and described the 
application of this method in CFD. They have provided detailed insights into the implementation and benefits of 
the multigrid method in CFD26. Wesseling and Oosterlee27 provides a brief overview of the geometric multigrid 
method’s development in CFD, focusing over the past decade. They discuss its application in both compressible 
and incompressible flow problems, along with the conforming multigrid solutions. It’s a valuable resource for 
understanding the recent developments in this field. Zhang et al.28 developed a 2D geometric multigrid model 
designed for solving the Poisson equation, particularly when an interface is present on a grid that employs 
structured adaptive mesh refinement. Their work is all about efficiency tackling this equation using a multigrid 
approach. It’s an important contribution to the field of numerical methods for interface problems.

Mandal et al.29 unveils valuable insights into the interaction between heat, flow, and motile microorganisms 
within porous environments, with potential applications in bio-inspired engineering and microfluidic systems. 
It has been observed that effective control of both local and global transport system can be attained by modifying 
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the pertinent flow parameters and adjusting the number of undulations. In applications involving low-power 
magneto-hydrodynamic (MHD) thermal systems, the use of aspiration of the working media (without fans or 
pumps) can greatly increase heat transfer. In their investigation of its efficacy in the absence of aspiration, Biswas 
et al.30 take into account magnetic fields in addition to a traditional thermal cavity including a protruding heater 
positioned in the center of the bottom. According to the data, both with and without a magnetic field, aspira-
tion enhances heat transmission during natural convection. Chattopadhyay et al.31 demonstrated the potential 
of directional wall motion control for manipulating fluid flow and improving thermal performance in wavy 
enclosures. The findings revealed that the direction of wall motion and the number of undulations in the wavy 
bottom surface have the greatest influence (over 70%) on the behavior of mixed convective flow, compared to 
other factors such as fluid properties and temperature difference. This emphasizes that the orientation of wall 
movement can play a crucial part in governing the thermal performance within the enclosure.

Selimefendigil and Öztop32 used the finite volume method to study how a partially curved layer with tiny 
pores (porous layer) affects heat transfer and the creation of disorder (entropy) in a ventilated space filled with 
a fluid containing a mixture of nanoparticles (hybrid nanofluid). The study also considered the influence of 
an angled magnetic field on this system. They found that when the speed of the nanofluid increased, the area 
of the swirling flow region (recirculation zone) below the inlet and the whirlpool (vortex) near the top corner 
became larger. Chung and Choi33 investigated the airflow patterns induced by a retractable baffle in a large-scale, 
mechanically ventilated barn to assess its effectiveness in mitigating heat stress. Farhany et al.34 used numerical 
simulations to study how heat transfer and temperature distribution (conjugate heat transfer characteristics) 
behave in a tilted enclosure filled with a magnetic liquid (ferrofluid) and a porous material, subject to uneven 
heating. The study found that increasing the modified Rayleigh number, Darcy number, and fin length all led 
to a higher average Nusselt number. Conversely, increasing the Hartmann number resulted in a decrease in 
the average Nusselt number. Muhja and Farhany35 used numerical simulations to investigate how the angle of 
a slanted plate (baffle) inside a square enclosure affects the natural convection heat transfer of a nanofluid. The 
average Nusselt number rises with both increasing Rayleigh number and thermal conductivity ratio. This happens 
because a stronger driving force (Rayleigh number) and better heat conduction across the interface (thermal 
conductivity ratio) enhance heat transfer between the wall and the fluid.

In accordance with the material displayed above, it appears that there is not much research out there on 
using multigrid technique to investigate the non-Newtonian fluid flow in a cavity that is vented with different 
baffle gaps. It’s definitely an area that could use more investigation to understand how presence of baffles affects 
the flow behavior and how multigrid approach can be applied to analyze it. Hence, the goal of current research 
work is to computationally analyze the convection of non-Newtonian fluids in a vented cavity with baffles. By 
utilizing the multigrid approach, we aim to analyze the intricate flow characteristics and understand the impact 
of baffles on the fluid behavior. The dynamics of a viscous fluid within a ventilated cavity with heated baffles 
is examined. Specially looking at how different gap values between baffles affect the flow characteristics. The 
enclosure’s left-wall vent serves as the fluid’s entry point, with subsequent expulsion facilitated by a vent located 
at the top-right section. The following is how the paper is set up: “Introduction” section of the paper presents 
an innovative twist by reviewing the motivational literature. “Problem description” section tackle the problem 
description. “Mathematical description” section provide a clear mathematical formation for the problem. In 
“Numerical procedure and convergence test” section, we introduce a set of numerical techniques that pave the 
way for accurate and efficient simulations. “Results and discussion” section is unveiling the amazing outcomes 
of this study. In the final section, we draw compelling conclusion that ties together all our findings.

Problem description
Figure 1 displays the ventilated square cavity, depicted within the framework of the cartesian coordinate system. 
The square cavity has a length indicated by the variable L . The cavity contains non-Newtonian fluid, which enters 
through the inlet located on the bottom left-side wall and exits through the designated area on the right wall. 

Figure 1.   Physical structure of the problem.
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In this scenario, all the walls have a temperature of zero, meanwhile, the baffles are maintained at an elevated 
temperature of T = 1. In this research, the baffles have a non-dimensional width of 0.02 and a length of 0.75. For 
this study, three distinct baffle gaps were used.

When the baffle gap is set to 0.2, the left and right baffle’s center is at x = 0.38 and 0.58 respectively. When the 
baffle gap is set to 0.4, the left and right baffle’s center is at x = 0.28 and 0.68 respectively. When the baffle gap is 
set to 0.6, the left and right baffle’s center is at x = 0.18 and 0.78 respectively.

Mathematical description
The fundamental equations governing the behavior of non-Newtonian fluids encompass the law of conservation 
of mass (continuity), momentum, and energy equations36 in dimensional form is given below:

where τij is the stress component, τij = 2ηεij and εij is the deformation tensor given as εij =
(

∂ui
∂xj +

∂uj
∂xi

)

 cp is 
the specific heat, while  β and k represent thermal expansion coefficient and thermal conductivity, respectively. 
Density is represented by ρ. Pressure is represented by p and u , v represents the x and y components of velocity 
respectively.

To make Eqs. (1)-(4) dimensionless, we can scale the variables as follows:

In this context, the dimensionless variables X  , Y ,U ,V , P and θ represent the coordinates, x velocity compo-
nent, y velocity component, pressure and normalized temperature, respectively.

The equations in dimensionless form are as follows:
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represents the constancy parameters and n represents the power-law index. Table 1 provides a condensed over-
view of the non-dimensionalized boundary conditions for the current problem.

The non-dimensional quantities that arise in the governing equation are Reynold, Richardson, Grashof and 
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Numerical procedure and convergence test
To solve complex fluid flow problems, the Galerkin’s finite element method converts the continuous partial 
differential equations for velocity and pressure into a set of linear algebraic equations that can be competently 
solved through computational methods. Velocity is discretized using P2 element, while pressure is approximated 
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with the P1 element. The temperature approximations are also chosen to be quadratic for better accuracy of the 
thermal field. The computational mesh at the extra fine level can be seen in Fig. 2. The problem’s overall degree 
of freedom at each of its refinement level is shown in Table 3. Selecting a single element from the computational 
mesh and subsequently subdividing each element into four parts by connecting the midpoints of opposing edges, 
the grid refinement process is continued.

Newton’s method with appropriate damping is used to iteratively crack the underlying system of nonlinear 
algebraic equations. The linearized equations at each iteration are solved using PARDISO37–41, a direct solver 
that can efficiently solve large, sparse systems of equations. The whole implementation is employed in COMSOL 
Multiphysics Solver 5.6.

To validate the model and code, we compared simulated data with published results, particularly the aver-
age Nusselt number from Majeed et al.39. Table 2 demonstrates close correspondence between simulated and 
literature-reported average Nusselt numbers ( Nuavg ) at various Reynolds numbers (Re). This high level of agree-
ment confirms the robustness and reliability of the present model and numerical scheme for achieving accurate 
solutions in this context.

Table 3 provides an overview of the total elements and degrees of freedom at each refining level. It is evident 
that as the refining level increases, the count of degrees of freedom and elements also increases. This is particu-
larly notable when considering the expansion of the baffle’s gap.

The results demonstrate a robust agreement, supporting the conclusion that the present model and numerical 
approach are dependable for obtaining solutions to the current problem with a suitable level of accuracy. Table 4 
presents the assessment of grid resolution for kinetic energy for bg = 0.2, with Prandtl number (Pr) equal to 5, 
Reynolds number (Re) at 50, and Richardson number (Ri) set at 1. This configuration ensures that the deviation 
of selected quantities between grid levels 8 and 9 is negligibly small. Consequently, simulations are executed 

Table 1.   According to the problem specification, the dimensionless boundary condition is as follows:

Boundary Flow conditions Thermal conditions

Top wall 0 ≤ X ≤ 1, Y = 1, U = V = 0 θ = 0

Bottom wall 0 ≤ X ≤ 1, Y = 0, U = V = 0 θ = 0

Left wall X = 0, 0.1 ≤ Y ≤ 1, U = V = 0, θ = 0

Right wall X = 1, 0 ≤ Y ≤ 0.9, U = V = 0, θ = 0

Inlet Uin = 1, X = 0, 0 ≤ Y ≤ 0.1, U = V = 0 θ = 0

Outlet X = 1, 0.9 ≤ Y ≤ 1, P = 0, ∂U
∂X

 = 0, ∂U
∂Y

= 0
∂θ

∂X
= 0

Baffles U = V = 0 θ = 1

=0.2  =0.4  =0.6

Figure 2.   Computational mesh at Coarse level.

Table 2.   Analyzing the impact of parameter variations on Nusselt number at Pr = 5, Ri = 1.

Re Majeed et al.39 Present results

5 11.6278655 11.6278758

10 15.7421133 15.7421200

15 18.7397606 18.7397812

20 21.1463851 21.1464263

25 23.2662513 23.2663275
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at grid level 8 to optimize computational resources. The table includes the corresponding number of elements 
(#EL) and total unknowns or degrees of freedom (#DOFs).

Nonlinear solver
The possibilities for solving Navier–Stokes equations using outer non-linear solvers are rather constrained. The 
above includes both the Fixed-Point iteration and the Newton iteration. Both of them are incredibly popular 
and are regularly used in numerical calculations. Since the Newton iteration achieves convergence more quickly 
than the fixed-point iteration, it is frequently chosen.

The one step Newton’s execution is as follows:

1.	 Given an initial estimate X(0) , set k = 0

2.	 Address the linear subproblem: J (X(k))�X(k)
= −F(X(k)).

3.	 Update the iterate to achieve: Xk+1
= Xk

+ σ�X(k)

4.	 Set k = k + 1, go to step 2.

This process should continue until the norm of �Xk+1
− Xk

� is below a certain threshold. Here σ is a damping 
parameter and J  is Jacobean matrix of the non-linear system.

Multigrid
Multigrid is a super-efficient solver for PDEs with a efficient convergence rate, regardless of problem size. The 
multigrid approach works by creating a hierarchy of grid through regular refinement of the coarse mesh. After 
applying smoothing on different mesh levels, a restriction on the residual is imposed. The solution is found on 
the coarsest grid using a direct sparse linear solver if the degree of freedom count is sufficiently low. After post-
smoothing, the prolongation step is carried out, which results in a improved approximation. The procedure 
keeps going till the entire multigrid iteration cycle (V, W, or F) is completed. An outline of the initial iteration 
of the multigrid algorithm’s implementation is shown in Fig. 3. The multigrid method is widely recognized as 
one of the quickest linear solvers for CFD problems27. It’s pretty impressive. Regarding multigrid approaches, 
more information is provided by Hackbush42,43. To address the fluid flow problem, which is described in the 
subsequent sections, we used the multigrid technique. For pre-smoother and post-smoother, the most famous 
SOR (successive over relaxation) method were used.

Let’s give some consideration to the linear system

Table 3.   Degrees of freedom (DOF) and element count (EL).

Refinement levels

bg = 0.2 bg = 0.4 bg = 0.6

#EL #DOF #EL #DOF #EL #DOF

Extremely coarse 588 3539 612 3848 616 3733

Extra coarse 790 4747 784 4699 804 4862

Coarser 1162 6821 1150 6743 1162 6875

Coarse 2032 11,637 2030 11,618 2000 11,549

Normal 2904 16,400 2994 16,840 2882 16,353

Fine 4428 24,513 4,486 24,776 4426 24,611

Finer 11,890 64,427 12,068 65,299 11,944 64,859

Extra finer 31,240 165,791 31,596 167,571 31,240 166,151

Extremely fine 38,060 199,891 38,112 200,153 38,342 201,661

Table 4.   Grid convergence test for the modeled problem for bg = 0.2.Pr = 5,Ri = 1 and Re = 50.

Levels No. of elements Degrees of freedom Kinetic energy

1 588 3539 0.381081

2 790 4747 0.379966

3 1162 6821 0.378316

4 2032 11,637 0.378146

5 2904 16,400 0.377026

6 4428 24,513 0.375676

7 11,890 64,427 0.374562

8 31,240 165,791 0.373929

9 38,060 199,891 0.373888
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•	 Set a starting value or guess U o
j  on fine grid level j and perform pre-smoothing to enhance the accuracy of 

the primary approximation

where Sj is the smoothing operator.
•	 Pre-smoothing adequately smooths the very high frequency of the residual such that the error’s high fre-

quency may be seen on the coarse grid.

The restriction operator Rj−1
j  , converts a finer grid into a coarser grid and provides an approximate value.

•	 Solve the system to obtain the correction u*j−1 on the coarser grid correction.

•	 Prolongate the correction u*j−1 to the finer grid

where Pj
j−1 denotes the prolongation operator used to interpolate values from a coarser grid to the next finer 

grid. and αj is the damping parameter.
•	 Get the final solution uj

m+1+n by executing the post-smoothing steps

These steps are iteratively applied across various grid levels to expedite the reduction of errors.
The fundamental concept behind the development of the multigrid V-cycle (MGV) and full multigrid (MGF) 

algorithms is as follows:

Function MGV(bj,uj)
 Substitute  the approximate solution uj of the system Aju j=bj with an improved solution

f j=1
Calculate the precise solution
return u1

else
uj=S(bj, uj),
rj =Aj, uj-bj,
dj=P(MGV(R(rj),0)),
uj=xj-dj,
uj=S(bj,uj),
return uj

end if 

•
•
•
•
•

Algorithm 1.   Multigrid V-Cycle

(10)AjU j = bj

(11)U
k+1
j = Sj

{

U
k
j

}

, k = 0, . . . ,m− 1

(12)rj−1 = R
j−1
j

{

bj − AjU
m
j

}

,

(13)Aj−1u∗j−1 = rj−1,

(14)U
m+1
j = u

m
k + αkP

j
j−1u ∗ j− 1,

Figure 3.   A diagram showing the steps involved in the three main types of multigrid cycles: the V-cycle, the 
W-cycle, and the F-cycle.
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function MGF(bj, uj)
return an precise solution uj of the system Aju j=bj
solve A1u1=b1 exactly to get u1
for j=2 to k
uj=MGV(bj,P(uj))
end for

Algorithm 2.   Full Multigrid (FMG)

Results and discussion
In this research, the main object is to explore the fluid flow and convective heat transfer characteristics of a 
vented square cavity equipped with baffles of different sizes. The fluid being considered is non-Newtonian, and 
the flow is laminar and steady. The fluid enters through the bottom of the left wall and exists through the top of 
the right wall. This section provides a graphical representation of the results, including velocity profiles, stream-
line, isotherms and line graphs. This section also provides a comprehensive analysis of how various parameters 
influence the Nusselt number.

The power law index, n , is a dimensionless number that describes how the shear stress of a fluid changes 
with the shear rate. A Newtonian fluid has a power law index of 1, which means that the shear stress is directly 
proportional to the shear rate. A shear-thinning fluid has a power law index of less than 1, which means that 
the shear stress decreases as the shear rate increases. A shear-thickening fluid has a power law index of greater 
than 1, which means that the shear stress increases as the shear rate increases. Table 5 represents the number 
of iterations taken by the non-linear solver for different power law indices and three different gaps between the 
baffles. It is observed that for the shear thinning case (n < 1), more iterations are required for convergence, while 
for the shear thickening case (n > 1), fewer iterations are required for convergence.

In Fig. 4a–c, illustrates the Influence of various baffle gap sizes and power law indices on the velocity pro-
file can be observed with fixed Prandtl number 5 and Richardson number Ri = 1. The power law indices are 
increasing from left to right ( n=0.5, 1 and 1.5) and vertically, there are three increasing baffle gap sizes, which 
are: bg = 0.2 , 0.4 and 0.6. By expanding the baffle gap, in the presence of baffles, a reduction in boundary layer 
thickness within velocity profiles is observed, leading to a shift in velocity patterns that may impact heat transfer 
or mixing efficiency.

In Fig. 5a–c, the impact of different baffle gaps and power law indices on the streamlines profile can be 
observed with fixed Prandtl number 5 and Richardson number Ri = 1. The power law indices vary in an ascending 
order from left to right, with values of n equal to 0.5, 1, and 1.5. Progressing from the uppermost to the lower-
most, there are three increasing baffling gaps denoted as bg , with values of 0.2, 0.4, and 0.6. Vortices may be seen 
forming at the top, bottom, and all around the baffles. As we increase the baffle size, clockwise and anticlockwise 
vortices appear around the cavity. The best-case situation occurs at a baffle gap of 0.6, when larger and more 
vortices are produced as the power-law index rises.

In Fig. 6a–c, the impact of varied baffle gaps and Prandtl number on the isotherms can be observed. The 
results are calculated for shear thickening (n > 1) with Ri = 1. In the vertical direction, there are three consecu-
tive increments in the baffling gap sizes, specifically marked as bg , with values of 0.2, 0.4, and 0.6 from top to 
bottom. Increased the Prandtl number can lead to reduction in the thermal boundary layer thickness, resulting 
in a denser distribution of isothermal lines in the vicinity of the heat source. At higher Prandtl numbers, the 
isothermal lines vanish from the lower region of the cavity. This phenomenon occurs because the highly viscous 
fluid confines the thermal boundary layer to a compact area.

Many researchers find it incredibly captivating to observe the velocity behavior along a straight line within 
2D domain. It’s a truly intriguing phenomenon that has piqued the interest of numerous scholars. When con-
sidering a straight line, it can be oriented either horizontally or vertically. The attachment of these baffles to the 
horizontal wall significantly affects the velocity profile when plotting a horizontal line graph. Therefore, velocity 
measurements were taken along the vertical cross-section at a position where x equals 0.5. Figure 7a–c depict 
the u and v velocity components along the y-axis at x = 0.5 for baffle gap sizes of bg  = 0.2, 0.4, and 0.6. Each baffle 
gap exhibits three distinct curves, corresponding to power law indices of n = 0.5, 1.0, and 1.5. The curves behave 
differently after the 0.5 demarcation.

In Fig. 8a, the influence of Reynolds number (Re) on the average Nusselt number at the baffles is illustrated 
for various power law indices ( n ). Findings indicate that expanding the Reynolds number (Re) leads to an 
enhancement in the Nusselt number value for the left wall. Likewise, improving the value of power law indices 

Table 5.   Number of iterations for nonlinear solver (Newton’s Method).

Power law index ( n) bg = 0.2 bg = 0.4 bg = 0.6

0.5 31 29 28

1 12 11 12

1.5 11 11 11
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( n ) ensures better performance of heat transfer. Figure 8(b) displays how the Re (Reynolds number) affects the 
average Nusselt number ( Nuavg ) at the baffles across different Richardson number values. Notably, the curves 
exhibit a clear linear correlation, as the graph consistently rises with increasing Ri.

Figure 9 illustrates how the average Nusselt number at the baffles varies with different Prandtl number 
( 2 ≤ Pr ≤ 7) values as influenced by the Reynolds number (Re). The results demonstrate that higher Reynolds 
numbers (Re) result in an increased Nusselt number. Additionally, it is noticeable that the curves rise as the 
Prandtl number increases.

In Fig. 10, the influence of power law indices ( n ) on the average Nusselt number at the baffles across various 
Richardson number (Ri) scenarios is explored. Transitioning to different fluid types with increased viscosity 
reveals an inverse relationship—higher values of power law indices ( n ) correspond to a decrease in the Nusselt 
number. Additionally, a noteworthy trend emerges as the Richardson number increases; however, it is counter-
acted by a decrease in the Nusselt number with a rising power law index ( n).

In Fig. 11 the graph of (Nuavg ) for distinct values of power law indices at the baffle gap 0.6 is displayed. The 
curves exhibit a downward trend within the lower cavity for all values of n, followed by an upward trend. The 

=0.5  =1.0  =1.5

=0.5 =1.0 =1.5

=0.5 =1.0 =1.5

(a)

(b)

(c)

Figure 4.   (a) Velocity profiles with baffle gap 0.2, Ri = 1 and Pr = 5.0. (b) Velocity profiles with baffle gap 0.4, 
Ri = 1 and Pr = 5.0. (c) Velocity profiles with baffle gap 0.6, Ri = 1 and Pr = 5.0.
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shear thinning curve ( n < 1 ) consistently remains below the shear thickening curve ( n > 1 ) throughout the 
cavity. This implies that for the chosen parameter the shear thinning effect is weaker compared to the shear 
thickening effect.

Conclusions
This investigation employed numerical simulations to investigate the thermal and fluid flow properties of a non-
Newtonian fluid in a square ventilated enclosure under conditions of mixed convective flow. The enclosure was 
equipped with three distinct baffle gap sizes, namely ( bg = 0.2, 0.4, and 0.6). Furthermore, we assessed the impact 
of various parameters, including the power law index ( n ), Richardson number (Ri), Prandtl number (Pr), and 
Reynolds number (Re). The study also extends to the calculation average Nusselt number. The foremost findings 
can be summarized as follows:

1.	 The power law index ( n ) has a substantial impact on the convective heat transfer strength.

=0.5 =1.0 =1.5

=0.5 =1.0 =1.5

=0.5 =1.0 =1.5

(a)

(b)

(c)

Figure 5.   (a) Influence on Contours with baffle gap 0.2, Ri = 1, and Pr = 5.0. (b) Influence on Contours with 
baffle gap 0.4, Ri = 1, and Pr = 5.0. (c) Influence on Contours with baffle gap 0.6, Ri = 1 and Pr = 5.0.
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2.	 The rise in The Richards number from 0.1 to 5 enhanced the value of the average Nusselt number.
3.	 For varying Reynolds number levels, an increment in the Richardson number from 0.1 to 3 causes a propor-

tional rise in the Nusselt number.
4.	 As the Prandtl number (Pr) transitions from 2 to 7, the Nusselt number experiences a corresponding increase 

across various Reynolds numbers.
5.	 The most favorable scenario occurs with a baffle gap of 0.6, wherein both the size and quantity of vortices 

increase with higher power law indices.
6.	 As the baffle gap widens, the zone dedicated to heat transfer expands, offering a larger canvas for the fluid 

within the cavity to absorb thermal energy.

Pr=2 Pr=5 Pr= 7
(a)

Pr=2 Pr=5 Pr= 7

Pr=2 Pr=5 Pr= 7

(b)

(c)

Figure 6.   (a) Influence on Contours with baffle gap 0.2 and Ri = 1. (b) Influence on Contours with baffle gap 0.4 
and Ri = 1. (c) Influence on Contours with baffle gap 0.6 and Ri = 1.
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Figure 7.   (a) Line graphs along Y-Axis at x = 0.5 for a Baffle Gap of 0.2: u and v components. (b) Line graphs 
along Y-Axis at x = 0.5 for a Baffle Gap of 0.4: u and v components. (c) Line graphs along Y-Axis at x = 0.5 for a 
Baffle Gap of 0.6: u and v components.
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Figure 8.   Average Nusselt number versus Reynolds number (a) for different power law indices n (b) for 
different Richardson number (Ri).

Figure 9.   The effect of Prandtl (Pr) number and Ri on Nuavg number.
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reasonable request.

Received: 16 September 2023; Accepted: 18 March 2024

References
	 1.	 Priam, S. S., Saha, R. & Saha, S.: Pure mixed convection inside a vented square cavity with an isothermally heated rotating cylinder. 

in AIP Conference Proceedings vol. 2324, no. February (2021).
	 2.	 Abu-Hijleh, B. A. K. Optimized use of baffles for reduced natural convection heat transfer from a horizontal cylinder. Int. J. Therm. 

Sci. 42(11), 1061–1071 (2003).
	 3.	 Abraham, J. P. & Sparrow, E. M. Experiments on discretely heated, vented/unvented enclosures for various radiation surface 

characteristics of the thermal load, enclosure temperature sensor, and enclosure walls. Int. J. Heat Mass Transf. 45(11), 2255–2263 
(2002).

	 4.	 Saha, S., Ali, M. & Islam, M. Q. Effect of inlet and outlet locations on transverse mixed. J. Mech. Eng. 36, 27–337 (2006).
	 5.	 Joodi, A. Effect of baffles geometry of the flocculation basin on the turbulence behavior using Comsol multiphysics technique. J. 

Environ. Stud. 10(1), 71–77 (2013).
	 6.	 Radhakrishnan, T. V., Joseph, G., Balaji, C. & Venkateshan, S. P. Effect of baffle on convective heat transfer from a heat generating 

element in a ventilated cavity. Heat Mass Transf. Stoffuebertragung 45(8), 1069–1082 (2009).

Figure 10.   The effect of power law (n) and Richardson number (Ri) on Nuavg number.

Figure 11.   Graphs of average Nusselt number for various power law indices.



16

Vol:.(1234567890)

Scientific Reports |         (2024) 14:6694  | https://doi.org/10.1038/s41598-024-57322-5

www.nature.com/scientificreports/

	 7.	 Nougbléga, Y., Sagna, K. & Atchonouglo, K. Numerical study of mixed convection in baffled vented cavity. Int. J. Phys. 8(1), 1–10. 
https://​doi.​org/​10.​12691/​ijp-8-​1-1 (2020).

	 8.	 Mahmood, R., Rehman, N., Majeed, A. H., Rehman, K. U. & Shatanawi, W. Numerical solution for heat transfer in a staggered 
enclosure with wavy insulated baffles. AIMS Math. 8(4), 8332–8348 (2023).

	 9.	 Aun, S. H. A., Ghadhban, S. A. & Jehhef, K. A. Experimental and numerical investigation of convection heat transfer in an enclosure 
with a vertical heated block and baffles. J. Therm. Eng. 7(3), 367–386 (2021).

	10.	 Hamzah, H. K. et al. In a vented square enclosure, the effect of a flexible baffle attached to a solid cylinder on mixed convection. 
Arab. J. Sci. Eng. 47(12), 15489–15504 (2022).

	11.	 Palaniappan, G., Murugan, M., Al-Mdallal, Q. M., Abdalla, B. & Doh, D. H. Numerical investigation of open cavities with parallel 
insulated baffles. Int. J. Heat Technol. 38(3), 611–621 (2020).

	12.	 Kefayati, G. R. Mesoscopic simulation of mixed convection on non-Newtonian nanofluids in a two sided lid-driven enclosure. 
Adv. Powder Technol. 26(2), 576–588. https://​doi.​org/​10.​1016/j.​apt.​2015.​01.​005 (2015).

	13.	 Yaseen, D. & Ismael, M. Effect of deformable baffle on the mixed convection of non-Newtonian fluids in a channel-cavity. Basrah 
J. Eng. Sci. 20(2), 18–26 (2020).

	14.	 Yang, L. & Du, K. A comprehensive review on the natural, forced, and mixed convection of non-Newtonian fluids (nanofluids) 
inside different cavities. J. Therm. Anal. Calorim. 140(5), 2033–2054 (2020).

	15.	 Shahabadi, M., Mehryan, S. A. M., Ghalambaz, M. & Ismael, M. Controlling the natural convection of a non-Newtonian fluid 
using a flexible fin. Appl. Math. Model. 92, 669–686 (2021).

	16.	 Ghurban, M. A., Al-Farhany, K. & Olayemi, O. A. Numerical investigation of mixed convection of non-Newtonian fluid in a vented 
square cavity with fixed baffle. Heat Transf. 52, 1–27 (2023).

	17.	 Mahmoudi, A. H., Shahi, M. & Talebi, F. Effect of inlet and outlet location on the mixed convective cooling inside the ventilated 
cavity subjected to an external nanofluid. Int. Commun. Heat Mass Transf. 37(8), 1158–1173 (2010).

	18.	 Bellahcene, L., Sahel, D. & Yousfi, A. Numerical study of shell and tube heat exchanger performance enhancement using nanofluids 
and baffling technique. J. Adv. Res. Fluid Mech. Therm. Sci. 80(2), 42–55 (2021).

	19.	 Ali, M. M., Akhter, R. & Miah, M. M. Hydromagnetic mixed convective flow in a horizontal channel equipped with Cu-water 
nanofluid and alternated baffles. Int. J. Thermofluids 12, 100118 (2021).

	20.	 Gumir, F. J., Al-Farhany, K., Jamshed, W., Tag El Din, E. S. M. & Abd-Elmonem, A. Natural convection in a porous cavity filled 
(35%MWCNT-65% Fe3O4)/water hybrid nanofluid with a solid wavy wall via Galerkin finite-element process. Sci. Rep. 12(1), 
1–18 (2022).

	21.	 Biswas, N., Mahapatra, P. S. & Manna, N. K. Mixed convection heat transfer in a grooved channel with injection. Numer. Heat 
Transf. Part A Appl. 68(6), 663–685 (2015).

	22.	 Biswas, N., Mahapatra, P. S. & Manna, N. K. Thermal management of heating element in a ventilated enclosure. Int. Commun. 
Heat Mass Transf. 66, 84–92 (2015).

	23.	 Biswas, N., Manna, N. K., Datta, P. & Mahapatra, P. S. Analysis of heat transfer and pumping power for bottom-heated porous 
cavity saturated with Cu-water nanofluid. Powder Technol. 326, 356–369 (2018).

	24.	 Chakravarty, A. et al. Impact of side injection on heat removal from truncated conical heat-generating porous bed: thermal non-
equilibrium approach. J. Therm. Anal. Calorim. 143(5), 3741–3760 (2021).

	25.	 Ramanan, N. & Korpela, S. A. Multigrid solution of natural convection in a vertical slot. Numer. Heat Transf. Part A Appl. 15(3), 
323–339 (1989).

	26.	 [Springer Series in Computational Mathematics] Wolfgang Hackbusch—Multi-grid Methods and Applications (Springer, 1985)—lib-
gen.li.

	27.	 Wesseling, P. & Oosterlee, C. W. Geometric multigrid with applications to computational fluid dynamics. J. Comput. Appl. Math. 
128(1–2), 311–334 (2001).

	28.	 Zhang, Y., Ma, S., Liao, K. & Duan, W. A two-dimensional geometric multigrid model for Poisson equation with interface on 
structured adaptive mesh refinement grid. Appl. Ocean Res. 111(April), 102655 (2021).

	29.	 Mandal, D. K., Biswas, N., Manna, N. K., Gorla, R. S. R. & Chamkha, A. J. Role of surface undulation during mixed bioconvective 
nanofluid flow in porous media in presence of oxytactic bacteria and magnetic fields. Int. J. Mech. Sci. 211(August), 106778 (2021).

	30.	 Biswas, N., Manna, N. K., Datta, A., Mandal, D. K. & Benim, A. C. Role of aspiration to enhance MHD convection in protruded 
heater cavity. Prog. Comput. Fluid Dyn. Int. J. 20, 363–378 (2020).

	31.	 Chattopadhyay, A., Karmakar, H., Pandit, S. K. & Chamkha, A. J. Impact of moving walls on combined convection flow and thermal 
performance in a wavy chamber. J. Therm. Anal. Calorim. 147(5), 3731–3752 (2022).

	32.	 Selimefendigil, F. & Öztop, H. F. Thermal management and modeling of forced convection and entropy generation in a vented 
cavity by simultaneous use of a curved porous layer and magnetic field. Entropy 23, 152 (2021).

	33.	 Barn, V., Jung, S. & Chung, H. Assessment of airflow patterns induced by a retractable baffle to mitigate heat stress in a large-scale 
Mechanically. Agriculture 13, 1910 (2023).

	34.	 Al-farhany, K., Al-chlaihawi, K. K. & Al-dawody, M. F. Effects of fins on magnetohydrodynamic conjugate natural convection in 
a nanofluid-saturated porous inclined enclosure. Int. Commun. Heat Mass Transf. 126, 105413 (2021).

	35.	 Al-Muhja, B. & Al-Farhany, K. Numerical investigation of the effect of baffle inclination angle on nanofluid natural convection 
heat transfer in a square enclosure. Al-Qadisiyah J. Eng. Sci. 12, 61–71 (2019).

	36.	 Kumar, S., Gangawane, K. M. & Oztop, H. F. A numerical study of mixed convection in a two-sided lid-driven tall cavity containing 
a heated triangular block for non-Newtonian power-law fluids. Heat Transf. 50(5), 4806–4829 (2021).

	37.	 Rehman, N., Mahmood, R., Hussain Majeed, A., Ur Rehman, K. & Shatanawi, W. Finite element analysis on entropy generation 
in MHD Iron(III) Oxide-Water NanoFluid equipped in partially heated fillet cavity. J. Magn. Magn. Mater. 565(August 2022), 
170269. https://​doi.​org/​10.​1016/j.​jmmm.​2022.​170269 (2023).

	38.	 Mahmood, R., Khan, Y., Rahman, N., Majeed, A. H. & Alameer, A. Numerical computations of entropy generation and MHD 
ferro fluid filled in a closed wavy configuration: Finite element based study. Front. Phys. 10(July), 1–11 (2022).

	39.	 Hussain, A., Afzal, A. & Mahmood, R. Numerical investigation of viscous fluid flow and heat transfer in the closed configuration 
installed with baffles. Int. J. Emerg. Multidiscip. Math. 1(2), 49–57 (2022).

	40.	 Mahmood, R. et al. Computational analysis of fluid forces on an obstacle in a channel driven cavity: Viscoplastic material based 
characteristics. Materials (Basel) https://​doi.​org/​10.​3390/​ma150​20529 (2022).

	41.	 Khan, Y. et al. Finite element simulations of inclined magnetic field and mixed convection in an enclosure with periodically heated 
walls in the presence of an obstacle. Front. Phys. 10(October), 1–14 (2022).

	42.	 [Springer Series in Computational Mathematics] Wolfgang Hackbusch—Multi-grid methods and applications (Springer, 1985).
	43.	 Al-Mahdawi, H. K. et al. Parallel multigrid method for solving inverse problems. MethodsX 9, 1–15 (2022).

Author contributions
N.R.: Conceptualization, methodology, validation, investigation, resources, data curation, writing—original 
draft. R.M.: Conceptualization, methodology, writing—original draft, writing—review and editing, visualization, 
supervision. A.H.M.: Investigation, mathematical, computational, supervision, writing—review and editing, 

https://doi.org/10.12691/ijp-8-1-1
https://doi.org/10.1016/j.apt.2015.01.005
https://doi.org/10.1016/j.jmmm.2022.170269
https://doi.org/10.3390/ma15020529


17

Vol.:(0123456789)

Scientific Reports |         (2024) 14:6694  | https://doi.org/10.1038/s41598-024-57322-5

www.nature.com/scientificreports/

visualization. I.K.: Conceptualization, methodology, writing—original draft, writing—review and editing, super-
vision. A.M.: Validation, investigation, writing—original draft, writing—review and editing, visualization.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to A.H.M. or A.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2024

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Multigrid simulations of non-Newtonian fluid flow and heat transfer in a ventilated square cavity with mixed convection and baffles
	Problem description
	Mathematical description
	Numerical procedure and convergence test
	Nonlinear solver
	Multigrid

	Results and discussion
	Conclusions
	References


